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Figure 1. Samples using the Bokeh Effect Transformation Dataset (BETD) [7]. (Up) Rendering Bokeh. (Bot.) Transforming Bokeh in real
captures from a Canon 50mm lens f/1.4 to Sony 50mm lens f/1.8. The method respects the foreground and provides real Bokeh aesthetics.

Abstract

Many advancements of mobile cameras aim to reach
the visual quality of professional DSLR cameras. Great
progress was shown over the last years in optimizing the
sharp regions of an image and in creating virtual portrait
effects with artificially blurred backgrounds. Bokeh is the
aesthetic quality of the blur in out-of-focus areas of an im-
age. This is a popular technique among professional pho-
tographers, and for this reason, a new goal in computa-
tional photography is to optimize the Bokeh effect itself.

This paper introduces EBokehNet, a efficient state-of-
the-art solution for Bokeh effect transformation and ren-
dering. Our method can render Bokeh from an all-in-focus
image, or transform the Bokeh of one lens to the effect of an-
other lens without harming the sharp foreground regions in
the image. Moreover we can control the shape and strength
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of the effect by feeding the lens properties i.e. type (Sony or
Canon) and aperture, into the neural network as an addi-
tional input. Our method is a winning solution at the NTIRE
2023 Lens-to-Lens Bokeh Effect Transformation Challenge,
and state-of-the-art at the EBB benchmark.

1. Introduction

Computational photography research and recent ad-
vancements of mobile cameras aim to reach the visual qual-
ity of full-frame DSLR cameras [8, 15]. One of the most
popular effects in photography is Bokeh, which refers to
the way the lens renders the out-of-focus blur in a photo-
graph (Fig. 1) [14,28]. Professional photographers can pro-
duce different Bokeh styles by using different lens designs
and configurations. This effect is controlled by the optical
design of a lens, its aperture setting, the distance to the sub-
ject, and the focal length of the lens. However, due to the
limited optics of mobile cameras, these cannot produce re-
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alistic Bokeh naturally. In this case, the effect is added as
a post-processing; this is the main focus and application of
most algorithms for Bokeh rendering.

Note that Bokeh and depth-of-field (DoF) are two differ-
ent, yet related techniques in photography. DoF refers to
the sharp areas of focus, while Bokeh is the artistic qual-
ity of out-of-focus areas. These are related, and often used
interchangeably since Bokeh rendering can be seen as trans-
forming wide to shallow depth-of-field images [14].

Classical approaches [3, 25, 36, 39, 46] can render and
change Bokeh styles easily by controlling the shape and
size of the blur kernel, which is usually an estimated point
spread function (PSF). However, these methods often suffer
from unpleasant artifacts such as chromatic aberration and
depth discontinuities.

Deep learning-based methods [14, 28, 31, 37, 38] repre-
sent the state-of-the-art for this task, but they have difficulty
to simulate real Bokeh styles e.g. bokeh balls, and only pro-
duce the effect present in the training data. Moreover, these
methods cannot adjust different styles, and cannot apply
large blur kernels to high-resolution (HR) images, as they
are limited by the fixed receptive field of the neural net-
work. This is an important point that limits their potential
application in real scenarios.

A common approach to render Bokeh consists in seg-
menting out the foreground (e.g. person, face, or object
of interest) in the image, and then processing the back-
ground [17, 34, 35, 47] independently. A similar approach
is to blur the image based on a depth map [13, 28]. We can
also find end-to-end deep learning solutions [14, 17, 33] ca-
pable of transforming wide to shallow depth-of-field images
automatically, without using depth or segmentation maps.

Despite the active research in this topic, rendering pho-
torealistic Bokeh is still a challenging task. Recently the
new Bokeh Transformation task was introduced [7]. This
task is defined as follows: for a given input image A (all-
in-focus, out-of-focus or in-between) with known lens-type
and aperture setting, knowing the target lens type and set-
ting, we aim to produce or transform the corresponding ef-
fect B while preserving the foreground intact.

In this work, we present an efficient neural network ca-
pable of rendering or converting the Bokeh effect of one
lens to the effect of another lens without harming the sharp
foreground regions in the image. The proposed EBokehNet
model achieves state-of-the-art results at the Bokeh Effect
Transformation Dataset (BETD) [7] and the Everything is
Better with Bokeh! (EBB) benchmark [14, 16].

