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Abstract

This paper reports about the NTIRE 2023 challenge on
HR Depth From images of Specular and Transparent sur-
faces, held in conjunction with the New Trends in Image
Restoration and Enhancement workshop (NTIRE) work-
shop at CVPR 2023. This challenge is held to boost the
research on depth estimation, mainly to deal with two of the
open issues in the field: high-resolution images and non-
Lambertian surfaces characterizing specular and transpar-
ent materials. The challenge is divided into two tracks: a
stereo track focusing on disparity estimation from rectified
pairs and a mono track dealing with single-image depth es-
timation. The challenge attracted about 100 registered par-
ticipants for the two tracks. In the final testing stage, 5 par-
ticipating teams submitted their models and fact sheets, 2
and 3 for the Stereo and Mono tracks, respectively.

1. Introduction
Since the advent of computer vision, estimating depth

from images has always been the object of study for a large
part of the research community. Indeed, recovering depth
represents the first pivotal step to pave the way to several
downstream applications, ranging from augmented reality,
robotics, autonomous navigation, and more. Depth can be
measured either by means of dedicated, active sensors – Li-
DARs, ToFs, Radars, etc. – or through standard imaging
sensors by developing algorithms / deep neural networks.
Although depth sensing technologies grew fast in the last
decade and proved a mature reality, some challenges still
preclude their unbound deployment.

∗Pierluigi Zama Ramirez (pierluigi.zama@unibo.it), Alex
Costanzino, Fabio Tosi, Matteo Poggi, Samuele Salti, Stefano Mat-
toccia, Luigi Di Stefano and Radu Timofte are the NTIRE 2023 HR Depth
from Images of Specular and Transparent Surfaces challenge organizers.
The other authors participated in the challenge.
Appendices B and C contain the authors’ team names and affiliations.
The NTIRE website: https://cvlai.net/ntire/2023/

Among them, one is resolution. Indeed, on the one hand,
active depth sensors usually provide sparse depth measure-
ments, rarely reaching 1 Megapixel (Mpx); on the other
hand, although standard cameras feature resolutions up to
dozens of Mpx, processing them with deep neural networks
requires significant computational efforts.

Another one is represented by non-Lambertian materi-
als, which are, again, challenging for active sensors and
image-based techniques. Indeed, they often break the as-
sumptions behind the working principles of most depth
sensing techniques, both in the case of active sensors – e.g.,
the refraction of a light beam emitted by a LiDAR, or its
projection on an object behind a transparent surface – and
image-based approaches – e.g., stereo algorithms would fail
to estimate depth for a transparent object, since matches
would be found for the content behind it. Nonetheless, in
several practical applications, it is crucial to properly es-
timate the correct depth for these materials too – e.g., a
grasping arm dealing with transparent objects would fail
into manipulating them if not equipped with a depth percep-
tion technologies being not appropriate to deal with them.

This NTIRE 2023 Challenge on HR Depth from Im-
ages of Specular and Transparent Surfaces aims at push-
ing forward the development of state-of-the-art solutions for
depth estimation that can effectively deal with the afore-
mentioned challenges. Purposely, we employ the Booster
dataset [76, 78] in this challenge, which is the only bench-
mark implementing proving grounds for both, featuring
12Mpx images with several transparent and reflective mate-
rials. The challenge is organized into two tracks: one focus-
ing on Stereo approaches, estimating depth as the dispar-
ity between pixels into two, rectified stereo images, and the
other aimed at assessing the accuracy of single-image depth
estimation techniques (Mono). The challenge has 49 and 51
registered participants for two tracks, respectively. Among
them, 2 and 3 participating teams submitted their models
and fact sheets during the final testing stage, respectively.
Some adopt off-the-shelf, existing solutions, while others
combine different methodologies and exploit their synergy
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to obtain better results. The outcome of this challenge is
discussed in detail in Section 4.

