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Abstract

Blind image inpainting is a crucial restoration task that
does not demand additional mask information to restore the
corrupted regions. Yet, it is a very less explored research
area due to the difficulty in discriminating between cor-
rupted and valid regions. There exist very few approaches
for blind image inpainting which sometimes fail at pro-
ducing plausible inpainted images. Since they follow a
common practice of predicting the corrupted regions and
then inpaint them. To skip the corrupted region predic-
tion step and obtain better results, in this work, we pro-
pose a novel end-to-end architecture for blind image in-
painting consisting of wavelet query multi-head attention
transformer block and the omni-dimensional gated atten-
tion. The proposed wavelet query multi-head attention in
the transformer block provides encoder features via pro-
cessed wavelet coefficients as query to the multi-head atten-
tion. Further, the proposed omni-dimensional gated atten-
tion effectively provides all dimensional attentive features
from the encoder to the respective decoder. Our proposed
approach is compared numerically and visually with exist-
ing state-of-the-art methods for blind image inpainting on
different standard datasets. The comparative and ablation
studies prove the effectiveness of the proposed approach for
blind image inpainting. The testing code is available at
: https://github.com/shrutiphutke/Blind_
Omni_Wav_Net

1. Introduction

Image inpainting is a widely used technique in the field
of image processing and restoration. This method involves
filling in missing or corrupted regions of an image to restore
it to its original form. Typically, image inpainting methods
require information about the corrupted regions in the form
of masks to guide the restoration process. These methods
are known as non-blind image inpainting methods. How-

Figure 1. Sample visual results of the proposed method for blind
image inpainting on different datasets (from left to right CelebA-
HQ [9], FFHQ [10], ParisSV [5], and Places2 [41]).

ever, in many real-world applications, such as photo editing,
unwanted object removal, mesh-face verification, etc., it is
often difficult to obtain masks for guidance. This has led to
the development of a new technique called blind image in-
painting, which does not require any prior knowledge about
the corrupted regions or masks to perform image restora-
tion.

As the corrupted regions in the images are arbitrary (in
size and shape), inpainting becomes an ill-posed problem.
The deep learning-based architectures nowadays effectively
inpaint the corrupted images [6, 8, 11, 15, 16, 19, 23, 24,
30, 35]. These methods use different approaches such as
utilizing multiple cues to inpaint the image [35], genera-
tive adversarial networks (GANs) inversion [30], pseudo-
decoder [23], super-resolution [11], transformers [6, 15],
etc. Though, these methods are excellent in producing
the faithful inpainting outcomes, they generally provide the
mask as input to guide the network.

With regard to blind image inpainting, considering that
there is no knowledge of where the corruptions lie (masks),
image inpainting becomes a difficult task. Researchers di-
vided the task of blind image inpainting into two sub-tasks
i.e. (a) mask prediction and (b) image inpainting [29, 31].
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In [31], authors proposed a mask prediction network to pre-
dict the visually disturbed regions followed by the robust
image inpainting network. Also, [29] used the transformer-
based network for mask prediction followed by top-down
refinement inpainting network. In both of these approaches,
the final inpainting task is heavily dependent upon the ear-
lier mask prediction network prior to beginning the inpaint-
ing process. There may be a degradation in the performance
of inpainting when proper mask prediction is not achieved.
For overcoming the above limitations of mask prediction-
based blind image inpainting, a hybrid transformer encoder
with cross-layer dissimilarity prompt (CDP) and convolu-
tion neural network (CNN) decoder is proposed in [40] for
the identification of contamination in an input image. There
may be a possibility that the generation of an attentive soft
mask for further inpainting could introduce inconsistencies
in the inpainted results where a CNN decoder is being used.
Since, it may fail to take into account the maximum depen-
dencies from the input mask attentive feature maps.

Despite the apparent differences between stage-wise
mask prediction followed by inpainting [29, 31] and inter-
mediate attentive mask guidance inpainting [40], both ap-
proaches are nearly identical. Since, in that the inpaint-
ing task is directly or indirectly based on the identifica-
tion of inconsistent regions. Also, when an image with
large corrupted regions is provided as input to these meth-
ods [29, 31, 40], they fail at inpainting the globally consis-
tent image. In this work, we propose an end-to-end training
approach independent of any identification of masked and
non-masked regions for blind image inpainting.

