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Abstract

This work reviews the results of the NTIRE 2023 Chal-
lenge on Image Shadow Removal. The described set of so-
lutions were proposed for a novel dataset, which captures a
wide range of object-light interactions. It consists of 1200
roughly pixel aligned pairs of real shadow free and shadow
affected images, captured in a controlled environment. The
data was captured in a white-box setup, using professional
equipment for lights and data acquisition sensors. The chal-
lenge had a number of 144 participants registered, out of
which 19 teams were compared in the final ranking. The
proposed solutions extend the work on shadow removal, im-
proving over the performance level describing state-of-the-
art methods.

Florin-Alexandru Vasluianu, Tim Seizinger and Radu Timofte are the
NTIRE 2023 challenge organizers. The other authors participated in the
challenge.
Appendix.A contains the authors’ team names and affiliations.
https://cvlai.net/ntire/2023

1. Introduction

The Shadow Removal task is a complex problem in com-
puter vision. The main challenge of this task is to propose
an algothm able to cope with the wide range of factors in-
volved in the shadow creation model. Shadows are direct
effects of light occlusion [56]. Depending on the shape
of the occluder, its material, the position and intensity of
the occluded directional/diffuse light, shadows have differ-
ent shapes and intensities. The other source of variation
comes with the properties of the surface the shadow is be-
ing casted, with surfaces characterized by complex material
properties and textures, and a large variety in terms of col-
ors. All the aforementioned factors are imposing additional
conditions to an already difficult problem.

Light occlusion induces a steep variation in an image re-
gion in terms in the luminance component of the acquired
images, producing a change in terms of represented col-
ors without semantic support. Thus, shadow impacts the
performance of other vision tasks such as image segmenta-
tion [1,22], semantic segmentation [23,54], object recogni-
tion and tracking [5, 21, 27, 30, 33, 57].
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The shadow removal task is, essentially, an image
restoration task aiming at recovering the information lost
by light occlusion, using the information available in the
shadow affected image. Lately, large image databases,
consisting of shadow/shadow-free image pairs (SRD [50],
ISTD [64]) or unpaired data (USR [28]) enabled the formu-
lation of the shadow removal problem in the deep learn-
ing framework. Since both paired and unpaired data is
publicly available and well described in literature, the
shadow removal solutions adopted both the fully super-
vised approach [35, 50, 53, 64, 78], and the unsupervised
(weakly-supervised) learning framework [28, 59]. Lately,
the introduction of the attention mechanism [62] in the
image restoration solutions [8, 70] further improved the
shadow removal performance, with more of the contempo-
rary works [26, 78] adopting different variations of feature
fusing strategies.

One particular challenge of the shadow removal task is
learning a physically explainable transformation, achiev-
ing a significant performance level in terms of perceptual
metrics. The semantic or illumination inconsistencies ob-
served in the already introduced datasets increase the com-
plexity of this task, impacting the performance of the so-
lutions trained in the fully-supervised setup. The intro-
duction of the Generative Adversarial Networks (GANs)
framework [24] with their ability to learn complex distribu-
tions, enabled a new class of solutions, with recent efforts
[28, 59, 75] solving the shadow removal task in the broader
image-to-image translation framework [29].

In [46], the authors observed that the usage of the clas-
sical encoder-decoder UNet structure [51] has a tendency
to produce artifacts-affected results. Moreover, there is
a tendency of the de-shadowed image regions to appear
blurry [28, 76]. One of the solutions proposed to the afore-
mentioned limitations was to design robust loss functions,
with recent solutions [26, 28, 35, 36, 53, 59, 64, 78] able to
produce photo-realistic deshadowed results with high pix-
elwise fidelity.

Similar to previous editions similar challenges [2,3], the
NTIRE 2023 Image Shadow Removal Challenge represents
a step forward in establishing a more complex single image
shadow removal benchmark. It is based on a novel dataset
capturing a wider range of light object interactions, with
a large variety of light occluders and shadow affected sur-
faces. The WSRD 1 dataset [60] consists of 1200 shadow
affected high resolution images and their corresponding
ground truth images of the same scene. We perform an ob-
jective evaluation by comparing the restored output of the
methods with the ground truth images of the dataset, with
a high focus on the perceptual performance of the proposed
solutions.