2. Related Work
This section introduces the literature relevant to stereo

and monocular depth estimation.
Deep Stereo Matching. Deep stereo-matching networks

that can perform end-to-end processing have emerged as the
most popular and effective solution for estimating dispar-
ity. These networks can be classified into two categories:
2D and 3D architectures. The first category is promoted
by DispNet [39], which has inspired more advanced deep
architectures [35, 42, 49, 56, 60, 62, 73, 75]. On the other
hand, GC-Net [27] pioneered the use of an explicit 3D fea-
ture cost volume that employs feature concatenation or dif-
ference. More recent networks have been developed based
on this approach [6, 8, 9, 13, 22, 28, 54, 68, 72, 80]. Recently,
novel deep stereo networks have taken inspiration from the
state-of-the-art optical flow network RAFT [61] to design
architectures that can iteratively refine their outputs for the
stereo matching task [31,36]. Alternatively, some networks
employ Transformers [20, 34] to capture long-range con-
textual information that can help improve disparity predic-
tions in challenging regions. Despite their success, deep
learning-based stereo methods rely heavily on expensive
and hard-to-source ground-truth depth labels for training.
These methods perform at their best when a large amount
of annotated data is available. Indeed, the availability of
various benchmarks for training and evaluation facilitates
the rapid evolution of stereo algorithms. In the beginning,
datasets were restricted to controlled and indoor environ-
ments, and they were composed of only a few dozen sam-
ples. However, in the last decade, more comprehensive
stereo datasets have emerged, such as KITTI 2012 [16] and
2015 [40], Middlebury 2014 [52], and ETH3D [53]. The
high accuracy of state-of-the-art stereo networks on these
datasets suggests that most of the challenges they present
are nearly addressed. Nevertheless, the latest stereo datasets
do not specifically focus on the most arduous open chal-
lenges for stereo matching, which are found in the Booster
[78] dataset. In this challenge, we rely on this dataset that
emphasizes several specular and transparent surfaces, the
primary causes of failure in state-of-the-art stereo networks.

Monocular Depth Estimation. The monocular depth
estimation task was initially accomplished using hand-
crafted features that encode perceptual cues such as texture
gradient, object size, and linear perspective, which are vi-
tal for determining depth. These cues were the basis of
early research in the field [51]. However, the development
of deep learning has led to significant advancements in this
area, allowing for the direct learning of depth-related priors
from annotated data [7, 14, 30, 44, 67]. This research trend
has been able to progress rapidly due to the availability of

large-scale datasets with associated ground-truth depth la-
bels [7,14,30,44,67], as well as the implementation of self-
supervised strategies [17–19, 21, 24, 25, 43, 63, 64, 70, 82]
to address the lack of annotations. These latter strategies
exploit either stereo pairs or monocular videos, and the pre-
dicted depth is combined with known or estimated camera
pose, respectively, to establish correspondences between
adjacent images. Other approaches, such as AdaBins [2],
DPT [45], and MiDaS [47] use adaptive bins and vision
transformers for depth regression and leverage large-scale
depth training by mixing multiple datasets. Nonetheless,
the projection of depth maps into 3D space results in de-
formed point clouds, which has been effectively addressed
by Yin et al. [74]. Furthermore, restoring high-frequency
details in estimated depth maps for high-resolution images
continues to be a challenge. To address this issue, Mian-
goleh et al. [41] have developed a framework that modifies
the input of a pre-trained monocular network and merges
multiple estimations.

However, in the monocular depth estimation literature
little attention has been given to single-view depth estima-
tion networks that can handle transparent and reflective sur-
faces due to the scarcity of datasets specifically suited for
this task. Only recently, Booster [76] has been introduced,
which features some very challenging yet accurately anno-
tated non-Lambertian objects and images at much higher
resolutions. Finally, few works have faced non-Lambertian
depth estimation but using depth completion approaches
and sparse depth measurements from active sensors [10,50].

Competitions and Challenges on Depth Estimation.
Finally, it is worth mentioning some past challenges focus-
ing on depth perception from stereo or monocular images.
Among them, the Robust Vision Challenge (ROB) [79]
embracing both tasks, the Dense Depth for Autonomous
Driving challenge (DDAD) [15], the Fast and Accurate
Single-Image Depth Estimation on Mobile Devices Chal-
lenge (MAI) [23], the Argoverse Stereo Challenge [29]
and the Monocular Depth Estimation Challenge (MDEC)
[57, 58]. Despite the interest in this task, ours is the first
challenge focusing on specular and transparent surfaces.