The transformers are well known for their ability to ex-
ploit long-range dependencies. With this ability, transform-
ers have shown better convergence in numerous applica-
tions of image restoration [6, 15, 19, 28, 29, 39] including
image inpainting. Further, the queries are the inputs to
the transformer multi-head attention for which the attention
is calculated. Providing appropriate queries to the trans-
former block may further enhance their convergence capa-
bility. With this assumption, in this work, we propose a
wavelet query-based multi-head attention mechanism in the
transformer block. The processed wavelet coefficients will
provide less degraded information as a query to the multi-
head attention mechanism. Also, to forward the encoder
features to the respective decoder, we propose a gated omni-
dimensional attention block. This block provides the all di-
mensional attentive information to the features which may
help the network for efficient reconstruction. The contribu-
tions of our work are:

• An end-to-end transformer based architecture is pro-
posed for blind image inpainting.

• A novel wavelet query multi-head attention mecha-
nism is introduced in the transformer block.

• A omni-dimensional gated attention mechanism is pro-
posed to forward different dimensional attentive fea-
tures from encoder to respective decoder for effective
reconstruction of inpainted image.

Our proposed approach achieves remarkable perfor-
mance improvement as compared to existing state-of-the-
art blind image inpainting methods. The sample inputs and
outputs of the proposed approach are provided in Figure 1.

2. Related Work
2.1. Image Inpainting

Previously, image inpainting methods [1, 4, 12] primar-
ily relied on conventional patch, exemplar, and diffusion-
based techniques, but these often resulted in semantically
inconsistent results. Later on, novel works on image in-
painting [6,11,15,23,30,35] were proposed, which utilized
learning-based approaches and made significant advance-
ments in this field. Methods relying on two stage archi-
tectures [6, 16, 22, 24, 36, 37] resulted in remarkable image
inpainting outcomes. These two stage architectures mainly
comprise of an initial stage, which produces coarse output,
and a second stage, which generates the finer results. Al-
though the two-stage architectures produce believable out-
comes, their inter-stage dependency hinders them from gen-
erating more detailed and refined inpainted results. To mit-
igate this challenge, improvements in the form of single
stage inpainting architectures with less computational com-
plexity were introduced [6,14,15,18,19,23,38] that perform
better than the two stage architectures. By leveraging the
mask information, researchers proposed mask aware convo-
lution layers [18, 37], contextual attention [14], and trans-
formers [15, 38] for image inpainting. Further, additional
information such as structural or edge priors have been uti-
lized in [21, 26] for image inpainting. These above meth-
ods utilize the mask information for inpainting which limit
its performance where mask information is not available.
Therefore, researchers introduced the inpainting architec-
tures without any mask information named as blind image
inpainting.

2.2. Blind Image Inpainting

Cai et al. [2] proposed the first blind image inpainting
with end-to-end CNN based architecture for direct learning
to identify the corrupted regions and recover them. Later,
Liu et al. [20] proposed a residual learning based approach
with the horizontal and vertical gradients to generate the de-
tailed clear image. Prior to these works, Xie et al. [34] uti-
lized the sparse auto-encoder for image denoising and blind
image inpainting. Similarly, in [25] Ren et al. proposed
Shepard convolutional network for image denoising and
blind image inpainting. These approaches consider simple
contaminations like text imposed on images or images with
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Figure 2. Overview of the proposed architecture for blind image inpainting. The architecture includes of transformer block consisting of
the proposed wavelet query-based multi-head attention for providing prominent information as a query. Further, omni-dimensional gated
attention is proposed in order to forward efficient attentive features from encoder to the respective decoder.

some part appended from other images of masks with thin
size. Due to this, these methods may fail at inpainting the
images with larger contaminations.

For considering complex contaminations, Wang et al.
[31] proposed two-stage architecture for blind image in-
painting. [31] put forward a consistency network that ini-
tially recognizes the regions to inpaint through the predicted
masks, and then leverages the inpainting network. Further,
Wang et al. [29] predicted the masks by including the con-
textual coherence and additional frequency modality as in-
puts, after which, landmark prediction and finally inpainting
is performed on facial images. However, both [31] and [29]
rely on mask prediction followed by inpainting by using
two-stage architectures. Such approaches are susceptible
to mask prediction error, further leading to undesired image
inpainting results. With this knowledge, Zhao et al. [40] ob-
served that, in blind image inpainting, there exists a heavy
correlation between the differentiation of contaminated and
valid regions and mask prediction. With this assumption,
Zhao et al. [40] proposed a single-stage hybrid encoder-
decoder network for blind image inpainting. In order to
capture global context, the transformer encoder is used [40]
and the CNN decoder is used to revamp the contaminations.