2. Related Work
Classical Bokeh rendering methods require a single im-

age and 3D information. The most practical ones use depth
maps [2, 11, 25, 39, 42], while more advanced classical ren-
dering requires the complete 3D scene information [28].

Early works such as Bertalmı́o et al. [3] use a point-
spread function (PSF) to simulate realistic bokeh. Yang et
al. [42] use simple ray tracing to render the effect.

Due to its complexity, it is common to split this task into:
depth estimation [13], semantic segmentation [5], and clas-
sical rendering [25, 29, 34–36, 46]. This task decomposi-
tion also implies decoupling the image into foreground and
background, and execute rendering from back to front.

These modular approaches are flexible, however, they
might struggle at depth discontinuities. Furthermore their
overall performance depends highly on the individual per-
formance of each module e.g. the quality of the estimated
depth maps, the quality of the background-foreground seg-
mentation, the power of the classical rendering.

During the recent years we can observe a trend towards
using deep learning to simulate the rendering process as
an end-to-end operation. Early works such as Nalbach et
al. [27] and Xiao et al. [40] train convolutional neural net-
works (CNN) to produce a bokeh effect from an all-in-focus
image and its accurate depth map. Wang et al. [37] pro-
poses an automatic rendering system comprised of depth
estimation, lens blur, and guided upsampling to generate
high-resolution depth-of-field (DoF) images from a single
image. Most recently, Peng et al. proposes BokehMe [28],
a framework that combines neural and classical rendering
techniques and achieves state-of-the-art results.

Other deep learning-based methods [14, 17, 21, 23, 31,
33, 38] do not require any prior information such as depth
maps, which are not easy to capture in real-world scenes.
These methods usually follow a encoder-decoder architec-
ture [32], and map the all-in-focus input images into shal-
low DoF images in an end-to-end manner.

Despite the promising results, these deep learning-based
rendering methods lack controllability. The trained neural
network can produce only the style of the effect present in
the training data, and the blur range is limited by the ker-
nels’ receptive field.

We aim to improve mobile photography, therefore it is
also important to address the method complexity consider-
ing the computational limitations of mobile devices. Igna-
tov et al. [14, 16, 17] studied efficient Bokeh rendering for
mobile devices, being able to deploy the models on differ-
ent target platforms [17]. These challenges use the pop-
ular large-scale Everything is Better with Bokeh! (EBB!)
dataset [14] containing more than 10 thousand images col-
lected in the wild.

By controlling the aperture size of the lens, pairs of im-
ages with wide (aperture f/16) and shallow (aperture f/1.8)
depth-of-field were taken, resulting in a normal sharp photo
and one exhibiting a strong Bokeh effect.

In this work we propose a novel neural rendering method
able to control the effect by feeding the lens properties into
the neural network as an additional input.
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Figure 2. Architecture of the proposed EBokehNet. We use a encoder-decoder structure inspired in NAFNet [4]. We propose a new
modified Baseline Block. We inject the lens information (type and strength) at different stages -as shown in the colour legend-, by
doing this we are able to control the shape and strength of the Bokeh effect by “conditioning” the network’s features. Additionally, we
employ 2D positional encoding (PE) in some blocks [24] to provide extra spatial context. All the indicated operations are channel-wise.

3. Efficient Bokeh Rendering
We design our network EBokehNet for Bokeh effect ren-

dering and transformation considering the following desired
features: (i) the network should allow to control the strength
and style of the Bokeh effect. This is fundamental to tackle
the novel Bokeh Effect Transformation task. (ii) The model
must be efficient in order to be usable, to achieve this we
adopt the already efficient NAFNet architecture [4] and sim-
plify it further by reducing the number of encoder-decoder
blocks. (iii) The model should be able to render or convert
the Bokeh effect of one lens to the effect of another lens
without modifying the sharp foreground regions in the im-
age. This ultimately implies a SOTA performance.

Model Design We illustrate the architecture of
EBokehNet in Fig. 2. We follow a classical U-Net [32]
encoder-decoder structure inspired in NAFNet [4], yet
reducing notably the number of blocks.