NTIRE 2023 Challenges. Our challenge is one
of the NTIRE 2023 Workshop 1 series of challenges
on: night photography rendering [55], HR depth from
images of specular and transparent surfaces [77], im-
age denoising [33], video colorization [26], shadow re-
moval [65], quality assessment of video enhancement [37],
stereo super-resolution [66], light field image super-
resolution [69], image super-resolution (×4) [81], 360° om-
nidirectional image and video super-resolution [5], lens-to-
lens bokeh effect transformation [11], real-time 4K super-
resolution [12], HR nonhomogenous dehazing [1], efficient
super-resolution [32].

1https://cvlai.net/ntire/2023/
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3. NTIRE Challenge on HR Depth from Im-
ages of Specular and Transparent Surfaces

We host the NTIRE 2023 Challenge on HR Depth from
Images of Specular and Transparent Surfaces to boost the
accuracy of state-of-the-art solutions for depth perception
and make them capable of handling high-resolution images,
as well as dealing with challenging, non-Lambertian sur-
faces such as mirrors, glasses and so on. We now report the
main details of the challenge.

Tracks. We include two tracks: Stereo, dealing with dis-
parity estimation from rectified image pairs, and Mono, fo-
cusing on single-image depth estimation architectures.

• Track 1: Stereo. The goal of this track consists of
obtaining high-quality, high-resolution disparity maps
from 12Mpx stereo pairs. The main difficulties are
the image resolution, prohibitive for most state-of-
the-art existing stereo networks, and the presence of
non-Lambertian objects, making the correspondence
matching problem challenging.?

• Track 2: Mono. The goal of this track consists of esti-
mating a depth map out of a single 12Mpx image. This
task is more challenging than stereo depth estimation
because of the inherent ill-posed nature of the prob-
lem. Moreover, the presence of several transparent ob-
jects and mirrors – being out-of-distribution elements
in most depth estimation datasets – makes it even more
challenging.

Datasets. The challenge is built over the Booster dataset
[76, 78]. It consists of 419 high-resolution balanced and
unbalanced stereo pairs, featuring 64 different scenes and
respectively divided into 228 and 191 pairs for training and
testing purposes – dividing the total number of scenes into
38 and 26. Booster has been recently extended [76] by the
release of a second testing split devoted to the evaluation
of monocular depth estimation methods and made of 187
single frames collected from 21 new scenes.

For this challenge, we adopt the original 228 training
stereo pair as the training split, shared among the two
tracks. Then, we identify two distinct validation splits by
sampling images with different illuminations from 3 scenes
of the stereo and monocular testing splits – respectively Mi-
crowave, Mirror1, Pots for the Stereo track, and Desk, Mir-
ror3, Sanitaries for the Mono track, resulting in 15 vali-
dation samples for each track, out of the total 26 and 28
available from the selected scenes. A visualization of the
validation split is shown in Fig. 1. The remaining images
of the two original testing splits are then retained as official
stereo and mono testing splits for this challenge, resulting
in 169 and 159 samples, respectively.

Evaluation Protocol. According to the specific track,
Stereo or Mono, we select the official metrics used by
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Figure 1. Validation scenes. Three scenes were used to validate
methods for each track. Five different illuminations were available
for each scene.

the Booster benchmark [76, 78]. For the Stereo track, we
compute the percentage of pixels having disparity errors
larger than a threshold τ (bad-τ , with τ ∈ [2, 4, 6, 8]),
as well as we measure the Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE). For the Mono
Track, we compute the absolute error relative to the ground
value (Abs Rel.), and the percentage of pixels having the
maximum between the prediction/ground-truth and ground-
truth/prediction ratios lower than a threshold (δi, with i be-
ing 1.05, 1.15, and 1.25). Also in this case, we estimate the
mean absolute error (MAE), and Root Mean Squared Error
(RMSE). For both tracks, any metric is computed on any
valid pixel (All), or in the alternative, on pixels belonging to
a specific material class i (Class i), to evaluate the impact of
non-Lambertian objects. To rank submissions, we use only
MAE and Abs. Rel – respectively for Stereo and Mono
tracks – averaged over all pixels, highlighted in red in the
tables. However, monocular networks estimate depth up to
an unknown scale and shift factors. Thus, given a monocu-
lar depth prediction, d̂, before computing metrics, we mod-
ulate it as αd̂ + β, with α, β being a scale and shift factor.
Following [48], α, β are estimated with Least Square Esti-
mation (LSE) regression over the ground truth depth map
d:

(α, β) = argmin
α,β

∑
p

(
αd̂(p) + β − d(p)

)2

(1)

where p are the pixel locations of the depth maps.