1https://github.com/fvasluianu97/WSRD-DNSR

This challenge is one of the NTIRE 2023 Workshop 2

series of challenges on: night photography rendering [55],
HR depth from images of specular and transparent sur-
faces [74], image denoising [39], video colorization [31],
shadow removal [61], quality assessment of video enhance-
ment [40], stereo super-resolution [66], light field image
super-resolution [68], image super-resolution (×4) [79],
360° omnidirectional image and video super-resolution [6],
lens-to-lens bokeh effect transformation [15], real-time 4K
super-resolution [18], HR nonhomogenous dehazing [4], ef-
ficient super-resolution [38].

2. Image Shadow Removal Challenge
The objectives of the NTIRE 2023 challenge on Image

Shadow Removal are:

• to gauge and push the state-of-the-art in image shadow
removal;

• to compare and promote the state-of-the-art solutions;

• to promote the WSRD [60] dataset as a novel challeng-
ing benchmark for high resolution image shadow re-
moval.

2.1. Image Shadow Removal Dataset

The main limitation of other datasets proposed for the
shadow removal task like ISTD [64], USR [28] and SRD
[63] is the limited number of interactions they capture. The
data is mainly a collection of image pairs capturing differ-
ent scenes in outdoors conditions, consisting of a surface
on witch a shadow is casted by an occluder object, which
itself does not appear in the image. The main reason behind
adopting this setup is its simplicity, since a cluttered scene
or a scene composed of high-complexity textures would
need the addition of more lights to counter self-shadows,
and additional post-processing would be needed for color
alignment. Moreover, since most of the data is acquired
in outdoors conditions, additional lighting inconsistencies
were observed in the ISTD dataset [64], with an additional
correction method being proposed in [35], further decreas-
ing the fidelity error in the regions that are not affected by
shadow. Additional semantic differences found between the
input and the corresponding ground truth images [59] come
as another reason to further investigate the shadow forma-
tion models in a more difficult setup.

Opposed to these previous methods, our capturing setup
is built around controllable artificial light sources. As
can be observed in Figure 1, we positioned the camera, a
Canon EOS R6 II, in a 45 degree vertical angle towards the
scene. The first flash serving as directional light source was
mounted in a 45 degree vertical angle towards the scene and

2https://cvlai.net/ntire/2023/
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Figure 1. A visual representation of the setup used for data acqui-
sition.

a 90 degree horizontal angle towards the camera. A second
flash mounted in a softbox directly above the scene is pro-
viding diffuse illumination without casting shadows. Both
flashes were always used on their maximum brightness set-
ting.

For capturing the input and shadow free ground truth
frames the camera was used in manual mode, meaning that
all the camera settings like exposure or white balance were
fixed and did not change in between frames. Its light sensi-
tivity was set to ISO 100 to minimize noise, and the aperture
of the 70mm lens was set to F11 to maximize the depth of
field.

To capture a input frame with shadows, both the direc-
tional and the diffuse flash was used. The directional flash
causes objects in the scene to cast a shadow, while the dif-
fuse flash ensures that the shadow areas still contain enough
detail for later recovery. To capture the shadow-free ground
truth frames, only the diffuse flash was activated. As only
one flash is active in this case, we matched the exposure of
the input and the ground truth by processing the RAW data
in Adobe Lightroom.

A problem that still remains in our setup is that objects
with complex surfaces still possess soft self-shadows and,
in some cases, cast diffuse shadows on the surfaces below
them. An improved setup could remedy this by using a
translucent scene surface that could be lit from below, or us-
ing additional soft boxes on the sides. Given the fixed cam-
era pose and the lights positioning, additional sources of
variation can be found to extend the current image database.

2.2. Evaluation

Being a predominantly perceptual task, we evaluate the
NTIRE2023 Image shadow Removal submissions given the
following criteria:

1. The Mean Opinion Score (MOS) for the submitted pre-
dictions;

2. The LPIPS [77] distance between the predictions and
the ground-truth images. We used the ImageNet pre-
trained AlexNet [34] for the LPIPS feature extraction;

3. The Structured Similarity Index (SSIM) [69] score;

4. The reconstruction fidelity in terms of PSNR values;

5. An efficiency metric stating the fidelity gain per mil-
lion of learned parameters characterizing the proposed
solution, with respect to the PSNR value of 15.03 dB
chrcterizing the test split pairs.