We propose a new modified Baseline Block that in-
corporates LayerNorm [1], GELU activations [12], pixel-
wise convolutions, inverted residual blocks [8], and addi-
tional residual connections. Following [4] we use two core
elements that ensure efficiency and performance: (i) down-
sampling using strided convolutions, (ii) upsampling using
pixelshuffle [44].

The core modifications allow to integrate the encoded
lens information, and thus we can condition the deep fea-
tures and the overall model behaviour.

We inject the lens information (type and bokeh strength)
at different stages of the decoder, by doing this we are able
to control the style and strength of the Bokeh effect by “con-
ditioning” the network’s features. This idea was success-
fully applied for flexible compression removal [18, 41].

We calculate the Bokeh strength factor as follows:

Lbokeh =
1

Ftgt
2 − 1

Fsrc
2

BF =
Lbokeh ∗ disparity

100
∗ 2

BFnorm =
BF + 1

2

considering the aperture of the source Fsrc and target
Ftgt lens, and the disparity. This is injected at the 1st en-
coding block as shown in Fig. 2. The disparity value in-
dicates the relative distance of the foreground to the back-
ground, and serves as another indicator of the “amount of
blur”. This information is provided for each sample in the
BETD dataset [7], in the cases were this information is not
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Figure 3. Our integration of positional encoding (PE). We show
(up) the classical feature F processing [4], and (bot.) our block
with PE for additional spatial context.

available e.g. EBB dataset [14], our model allows to disable
such inputs and conditions (Fig. 2).

Additionally, similar to CoordConv [24], we also employ
2D positional encoding (PE) in some blocks, this provides
extra spatial context and guide the network in rendering op-
tical vignetting and cats-eye bokeh in the corners. We use
a 2-channel coordinates map as illustrated in Fig. 3. Since
the real and synthetic Bokeh effect from BETD [7] is asso-
ciated with space-varying PSFs, we found PE a very pow-
erful method to enhance features.

Note that we use five blocks with PE at the final decoding
stage using high-resolution features (see Fig. 2), we found
this especially important to improve performance notably.

4. Experimental Resuls
We evaluate our models using the novel Bokeh Effect

Transformation Dataset (BETD) [7], and the “Everything is
Better with Bokeh!” (EBB) benchmark [14, 16].

BETD The dataset [7] contains 20000 and 200 image
pairs for the training and test sets, respectively. The average
resolution of the images is 1584 × 1056. The training set
consists on synthetic images generated using an estimated
PSF of professional lenses. The test set contains 100 syn-
thetic images, and 100 real captures. Both the simulated and
real images are based on Sony Alpha 7R II and Sony Alpha
7R IV professional cameras with a Sony 50mm lens set to
f/1.8 and f/16 apertures and a Canon EF 50mm lens set to
f/1.8 and f/1.4 apertures. For each real or synthetic pair, we
have the corresponding metadata for the source and target
images e.g. Sony50mmf1.8BS→ Canon50mmf1.4BS.
We also use the provided disparity value that indicates the
“amount” of blur as the “bokeh strength”.

EBB used in [14,16,17] is a large-scale EBB! dataset con-
taining 5K shallow / wide depth-of-field image pairs col-
lected in the wild with the Canon 7D DSLR camera and
50mm f/1.8 fast lens.

4.1. Bokeh Effect Transformation

We provide the results on the BETD [7] benchmark in
Tab. 1 and qualitative samples in Fig. 5 and Fig. 6.

Our method EBokehNet achieves state-of-the-art perfor-
mance while being 50× smaller in comparison to the oth-
ers [20, 43]. Even our smaller version EBokehNet-s with
less blocks and depth, achieves very competitive results. We
believe this is because: (i) novel block with positional en-
coding, (ii) the new design of our baseline block based on
NAFNet [4], and (iii) the efficient integration of lens infor-
mation into the model.

We define our small version EBokehNet-s as the smart-
phone model. Following [14, 16] we design this shallow
variant for mobile devices. This has blocks with 16 chan-
nels instead of 32, and less number of blocks in the middle
and decoding part. Since the model is extremely compact (1
Million parameters) we can train using full-resolution im-
ages, which we found is an advantage.

In Fig. 4 we show the performance comparison of the
two model variants when we vary the bokeh strength e.g.
render strong Bokeh f/16 → f/1.8, transform it f/1.8 → f/1.4,
or recover sharp regions by “removing” Bokeh f/1.8 → f/16.