4. Challenge Results

For the two tracks, 2 and 3 teams participated in the fi-
nal testing phase respectively. Tables 1 and 2 report the
main results and important information for these teams. The
methods for stereo and mono tracks are briefly described in
Section 5.1 and Section 5.2, while the team members are
listed in Appendix B and Appendix C for the two tracks,
respectively.
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All Class 0 Class 1 Class 2 Class 3
Rank Team MAE RMSE bad-2 bad-4 bad-6 bad-8 MAE RMSE MAE RMSE MAE RMSE MAE RMSE
#2 RAFT-Stereo (ft) [78] 7.08 16.09 38.89 23.53 17.88 14.74 4.64 10.80 5.45 12.23 15.27 21.05 11.13 17.18
#3 Chengzhi-Group 21.21 42.03 38.64 28.96 25.51 23.37 7.86 17.39 11.43 21.98 52.88 61.87 42.01 54.07
#1 SRC-B 6.07 14.38 32.43 20.82 16.30 13.89 4.99 11.25 3.75 9.64 4.67 8.25 10.58 15.43

Table 1. Stereo Track: Evaluation on the Challenge Test Set. Predictions were evaluated at full resolution (4112×3008), on All pixels
and on pixels belonging to classes from 0 to 3. Classes are ordered in an increasing level of difficulty, e.g., class 3 pixels belong to
transparent and mirror surfaces. In gold , silver , and bronze we show first, second, and third-rank approaches, respectively.

RGB GT RAFT-Stereo (ft) [78] SRC-B

Figure 2. Qualitative results – Stereo track. From left to
right: RGB reference image, ground-truth disparity, predictions by
RAFT-Stereo (ft) [78] and the network proposed by SRC-B group.

4.1. Track 1: Stereo

Table 1 collects the results for this first track. In the first
entry on top, we report the baseline method – i.e., the very
same RAFT-Stereo [36] model fine-tuned on the Booster
training split and reported in [78]. For the sake of space,
we report bad metrics for All pixels only, while MAE and
RMSE are shown for All pixels, as well as for the single
classes of materials from 0 to 3. We can notice that one
of the two methods failed to beat the baseline and achieved
regularly worse results on any metric.

On the contrary, the other participant group was able to
consistently outperform the RAFT-Stereo model fine-tuned
on the Booster training set – thus winning this track of the
challenge – by dropping overall MAE and RMSE by 1 and
4 points and bad metrics by about 6, 3, 1.5, and 1% re-
spectively. More specifically, we can notice that the im-
provements come at the price of slightly higher MAE and
RMSE for class 0 regions, which paves the way to a sig-
nificant boost in class 1 (1.5 and 2.6), a dramatic improve-
ment in class 2 (10.6 and 12.8) and a moderate boost in
class 3 too (0.6 and 1.7). Fig. 2 shows some qualitative
results taken from the stereo testing set: we can appreci-
ate how the baseline (third column) sometimes generates
noisy disparities, as shown in rows 4, 6, and 7, whereas the
winning method provides smoother results (fourth column).
Nonetheless, we highlight how some very challenging cases
remain unsolved, as in the case of the water surface on the
bottom-most row.

4.2. Track 2: Mono

Table 2 shows the results for the second track. The first
entry on top reports the results by the baseline method – i.e.,
the DPT [46] model, fine-tuned on the Booster training split
as detailed in [76]. For the sake of space, we report RMSE
and δ metrics for All pixels only, while Abs. Rel and MAE
are shown for All pixels, as well as for the single classes
of materials from 0 to 3. Again, one of the methods failed
to beat the baseline, not reaching its performance on any of
the considered metrics.

As for the remaining methods, both were able to beat
the DPT model consistently. For what concerns the top #2
method, it manages to reduce the error metrics on All pix-
els by about 0.3, 0.28, and 0.03, respectively on Abs. Rel,
MAE, and RMSE, with average increases on the δ met-
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All Class 0 Class 1 Class 2 Class 3
Rank Team Abs. Rel MAE RMSE δ < 1.05 δ < 1.15 δ < 1.25 Abs Rel. MAE Abs Rel. MAE Abs Rel. MAE Abs Rel. MAE
#3 DPT (ft) [76] 0.1458 0.1596 0.2075 29.52 60.38 77.97 0.1557 0.1696 0.1834 0.1756 0.1741 0.1554 0.1850 0.1660
#4 lillian 0.1607 0.1787 0.2251 29.20 57.12 73.84 0.1696 0.1820 0.2027 0.1891 0.1786 0.1560 0.1901 0.1689
#2 yshk 0.1162 0.1319 0.1752 37.05 70.24 84.73 0.1185 0.1363 0.1193 0.1177 0.1533 0.1362 0.1423 0.1279
#1 cv challenge 0.0738 0.0858 0.1187 52.23 85.44 93.58 0.0730 0.0840 0.0812 0.0898 0.0798 0.0693 0.1018 0.0926