2.3. Transformers for Image Restoration

Transformers have gained popularity over CNNs for var-
ious image restoration tasks such as image denoising [17],
deraining [33], deblurring [32, 39], etc. due to their ability
to capture long-range dependencies. They have been used
in computer vision through Vision Transformers (ViT) [7],
which employ flattened patches of images while training.
Image processing transformers have also been used for low-
level vision tasks, as demonstrated by [3], which demon-
strated how pre-training on large datasets can improve per-
formance. UFormer [32] uses a U-Net like structure with
windowed multi-head self-attention based transformers for
image restoration tasks. Further, Zamir et al. [39] intro-
duced efficient transformers for various image restoration
tasks.

3. Proposed Method
For the task of blind image inpainting, corrupted input

C ∈ Rm,n,3 with m,n spatial dimensions is generated as:

C = Gt ⊙ (1−G(Mask)) +Noise⊙G(Mask) (1)

where, Gt ∈ Rm,n,3 is the ground-truth image, Noise ∈
Rm,n,3 is the noisy input, Mask is the input which decides
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the locations to be corrupted with 1 as corrupted regions and
0 as valid regions, and G(·) is Gaussian smoothing which is
applied on Mask. As, this work is mainly focused on blind
image inpainting, the proposed network does not utilize the
Mask information for inpainting the image.

In this work, we propose a single-stage end-to-end trans-
former architecture for blind image inpainting (see Fig-
ure 2). Here, we propose two major components namely:
(a) wavelet query multi-head attention mechanism in trans-
former: to provide processed query as input to the multi-
head attention, and (b) omnidimensional gated attention:
for providing all dimensional attentive features in order to
achieve a plausible outcome. In this section, we will first
give a detailed exposition of the proposed architecture for
blind image inpainting and then we detail the proposed
modules.

Overview of proposed transformer based architecture
with the wavelet query multi-head attention (WQMA) and
omnidimensional gated attention (OGA) is shown in Fig-
ure 2. To convert input image into feature space, we first
apply the convolution layer. These convolved features are
processed through three successive transformer blocks fol-
lowed by down-sampler. The input with spatial size m,n is
then converted into m

8 ,
n
8 sized feature maps at 4th trans-

former block. In this transformer block, we propose a
wavelet query multi-head attention (WQMA) to provide
processed features as a query to the multi-head attention.
These feature maps are then forwarded again to the succes-
sive transformer blocks but now these blocks are followed
with an up-sampler to come up with the actual spatial di-
mension (m,n) at the last stage. Here, in the decoding
stage, we apply the proposed omni-dimensional gated atten-
tion (OGA) on encoder features while giving a skip connec-
tion from the respective encoder to the subsequent decoder
level. The OGA helps the network to provide multidimen-
sional attentive features to the decoder for effective recon-
struction. The structure of the transformer block consists
of the proposed WQMA and a feed-forward network [39].
Finally, we again apply a convolution layer to generate final
output O.

3.1. Wavelet Query Multi-head Attention

In the existing transformer approach [39], generally the
query, key, and values are considered from the same in-
put without any separate processing to generate them. In
a transformer block, the query is used to which attention is
calculated and the key is from which the attention is cal-
culated. So, here query plays an important role in over-
all multi-head attention for which attention is calculated.
Providing effective features as a query may help the trans-
former block to further improve its performance. The con-
taminations in the inputs for a blind image inpainting task
are considered as the noise appended on top of the clear im-

age. Wavelets are well known for the task of image denois-
ing where each of the decomposed wavelet coefficients is
processed separately to reduce the noise. The wavelet-based
attention mechanism is proposed in [42] for the task of im-
age classification where the attention mechanism is applied
in wavelet coefficient space. In the case of image inpainting,
the input image has some corrupted regions present in it.
Directly applying the attention in wavelet coefficient space
may consider the corrupted regions also. Since the wavelet
coefficient space also has corrupted regions in it. In order
to avoid forwarding the noisy wavelet coefficients, we pro-
pose the processing of each wavelet coefficient. Further,
the multi-head attention mechanism plays an essential role
in capturing the long-term dependencies in the transformer
block. The 2D wavelet coefficients are first calculated using
forward discrete wavelet transform (DWT) as:

LL,LH,HL,HH = DWT (Fin) (2)

where, LL, LH , HL, and HH are approximate, horizon-
tal, vertical, and diagonal coefficients respectively of input
feature maps Fin calculated using DWT. Each of the coeffi-
cients is separately processed as:

LL′ = ψa(LL);LH
′ = ψh(LH)

HL′ = ψv(HL);HH
′ = ψd(HH)

(3)

where, ψ is depth-wise separable convolution with kernel
size 3 × 3. Further, these processed wavelet coefficients
are utilized to form the output feature map by passing them
through the inverse discrete wavelet transform (see Wavelet
Coefficient Processing block in Figure 2). These processed
wavelet coefficients are considered as the queries (QW ) to
the multi-head attention. This may help the network to cal-
culate the attention with less effect of contaminations. The
overall attention using wavelet queries is calculated as:

Attention(Fin) = σ

(
QWKT

√
d

)
V (4)

where, K = C1(ψ(Fin)), V = C1(ψ(Fin)), C1 is convo-
lution with kernel size 1× 1. This proposed approach helps
the network to effectively capture long-term dependencies
with the minimum effect of corrupted regions.

3.2. Omni-dimensional Gated Attention

In order to forward the encoder features to the respective
decoder, we propose an omni-dimensional gated attention
mechanism. This attention mechanism is given as:

γ′i = C3(γi)⊙ G(ODC3(γi)) (5)

where, γi are the encoder features with i ∈ (1, 2, 3), C3 is
convolution with kernel size 3 × 3, G is a GELU activation
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function, ODC is omni-dimensional convolution with ker-
nel size 3 × 3. This omni-dimensional gated attention pro-
vides the weighted feature from four different dimensions
to the input encoder features.

The omni-dimensional convolution is a dynamic convo-
lution that considers all the different dimensions of the input
feature maps. Here, the omni-dimensional refers to the four
different dimensions i.e. spatial, channel, filter, and kernel-
wise attention. Let, for a dynamic convolution there are n
different convolutional kernels, each of the kernels has the
spatial dimension k × k, the number of input channels is
cin, and the number of output filters is cout. Input (γi) to
the ODC is first processed through a global average pooling
operation followed by a fully connected layer and the ReLU
activation function. These processed 1D features are used
to generate different attentions like (i) spatial attention (αs)
of size k×k to the spatial dimension of convolution kernel,
(ii) channel attention (αc) of size 1 × 1 × cin to the input
channels cin, (iii) filter attention (αf ) of size 1 × 1 × cout
to the output number of filters cout, and (iv) kernel attention
(αw) to the n dynamic convolution kernels. These atten-
tions are calculated by applying a fully connected layer (to
generate the required dimension) followed by the Sigmoid
activation function. The output of ODC is formulated as:

Y =

(
n∑

i=1

αwi
⊙ αfi ⊙ αci ⊙ αsi ⊙Wi

)
∗ γi (6)

where, αwi
is the attention applied to ith convolution ker-

nel, αf is the attention applied to the cout convolution fil-
ters, αc is the attention applied to the cin convolution fil-
ters, and αs is attention applied to spatial dimension k × k
of convolution filter [13]. This ODA provides the network
with the ability to learn attentive features from all the di-
mensions, unlike existing only spatial or channel-wise at-
tentions.

4. Experiments and Results Discussion

In this section, we will discuss different experimental
datasets, evaluation metrics, and quantitative and qualitative
results of the proposed and existing state-of-the-art meth-
ods.

4.1. Datasets and Evaluation Metrics

For blind image inpainting, we use four datasets: FFHQ
[10], CelebA-HQ [9], Places2 [41], and Paris Street
View(ParisSV) [5]. The comparative analysis for blind im-
age inpainting is done with VCNet [31], TransCNNHAE
[40] (blind inpainting methods) and CTSDG [8] (non-blind
inpainting method as provided in [40]). For fair comparison
we have compared methods with publicly available source
codes on all the blind/non-blind image inpainting datasets.