The user study consisted of amateur and professional pho-
tographers, whose feedback was quantified as an integer
value starting from 0 (worst) to 10 (best). The evaluated
dataset consisted of the predictions submitted by partici-
pants for the samples s ∈ {1, 19, 36, 47, 55, 64, 82, 89} of
the test split, where the index of the first testing sample is
0. The Mean Opinion Score (MOS) reported represents the
average of the study participants feedback for the aforemen-
tioned set of samples.

2.3. Challenge Phases

1. Development phase: In this phase, the training split,
consisting of 1000 image pairs, was available on the
challenge webpage. The participants tailored their so-
lutions based on the properties of the data, deploying
additional preprocessing operations.

2. Validation phase: The validation split, consisting of
100 shadow affected images was published on the
challenge website. The participants used the Codalab
validation server [48] to submit their predictions, with-
out having access to the ground truth images.

3. Testing phase: The participants had access to the 100
images testing split of the dataset. Using the test server
[48], they provided the predictions of their model for
evaluation. The submission with the best results in
terms of PSNR and SSIM was considered for evalu-
ation in the final ranking. Finally, an user study in-
volving professional and amateur photographers was
conducted, and the Mean Opinion Score (MOS) was
used to show the best performers in terms of perceptual
properties.

3. Challenge Results
The challenge registered 144 participants, with number

of 19 teams providing their code and results, thus being
ranked in the final phase. The submission prepared by each
team consists of codes, testing split results and a factsheet
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Input images

MTCV - best reconstruction fidelity score

IR-SDE - best LPIPS/MOS score

Couger AI - the most efficient solution

Ground truth images

Figure 2. Visual results provided for best performing solution on each of the metrics deployed. Best zoom-in on screen in the electronic
version.

containing a description of the proposed solution and the set
of results for visual comparison. Section 4 provides details
about each of the solutions ranked in the final phase.

Table 1 provides the quantitative evaluation of the sub-
mitted results, along with the ranking with respect to each
of the metrics used for evaluation. Results corresponding to
the solutions ranked first for one of the metrics are provided
in the Figure 2. Given a recent trend in the community to

focus on more efficient solutions [16,17,26,58], we explic-
itly report the reconstruction fidelity performance gain per
milion learnt parameters of the proposed solutions. More-
over, we list the reported inference time per full-resolution
sample (1920×1440 px), on the device each of the teams
used to develop their model.

Checking Table 1, the metric with the highest corre-
lation to the Mean Opinion Score (MOS) is the LPIPS,
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while PSNR and SSIM can be used to differentiate solutions
achieving similar performance levels. However, the top so-
lution achieved consistent results along the set of compared
metrics.

4. Challenge Methods
4.1. MTCV

The MTCV team has proposed a new model called Pyra-
mid Ensemble Structure (PES) [19] that is based on the
NAFNet architecture introduced in [8]. PES comprises
three main components: Pyramid Inputs, Pyramid Stages,
and Shadow Ensemble. The team’s innovative approach, as
illustrated in Figure 3, has the potential to enhance existing
models and improve overall performance.

To enable their model to capture diverse shadow sizes
and shapes, the MTCV team leverages multiple scales
through a technique called Pyramid Inputs. This involves
constructing pyramid inputs to enable the network to cap-
ture information at different scales. By using multiscale
image training, the team is able to better preserve global
information from the reconstructed frame. To ensure effi-
cient training, the pyramid input images are further cropped
into the same shape.

To further enhance the ability of their model to process
global information, the MTCV team utilizes a training ap-
proach known as Pyramid Stages. This involves training the
network using PSNR and SSIM as the main performance
metrics. The team then applies a fine-tuning step using L1
loss at a larger training resolution. Finally, the training pro-
cedure is continued using SSIM loss and Mean Squared Er-
ror for a resolution comparable to the input resolution of the
training data. By using this multi-stage training process, the
team is able to achieve superior performance in their model.

Amid the realm of shadow removal task, they have made
a crucial observation: bright regions that rarely contain
shadows are more likely to be non-shadow regions. This
discernment enables them to assume that such regions are
free from shadows. Leveraging this novel insight, they
propose a simple yet highly effective approach to shadow
removal - selecting the maximum prediction from all the
shadow models. Their innovative technique builds on this
observation, demonstrating superior results in terms of ac-
curacy and performance.