Table 2. Mono Track: Evaluation on the Challenge Test Set. Predictions were evaluated at full resolution (4112×3008), on All pixels, and
on pixels belonging to classes from 0 to 3. Classes are ordered in an increasing level of difficulty, e.g., class 3 pixels belong to transparent
and mirror surfaces. In gold , silver , and bronze we show first, second, and third-rank approaches, respectively.

RGB GT DPT (ft) [76] cv challenge

Figure 3. Qualitative results – Mono track. From left to right:
RGB reference image, ground-truth disparity, predictions by DPT
(ft) [76] and the network proposed by cv challenge group.

rics of 18, 10, and 7 points. The drops in the error met-
rics are consistent on any of the 4 classes, with reductions
in Abs Rel./MAE of about 0.04/0.03, 0.04/0.03, 0.02/0.02,
and 0.04/0.04 for classes from 0 to 3.

Finally, the winning method achieves a substantial im-
provement over the baseline by reducing any error metric to
half in most cases. Fig. 3 shows some qualitative examples
from the mono testing set: although the baseline apparently
produces smoother depth maps, its accuracy results to be,
on average, inferior to the one of the winning method.

5. Challenge Methods

We now describe each submitted solution in detail.

5.1. Track 1: Stereo

5.1.1 Baseline - RAFT-Stereo (ft) [78]

Our baseline for the Stereo track is the state-of-the-art
RAFT-Stereo architecture [36], a recent method for two-
view stereo based on the original RAFT optical flow frame-
work [61]. Specifically, RAFT-Stereo first extracts features
from the left and right input images and then builds a 3D
cost volume by computing the similarity between pixels of
the same height in the images. The architecture then uses
multi-level GRU units to update the disparity field and im-
prove its global consistency iteratively. In our experiments,
we use the available model trained by the authors and fine-
tune it on the Booster training set augmented with additional
images from the Middlebury 2014 dataset. Specifically, fol-
lowing the training protocol described in [76, 78], we run
100 training epochs on image crops of size 884456 ran-
domly extracted from images resized to half or quarter of
the original resolution. This strategy allows the network, re-
ferred to as RAFT-Stereo (ft), to compensate for most errors
due to non-Lambertian surfaces and better handle specular
and transparent objects in the scene.

5.1.2 Team 1 - SRC-B)

The team Samsung Research China - Beijing (SRC-B) (Co-
daLab: xiaozhazha) proposed an architecture to address the
challenges of accurate depth estimation in high-resolution
images with non-Lambertian surfaces consisting of two
main stages, which are shown in Fig 4.
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Figure 4. Network Architecture – Team Samsung Research China - Beijing (SRC-B).

Figure 5. Network Architecture – Team Chengzhi-Group.

In the first stage of the network, they adopt the
CREStereo [31] approach, which uses a hierarchical net-
work to predict disparities in a coarse-to-fine manner. This
approach employs several techniques, such as an adap-
tive group local correlation layer that uses cross and self-
attention to aggregate global context information, a 2D-1D
alternate local strategy to handle imperfect epipolar images,
a deformable search window to reduce matching ambiguity,
and feature map grouping to improve performance.

In the second stage, they employ an error-aware refine-
ment module based on left-right warping. This module
leverages high-frequency information from the original left
image and error maps to correct estimation errors caused by
the smooth prediction in the first stage.

The proposed network is implemented using the Pytorch
framework and trained on 2 v100 GPUs with a batch size of
8. They use Adam optimizer with a standard learning rate
of 0.0004. In the first stage, the training process is set to
102,600 iterations. They fine-tune the CREStereo module
on the Booster training dataset with a pre-trained model ob-
tained from [31]. Following this, they fix the weights of the
CREStereo module and fine-tuned the error-aware module
for an additional 57,000 iterations in the second stage.