Both models allow high-resolution image processing
without patching or tiling strategies. Also note that we do
not employ the provided alpha masks or any sort of segmen-
tation, the foreground and background separation is com-
pletely implicitly learned.

Results per transformation Removal. Is a transforma-
tion from shallow to wide DoF e.g. f/16 → f/1.8. This is
the most challenging sub-task since it is similar to deblur-
ring [8], an ill-posed problem. While the perceived increase
in background busyness and detail is captured, the details
do not necessarily match the ground-truth and the perceived
style of the target lens is rarely captured.

Figure 4. Performance comparison of the small and large vari-
ants of EBokehNet on BETD [7] depending on the strength of
the bokeh transformation. Negative factor means Bokeh is re-
moved (shallow to wide DoF), around 0 it is transformed e.g.
Sony50mmf1.4→ Canon50mmf1.4, and for positive factors
bokeh is rendered by the network.
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Method # Params. (M)
Synthetic + Real Real Foreground/Background

PSNR ↑ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ PSNRF ↑ SSIMB ↑

NAFBET [20] 115 35.264 0.9362 0.0985 0.8416 0.2186 47.512 0.9553
SBTNet [7] 265 34.572 0.9361 0.0966 0.8435 0.2224 47.889 0.9559
CBTNet [7] 182 32.326 0.9333 0.1076 0.8420 0.2230 46.875 0.9500
BokehOrNot [43] 21 32.288 0.9327 0.1130 0.8423 0.2199 48.280 0.9488
SGLMS [7] 7 32.076 0.9324 0.1076 0.8419 0.2161 47.024 0.9484
IR-SDE [26] 78 30.866 0.9297 0.1301 0.8427 0.2387 44.905 0.9418
DoubleGAN [17] 5 27.970 0.9213 0.1542 0.8455 0.2175 41.522 0.9312
Synthetic - 28.599 0.9128 0.2181 - - 48.163 0.9132

EBokehNet-s 1 34.543 0.9350 0.1039 0.8414 0.2206 47.220 0.9530
EBokehNet 20 35.521 0.9362 0.0993 0.8412 0.2208 47.577 0.9557

Table 1. NTIRE 2023 Lens-to-Lens Bokeh Effect Transformation (BETD) [7] results. The methods are ranked by PSNR/SSIM. The
models were tested on unseen real captures and synthetic rendered content. We also provide the rounded number of parameters of each
method. Synthetic indicates the metrics for the raw source image. Our method EBokehNet achieves state-of-the-art performance while
being extremely smaller in comparison to others. Moreover we can appreciate that the method is not harming the sharp foreground regions.

Sony 50mm lens f1.4 Canon 50mm lens f1.4

Canon 50mm lens f1.4 Sony 50mm lens f1.4

Figure 5. Real captures from the BETD [7]. These images were captured using the same DSLR camera. The proposed EBokehNet is able
to do a bidirectional conversion between both setups Sony←→ Canon. Images courtesy of Glass Imaging, Inc.
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Figure 6. Qualitative samples from BETD [7] of realistic Bokeh
transformation using the proposed network. The 1st row of crops
corresponds to the setting Sony50mmf1.4. The 2nd corresponds
to the transformed effect towards the setting Canon50mmf1.4
with our model. Image courtesy of Glass Imaging.

Transformation. The method achieves great perfor-
mance, the bokeh style is very well adjusted to the target
lens. However, we found that the method struggles to gen-
eralize to real images, which were not present in the training
data and have different properties.

Rendering. The method can emulate the bokeh style
and strength, and the results match the target lens set-
tings. There is a slight degradation in performance when the
bokeh strength is too different from the source (see Fig. 4).

Real vs Synthetic Data We found a clear gap generaliza-
tion gap between the synthetic and real content. Despite
the synthetic content was rendered using accurate estimated
PSFs, the properties of real images differ notably e.g. il-
lumination, distance to the objective (implicit depth). We
provide extensive qualitative results in Fig. 8 and Fig. 5.