Table 1. Ablation study on different configurations of the proposed
network on ParisSV dataset for blind image inpainting. (Note: ↑-
Higher is better, ↓- Lower is better).

Network Configuration PSNR↑ SSIM↑ L1 ↓ FID ↓
TransCNNHAE [40] 26.72 0.896 0.0352 41.50
QW , KW , VW 26.89 0.885 0.0347 46.63
QW , KW , VW +OGA 27.50 0.901 0.0324 43.11
QW , K, V 27.05 0.898 0.0328 44.32
QW , K, V +OGA 27.81 0.905 0.0301 40.646

For quantitative results comparison of the proposed
method and existing state-of-the-art methods on blind im-
age inpainting, peak signal-to-noise ratio (PSNR), struc-
tural similarity index measure (SSIM), mean L1 error and
Fréchet inception distance (FID) metrics are used.

4.2. Implementation and Training Details

To train the proposed blind image inpainting approach,
we use AdamW optimizer with 3e−4 learning rate which
is gradually reduced with the cosine annealing strategy. We
train the proposed network using the L1 loss. Also, to guide
the network for textural and structural information by ex-
tracting effective features, the perceptual loss (LP ) is calcu-
lated between the deep feature maps of the ground-truth and
inpainted images by passing them through the pre-trained
VGG16 model [27] as:

LP =

S∑
s=1

(∥ϕs(Gt)− ϕs(O)∥1) (7)

where,Gt is ground-truth,O is the output, ϕs are the feature
maps (s ∈ (1, S)) of the VGG16 model. The edge loss
(Le) is also considered to focus on edge enhancement while
training. The edge loss with sobel operator S is formulated
as:

Le = ∥S(Gt)− S(O)∥1 (8)
For structurally consistent output generation we utilized the
structural similarity loss (LS), given as:

LS = 1− SSIM(O) (9)

where, SSIM is structural similarity index metric. So the
overall loss to train the network is given as:

LT = λ1L1 + λPLP + λeLe + λSLS (10)

where, λLoss is the weight assigned to respective Loss
function which is verified experimentally as: λ1 = 10,
λP = 0.6, λe = 0.4, λS = 0.5.

4.3. Ablation Study

To determine the design choices of the network for blind
image inpainting, we performed various experiments on
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Figure 3. Qualitative result analysis of ablation study on different configurations of the proposed network for blind image inpainting.

Figure 4. Qualitative results comparison of the proposed method (Ours) with existing state-of-the-art methods (VCNet [31], CTSDG [8],
TransCNNHAE [40]) on Celeb (first two rows) and FFHQ (last two rows) dataset for blind image inpainting.

the Paris SV dataset. How the each of proposed modules
led to performance improvement is discussed in this section.

4.3.1 Effect of the wavelet-based query to multi-head
attention

Wavelet base attention mechanism in transformer block has
proved its efficiency for the image classification task [42].

With this motivation, at first, we aimed to provide wavelet
query (QW ), keys (KW ), and values (KW ) to the multi-
head attention. For comparison purpose, we considered
the existing best blind image inpainting method (TransC-
NNHAE [40]). The results improved in terms of PSNR,
SSIM, and L1 error. But there was no improvement in
FID due to structural inconsistencies. Further, we evalu-
ated the importance of providing wavelet processed query
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Figure 5. Qualitative results comparison of the proposed method (Ours) with existing state-of-the-art methods (VCNet [31], CTSDG [8],
TransCNNHAE [40]) on Paris SV (first two rows) and Places2 (last two rows) datasets for blind image inpainting.

Table 2. Comparison of the proposed method (Ours) and existing state-of-the-art methods for blind image inpainting (↑- Higher is better,
↓- Lower is better).