During the training phase, they apply several augmenta-
tion techniques, including random scaling, cropping, chro-
matic augmentation, and random occlusions, to the training
samples. These techniques help to improve the robustness
and generalization of the proposed method.

During the inference phase, they use a stacked cascaded
architecture to handle high-resolution image inputs. They
first downsample the image pair to 1

8 , 1
4 , 1

2 to construct an
image pyramid that is then fed into the network. This helps

to capture both the fine and coarse details of the input im-
ages and improves the accuracy of the depth estimation.

5.1.3 Team 2 – Chengzhi-Group

The team Chengzhi-Group (CodaLab: chengzhi) uses an
off-the-shelf stereo network to participate in the challenge.
Specifically, they deploy RAFT-Stereo [36], whose ar-
chitecture is sketched in Fig. 5, with the weights offi-
cially released by the authors on github (raft-middlebury.pth
model). According to [36], the model has been trained
on synthetic data for 200k steps, with a batch size of 8
360×720 crops, and with 22 updates of the disparity esti-
mates, by using a one-cycle learning rate schedule with a
minimum learning rate of 1e-4. As data augmentation, the
image saturation was adjusted between 0 and 1.4, the right
image was shifted vertically to simulate imperfect rectifica-
tion that is common in datasets such as ETH3D and Mid-
dlebury, and image/disparities have been stretched by ran-
dom factors in [2−0.2, 2−0.4] to simulate a range of possi-
ble disparity distributions. After training on synthetic data,
the model has been fine-tuned on 384×1000 random crops
of the 23 Middlebury 2014 training images for 4000 steps,
with a batch size of 2 and 22 update iterations. Inference is
performed at half-resolution, using 32 update iterations.

5.2. Track 2: Mono

5.2.1 Baseline - DPT (ft) [76]

For the Mono track, we adopt the DPT architecture as
the baseline, which represents the state-of-the-art network
for the monocular depth estimation task. Specifically, the
DPT architecture relies on an encoder-decoder structure that
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Figure 6. Network Architecture – Team lillian.

Figure 7. Network Architecture – Team cv challenge.

Depth 
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Figure 8. Boosting Strategy – Team cv challenge.

leverages a vision transformer (ViT) as a building block
for the encoder. This allows the network to avoid ex-
plicit downsampling operations, which are typical of stan-
dard fully-convolutional networks and ensures a representa-
tion with constant dimensionality throughout all processing
stages, as well as maintaining a global receptive field. Simi-
lar to the Stereo track, we use the available weights provided
by the authors and fine-tune the network on the training im-
ages of the Booster dataset. Following [76], the fine-tuning
process involves running 50 epochs on batches of random
2878 × 2105 crops, which are further resized to network
resolution (384 × 384) and extracted from randomly hori-
zontally flipped and color-jittered images.

5.2.2 Team 1 - lillian)

Team lillian (CodaLab: lillian) employs SimMIM [71] as
framework with SwinV2-B [38] as backbone, as shown in
Fig. 6. They rescale the depth range of Booster to the one

Figure 9. Network Architecture – Team yshk.

of NYU dataset and perform several data augmentations,
such as horizontal and vertical flip, random crop, random
brightness, random contrast, random gamma, random hue
saturation, RGB shift, random sun flare, Gaussian noise and
Gaussian Blur. By utilizing these techniques, the perfor-
mance of the model on the Booster dataset improved signif-
icantly, resulting in converging to a lower absolute relative
error. Additionally, they use the sigmoid function that re-
sults in a wider range of depth values, which in turn can fa-
cilitate the convergence of the depth estimation model. The
input of the sigmoid is scaled by a constant factor to obtain
faster convergence.

5.2.3 Team 2 - cv challenge)

The cv challenge team (CodaLab: cv challenge) takes ad-
vantage of the ZoeDepth model [4] (shown in Fig. 7), em-
ploying the NYU Depth v2 dataset and part of indoor im-
ages in DIODE dataset to train the model. To improve
the detail of the inferred depth maps, they combine the
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ZoeDepth with a content-adaptive multi-resolution merging
algorithms [41], selecting patches from the input image and
feeding them to the model using resolutions adaptive to the
local depth cue density. Such patch-based estimates are then
merged into the full-image estimation, making the depth
prediction contain more high-frequency details, as depicted
in Fig. 8. However, unlike in [41], they do not apply multi-
resolution for each full-image estimation or each patch esti-
mation, improving the efficiency of the model significantly.
In fact, since the ZoeDepth employed is transformer-based
and can draw information from the whole image, capturing
long-range dependencies effectively, the preliminary exper-
iments performed by the team let them conclude that di-
rectly omitting the multi-resolution merging does not hurt
the depth result distinctly.