4.2. IR-SDE

They propose Refusion [44] that uses the IR-SDE [43]
as the base diffusion framework (see Figure 4), which can
naturally transform the high-quality image to its degraded
counterpart, without caring how complicated the degrada-
tion is (even for real-world degradation). As shown in Fig-
ure 4, IR-SDE is a mean-reverting SDE in which the for-
ward process is defined as:

  dx = \theta _t \, (\mu - x) d t + \sigma _t d w, \label {equ:ou}       (1)

where θt and σt are time-dependent positive parameters
that characterize the speed of the mean-reversion and the
stochastic volatility, respectively. Since it is an Ito SDE, we
could derive a reverse-time SDE:

  dx = \big [ \theta _t \, (\mu - x) - \sigma _t^2 \, \nabla _{x} \log p_t(x) \big ] d t + \sigma _t d \hat {w}. \label {eq:reverse-irsde} 

  

  

   (2)

At test time, the only unknown part is the score
∇x log pt(x) of the marginal distribution at time t. As other
diffusion-based models, we employ a CNN network to es-
timate the score to backward from the low-quality image to
the high-quality image.

Unlike other L1 loss normally trained networks which
usually produce smooth/blurry results, the proposed Reffu-
sion aims to achieve a highly competitive perceptual perfor-
mance as well as the distortion scores (PSNR). To counter
training pairs position shifts and their non aligned lumi-
nance, they train the Reffusion model to implicitly learn
to align with the ground truth, which is more flexible and
efficient.

In addition, they further improve the results by updat-
ing the score-network from U-Net to NAFNet [8], which is
more efficient and also has a good performance compared
with recent Transformers. To adaptively insert the scalar
time into the network, they construct a simple multi-layer
perceptron to learn two pairs of scale-shift parameters and
apply them to the features with affine transforms. Such a
network leads to better learning of score function condi-
tioned on current state xt, original low-quality image xT ,
and timestamp t.

4.3. SRDM

As shown in Figure 5, the proposed model, SRDM, is
a three-stage model to recover shadow-free images from
shadow affected ones. The first stage will downsample the
input shadow image and its shadow mask by factor f = 3
using bicubic interpolation. The shadow mask is calculated
by a pretrained BDRAR [80] shadow detector. Then the
second stage adopts SR3 [52], a diffusion model for super-
resolution, to generate a shadow-free image conditioned on
the shadow-affected image and its shadow mask. At last,
they apply a pretrained ESRGAN [67] model as the third
stage to restore the original resolution of the shadow-free
image.

4.4. SYU-HnVLab

Team SYU-HnVLab started with a method called
CAIR [72], which excels at image restoration, as a baseline.
This method is good at removing image filters by color at-
tention. Given the properties of the shadow affected areas,a
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Rank Team Username PSNR↑ SSIM↑ LPIPS↓ MOS↑ Params.(M) Gain/Mil. params↑ Runtime(s) Device Extra data
1 MTCV cuishuhao 22.36(1) 0.7(1) 0.182(2) 8.31(3) 46 0.159(12) 0.002 A100 No
2 IR-SDE ir-sde 19.6(14) 0.58(15) 0.149(1) 8.94(1) 74 0.062(14) 34 A100 No
3 SRDM xyz123 22.2(2) 0.69(3) 0.269(9) 7.44(5) 151.7 0.047(16) 136 A100 No
4 SYU-HnVLab Una 21.25(8) 0.67(8) 0.217(6) 6.84(6) 13.9 0.447(7) 0.004 A100 No
5 MegSRD CD luo 17.36(18) 0.53(17) 0.198(4) 8.81(2) 104.6 0.022(17) 18 RTX2080Ti No
6 UM-JTG daylight 21.7(4) 0.69(4) 0.283(10) 6.81(7) 27 0.247(10) 60 RTX3090 No
7 LVGroup HFUT HuanZheng 21.43(7) 0.68(7) 0.231(7) 6.79(8) 38.88 0.165(11) 0.25 2×RTX3090Ti No
8 IIM TTI Yuki-11 18.08(16) 0.53(16) 0.196(3) 7.44(4) 55 0.055(15) 1.01 A100 ImageNet
9 NTU607-shadow mrchang87 21.79(3) 0.7(2) 0.236(8) 6.15(11) 11.85 0.57(6) 1.81 RTX3090 ISTD