Method PSNR ↑ SSIM ↑ LPIPS [45] ↓
EBokehNet 24.99 0.852 0.1912
SKN [22] 24.66 0.8521 0.3323
DBSI [9] 23.45 0.8675 0.2463
DMSHN [10] 24.72 0.8793 0.2271
DDDF [30] 24.14 0.8713 0.2482
BGGAN [31] 24.39 0.8645 0.2467
BRADCN [23] 24.83 0.8737 0.1448
PyNet [14] 24.93 0.8788 0.2219
BEViT [38] 24.57 0.8880 0.1985

Table 2. Quantitative results on the EBB [14, 16] Val294 testset.
Some numbers are borrowed from [23, 38].

4.2. Bokeh Effect Rendering

First, we evaluate our model (pre-trained on the
BETD [7] dataset and task) on the EBB dataset [14] in a
zero-shot manner. We found that the model only works
for a few images, the reason is because the training data
in BETD [7] is clearly separable into foreground and back-
ground. Also the foreground in BETD is always a person
(or a face), while at EBB we find a wide variety of objects.

Therefore, we fine-tune the model on the EBB
dataset [14]. We notice that the model quickly learns how
to separate foreground and background in real images, and
can emulate strong natural Bokeh.

As we show in Tab. 2, our model achieves state-of-the-
art results. In comparison to the baseline PyNET [14, 16]
with 40M parameters, our method is 40× smaller. More-
over, we achieve better results than other complex meth-
ods that apply depth estimation or foreground segmenta-
tion, our approach is purely end-to-end with one efficient
network. We can conclude that our method is easily trans-
ferable to real images with a wide variety of focused objects
e.g. faces, persons, cars, animals, plants, etc. Pre-training
on simple synthetic data -with a realistic blur model- im-
proves the SOTA for Bokeh rendering on EBB [14].

4.3. Implementation Details

We train all the models using Adam optimizer [19] with
Cosine Annealing learning rate scheduler with 10 epochs
of linear warmup using a maximum learning rate of 1e-3
and minimum learning rate of 5e-5. We train the models to
convergence, for the small model 220 epochs, and 280 for
the large version. We use simple L1 loss.

Since the small model is quite efficient, we can high res-
olution crops of 1024x1024 on images for training, mean-
while we use 512×512 crops for the larger version. We ap-
ply standard augmentations consisting in flips and rotations.
We set the mini-batch size to 14, and run a distributed train-
ing over 7 RTX 3090Ti GPUs via DDP. The complete train-
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Figure 7. Rendering Bokeh on real-wold images from the EBB dataset [14]. We show the rendered Bokeh effect from our EBokehNet in
a large variety of scenes in-the-wild. We provide additional qualitative results and comparisons in our project site.

ing time is approximately 48hrs per model. Furthermore,
to increase the inference performance on the full-resolution
images we employ a Test Time Local Converter [6].
Fine-tuning on EBB. We use the aforementioned exper-
imental setup with the following modifications. We start
with a learning rate 5e-4. We keep the same architecture
and disable the lens and Bokeh strength encoding, therefore
we use only baseline blocks (see Fig. 2). We just need to
train 50 epochs to achieve SOTA results. Since the images
are not perfectly aligned, we train the model using a combi-
nation of fidelity and perceptual losses as follows:

LEBB = 0.5× L1 + 0.05× LSSIM + 0.1× LV GG (1)

5. Conclusions
We introduce EBokehNet, a efficient state-of-the-art so-

lution for Bokeh effect transformation and rendering. Our

method can render Bokeh from an all-in-focus image, or
transform the Bokeh of one lens to the effect of another lens
without harming the sharp foreground regions in the image.
Moreover, even being an end-to-end network, we can con-
trol the shape and strength of the effect by feeding the lens
properties into the neural network as an additional input.

We prove the benefits of our method in the novel Bokeh
Effect Transformation Dataset, and the real scenes from
EBB, achieving state-of-the-art results in both benchmarks.

As future work we will study closer the gap between syn-
thetic and real captures. We also aim to reduce further the
complexity of the network and test it on real mobile devices.

Acknowledgements This work was partially supported
by the Humboldt Foundation. Glass Imaging thanks Griffin
Kettler and his models for assistance with the real images
captured for the test portion of the BETD dataset.
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Figure 8. Qualitative results on the Bokeh Effect Transformation Dataset (BETD) [7] testset.
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