5.2.4 Team 3 - yshk)

Team yshk (CodaLab: wyx0821) takes advantage of Ad-
aBins [3] to estimate the depth values. The overall architec-
ture is sketched in Fig. 9 and mainly contains two compo-
nents: a standard Encoder-Decoder block and the AdaBins
Module. The encoder is based on a pre-trained Efficient-
Net B5 [59] model and the decoder is feature upsampling.
The Adabins Module takes the output of the decoder as in-
put and produces the depth image. The most important part
of Adabins Module is the mViT block, which outputs the
bin widths b and the Range-Attention Maps R. The former
is estimated adaptively for each image and defines how the
depth interval is divided, the latter is obtained as the dot
product between pixel-wise features and transformer output
embeddings. Finally, R and b are combined to calculate
the depth map. R is handled by a 1×1 Conv to obtain N-
channels, that are projected into probabilities over N classes
by a Softmax operation. For each pixel, its depth value is
obtained by the linear combination of Softmax scores and
the depth-bin-centers. The training is performed on the
NYU v2 dataset.
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Greg Krathwohl, Nera Nešić, Xi Wang, and Porter West-
ling. High-resolution stereo datasets with subpixel-accurate

1393

https://cvpr2022.wad.vision/


ground truth. In German conference on pattern recognition,
pages 31–42. Springer, 2014.

[53] Thomas Schops, Johannes L Schonberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3260–3269. IEEE, 2017.

[54] Zhelun Shen, Yuchao Dai, and Zhibo Rao. Cfnet: Cascade
and fused cost volume for robust stereo matching. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 13906–13915, June
2021.

[55] Alina Shutova, Egor Ershov, Georgy Perevozchikov, Ivan A
Ermakov, Nikola Banic, Radu Timofte, Richard Collins,
Maria Efimova, Arseniy Terekhin, et al. NTIRE 2023 chal-
lenge on night photography rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2023.

[56] Xiao Song, Xu Zhao, Hanwen Hu, and Liangji Fang.
Edgestereo: A context integrated residual pyramid network
for stereo matching. In ACCV, 2018.

[57] Jaime Spencer, C. Stella Qian, Chris Russell, Simon Had-
field, Erich Graf, Wendy Adams, Andrew J. Schofield,
James H. Elder, Richard Bowden, Heng Cong, Stefano Mat-
toccia, Matteo Poggi, Zeeshan Khan Suri, Yang Tang, Fabio
Tosi, Hao Wang, Youmin Zhang, Yusheng Zhang, and Chao-
qiang Zhao. The monocular depth estimation challenge. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV) Workshops, pages 623–
632, January 2023.

[58] Jaime Spencer, C. Stella Qian, Michaela Trescakova, Chris
Russell, Simon Hadfield, Erich Graf, Wendy Adams, An-
drew J. Schofield, James Elder, Richard Bowden, Ali An-
war, Hao Chen, Xiaozhi Chen, Kai Cheng, Yuchao Dai,
Huynh Thai Hoa, Sadat Hossain, Jianmian Huang, Mo-
han Jing, Bo Li, Chao Li, Baojun Li, Zhiwen Liu, Ste-
fano Mattoccia, Siegfried Mercelis, Myungwoo Nam, Mat-
teo Poggi, Xiaohua Qi, Jiahui Ren, Yang Tang, Fabio Tosi,
Linh Trinh, S M Nadim Uddin, Khan Muhammad Umair,
Kaixuan Wang, Yufei Wang, Yixing Wang, Mochu Xiang,
Guangkai Xu, Wei Yin, Jun Yu, Qi Zhang, and Chaoqiang
Zhao. The second monocular depth estimation challenge. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops, 2023.

[59] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019.

[60] Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh
Kowdle, Sean Fanello, and Sofien Bouaziz. Hitnet: Hierar-
chical iterative tile refinement network for real-time stereo
matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
14362–14372, June 2021.

[61] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020.