Metric Dataset VCNet [31] CTSDG [8] TransCNNHAE [40] Ours

PSNR ↑

CelebA-HQ 25.59 26.94 27.71 28.21
FFHQ 23.62 24.62 27.05 28.19
ParisSV 23.62 26.08 26.72 27.81
Places2 24.09 26.05 26.87 27.55

SSIM ↑

CelebA-HQ 0.874 0.934 0.949 0.951
FFHQ 0.861 0.935 0.941 0.952
ParisSV 0.824 0.861 0.896 0.905
Places2 0.869 0.905 0.910 0.918

L1 ↓

CelebA-HQ 0.0396 0.0318 0.0250 0.0221
FFHQ 0.0482 0.0392 0.0281 0.0234
ParisSV 0.0527 0.0412 0.0352 0.0301
Places2 0.0429 0.0308 0.0261 0.0231

FID ↓

CelebA-HQ 9.275 8.561 7.251 7.235
FFHQ 10.148 9.586 9.424 8.639
ParisSV 64.215 43.015 41.505 40.646
Places2 28.821 18.685 17.640 17.521
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Figure 6. Qualitative results comparison of the proposed method
(Ours) with existing state-of-the-art method (TransCNNHAE
[40]) on unseen patterns.

Table 3. Computational complexity analysis (the best and
second best are shown in bold and underline).

Method Parameters (M) ↓ FLOPs (G) ↓
VCNet [31] 3.79 65.25
CTSDG [8] 52.14 53.38
TransCNNHAE [40] 2.75 19.71
Ours 3.24 16.61

only to the multi-head attention with a combination of
QW ,K, V which resulted in better convergence as com-
pared to QW ,KW , VW (see row 2 and 4 of Table 1)

4.3.2 Effect of omni-dimensional gated attention

Further, to help the network for better reconstruction
and structural information, we proposed omni-dimensional
gated attention (OGA). The experiments are carried out
with both the above discussed wavelet conditions i.e.
QW ,KW , VW +OGA andQW ,K, V +OGA to verify the
effectiveness of both the proposed modules. The inclusion
of the proposed OGA to forward the encoder features to
the respective decoder performed well by imroving in terms
of PSNR and SSIM. Along with these parameters improve-
ment, there is a lot of improvement in the FID value (see
Table 1).

Overall, our proposed modules (QW ,K, V + OGA) ef-
fectively help the network with improved performance for
the task of blind image inpainting. Also, the visual results
of the ablation study are provided in Figure 3.

4.4. Blind Image Inpainting Results Analysis

For the task of blind image inapinting, we considered
four different datasets covering large variety of cases like

natural places scenes, facial images. The comparison in
terms of PSNR, SSIM L1 error and FID is provided in Ta-
ble 2. Along with state-of-the-art blind image inpainting
methods [31,40] ( [40] is retrained on respective datasets as
per the configurations provided due to unavailability of pre-
trained checkpoints), we considered the existing non-blind
image inpainting method [8] with best performance (as pro-
vided in [40]). Since, it is worth to note that, the existing
non-blind method may not work feasibly for blind image in-
painting task, we provided the ground-truth masks as inputs
to these methods as suggested in [40]. From Table 2, it is
clear that the proposed approach for blind image inpainting
performs remarkably as compared to state-of-the-art blind
and non-blind methods.

The visual results comparison for blind image inpainting
is provided in Figure 4 and 5. When compared qualitatively,
our proposed method generates comparatively plausible re-
sults on all the datasets for blind image inpainting.

The computational complexity comparison of the pro-
posed approach and existing methods is given in Table 3 in
terms of the number of trainable parameters and the number
of floating point operations (FLOPs). Although moderately
complex in terms of the number of trainable parameters, our
proposed approach has less complexity in terms of the num-
ber of FLOPs as compared to state-of-the-arts.

4.5. Unseen Contamination Result Analysis

Here, we have evaluated the performance of our pro-
posed approach for unseen contamination such as random
scratches and text. The comparison is done with the ex-
isting state-of-the-art (TransCNNHAE [40]) for blind im-
age inpainting. Figure 6 shows the performance of our pro-
posed approach on unseen patterns as compared to existing
approach for blind image inpainting.

5. Conclusion

This work proposes an end-to-end transformer approach
for blind image inpainting. We propose the wavelet coef-
ficient processing and providing them as a query to multi-
head attention in the transformer block. Further, the gated
omni-dimensional attention is proposed to forward the en-
coder features to the respective decoder as a skip connec-
tion. A series of ablation studies are carried out to demon-
strate the feasibility of the proposed modules. The quanti-
tative and qualitative comparison of the proposed network
with existing state-of-the-art methods for blind and non-
blind methods verifies the reliability of the proposed archi-
tecture for the task of blind image inpainting. Also, the
performance of the proposed approach is verified for un-
seen contamination. This approach can be further extended
for other restoration tasks such as image rain and snow re-
moval.
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