[62] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mat-
toccia, and Luigi Di Stefano. Real-time self-adaptive deep
stereo. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 195–204, 2019.

[63] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mat-
toccia. Learning monocular depth estimation infusing tradi-
tional stereo knowledge. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[64] Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo
Poggi, Samuele Salti, Luigi Di Stefano, and Stefano Mattoc-
cia. Distilled semantics for comprehensive scene understand-
ing from videos. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[65] Florin-Alexandru Vasluianu, Tim Seizinger, Radu Timofte,
et al. NTIRE 2023 image shadow removal challenge report.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2023.

[66] Longguang Wang, Yulan Guo, Yingqian Wang, Juncheng Li,
Shuhang Gu, Radu Timofte, et al. NTIRE 2023 challenge on
stereo image super-resolution: Methods and results. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2023.

[67] Lijun Wang, Jianming Zhang, Yifan Wang, Huchuan Lu, and
Xiang Ruan. CLIFFNet for monocular depth estimation with
hierarchical embedding loss. In Proc. ECCV, 2020.

[68] Yan Wang, Zihang Lai, Gao Huang, Brian H Wang, Laurens
Van Der Maaten, Mark Campbell, and Kilian Q Weinberger.
Anytime stereo image depth estimation on mobile devices. In
2019 International Conference on Robotics and Automation
(ICRA), pages 5893–5900, 2019.

[69] Yingqian Wang, Longguang Wang, Zhengyu Liang, Jungang
Yang, Radu Timofte, Yulan Guo, et al. NTIRE 2023 chal-
lenge on light field image super-resolution: Dataset, methods
and results. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2023.

[70] Jamie Watson, Michael Firman, Gabriel J. Brostow, and
Daniyar Turmukhambetov. Self-supervised monocular depth
hints. In Proc. ICCV, 2019.

[71] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling, 2022.

[72] Gengshan Yang, Joshua Manela, Michael Happold, and
Deva Ramanan. Hierarchical deep stereo matching on high-
resolution images. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5515–5524, 2019.

[73] Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong
Deng, and Jiaya Jia. Segstereo: Exploiting semantic infor-
mation for disparity estimation. In ECCV, pages 636–651,
2018.

[74] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus,
Long Mai, Simon Chen, and Chunhua Shen. Learning to
recover 3d scene shape from a single image. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 204–213, 2021.

1394



[75] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical dis-
crete distribution decomposition for match density estima-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6044–6053,
2019.

[76] Pierluigi Zama Ramirez, Alex Costanzino, Fabio Tosi, Mat-
teo Poggi, Samuele Salti, Luigi Di Stefano, and Stefano
Mattoccia. Booster: a benchmark for depth from im-
ages of specular and transparent surfaces. arXiv preprint
arXiv:2301.08245, 2023.

[77] Pierluigi Zama Ramirez, Fabio Tosi, Luigi Di Stefano, Radu
Timofte, et al. NTIRE 2023 challenge on hr depth from im-
ages of specular and transparent surfaces. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2023.

[78] Pierluigi Zama Ramirez, Fabio Tosi, Matteo Poggi, Samuele
Salti, Stefano Mattoccia, and Luigi Di Stefano. Open chal-
lenges in deep stereo: The booster dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 21168–21178, June 2022.

[79] Oliver Zendel, Angela Dai, Xavier Puig Fernandez, An-
dreas Geiger, Vladen Koltun, Peter Kontschieder, Adam Ko-
rtylewski, Tsung-Yi Lin, Torsten Sattler, Daniel Scharstein,
Hendrik Schilling, Jonas Uhrig, and Jonas Wulff. The ro-
bust vision challenge (http://www.robustvision.
net/), 2018, 2020, 2022.

[80] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and
Philip HS Torr. GA-Net: Guided aggregation net for end-to-
end stereo matching. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[81] Yulun Zhang, Kai Zhang, Zheng Chen, Yawei Li, Radu Tim-
ofte, et al. NTIRE 2023 challenge on image super-resolution
(x4): Methods and results. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, 2023.

[82] Chao Zhou, Hong Zhang, Xiaoyong Shen, and Jiaya Jia. Un-
supervised learning of stereo matching. In The IEEE Inter-
national Conference on Computer Vision (ICCV). IEEE, Oc-
tober 2017.

1395

http://www.robustvision.net/
http://www.robustvision.net/