10 MM911 codalab123 21.69(5) 0.69(5) 0.293(11) 5.51(12) 25.8 0.258(9) 0.005 A100 No
11 leaves leaves 21.68(6) 0.69(6) 0.309(13) 6.51(9) 16 0.416(8) 0.005 2×RTX2080Ti No
12 MegSRF jiangchengzhi 17.74(17) 0.5(18) 0.203(5) 6.45(10) 34.2 0.079(13) 1.3 RTX2080Ti No
13 Couger AI SabariNathan 20.56(12) 0.63(11) 0.306(12) 4.75(15) 0.861 0.006(1) 0.001 K80/T4 No
14 Noir Krocy 21.24(9) 0.66(9) 0.389(14) 4.73(16) 6.73 0.923(5) 0.22 RTX3090 No
15 CVPR IITRPR shrutiphutke 19.71(13) 0.63(12) 0.414(16) 5.0(14) 0.97 4.825(2) 0.25 RTX2080 No
16 NUSSZ-ShadowRemove tiger 21.13(10) 0.65(10) 0.411(15) 4.13(18) 5 1.22(4) 1.6 RTX3090 No
17 Concentration Concentration 19.23(15) 0.6(14) 0.418(17) 5.48(13) 1.17 3.59(3) 0.003 GTX1080Ti No
18 ZJUME251 BowenZhao 20.73(11) 0.62(13) 0.48(18) 4.31(17) 190 0.03(18) 0.037 RTX2080Ti No
19 Imsensor Goring 11.83(19) 0.37(19) 0.984(19) 0(19) 9.18 −0.349(19) 0.13 TitanX No

Table 1. Quantitative results of the challenge final submission on the WSRD test split. Using naming convention n(m), where n is the value
of the metric evaluated and (m) is the rank in the list of submissions sorted by the evaluated metric value.

Figure 3. Overall framework of Pyramid Ensemble Structure (PES) proposed by the MTCV Team. First, they implement Pyramid Inputs,
which entails resizing and cropping the input images into various sizes and shapes. Once adjusted, the input images are then forwarded to
the network for processing, which is trained based on diversity loss functions in Pyramid Stages. Finally, the output images are ensembled
by selecting the maximum result from the various options available.

model that can learn information about color would be suit-
able for removing shadows.

In general, shadows are areas of an image where less
light is present, resulting in a lower level of luminance. And
since the depth and location of shadows depend on the in-
tensity and position of light, the CIELab color space, which
can represent light information, was preffered over the RGB
color space. In particular, luminance attention is proposed
to focus on the light information. Team SYU-HnVLab

starts with a color attention mechanism as baseline, which
takes RGB input and outputs RGB color attentive features.
Then, the different features (luminances feature and color
features) are fused using the color space fusion inspired
by [20]. They ultimately proposed two network archi-
tecture: luminance attention network for shadow removal
(LASR) and color-luminance attention network (CLAN)
(see Figure 6). LASR only uses luminance attention, and
CLAN takes advantage of both chroma-component and lu-
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Figure 4. (a) Image restoration based on the IR-SDE [43], which uses a mean-reverting stochastic differential equation (SDE) to recover
images. (b) The modified NAFBlock. Here ”SCA” is the simple channel attention, and ”SimpleGate” is an element-wise operation that
splits feature channels into two parts and then multiplies them as output.
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Figure 5. The architecture of the solution proposed by the SRDM team. The first stage consists of shadow detection, followed by shadow
removal at a lower scale. In the last step, the shadow free prediction is upscaled back to original resolution.
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minance attention, effectively fusing those two information
sources. Both models were trained with an additional loss
term, to account for the data misalignment.

4.5. MegsRD

Their approach (see Figure 7) extends on previous
work in image restoration [47], where image restoration
is achieved by smoothing noise estimation of overlapping
patches during inference.

In the training process, they first apply a pre-trained
alignment network to warp the input such that the input
shadow affected image and the gound-truth are aligned.
Then, the original resolution image is sampled from the
aligned data distribution and sliced into patches of size
128×128, as a condition to learn the conditional diffusion
model. In the testing phase, they start by padding the origi-
nal resolution image to fit the sampling procedure, and then
decompose the image into multiple overlapping patches of
size 512×512.

The set of overlapping patches is then used as input to
the trained noise estimation network, that has to merge the
output noise estimation to act on the sampling process of
diffusion, such that the overlapping blending can effectively
smooth merging artifacts between patches.

4.6. UM-JTG

Team UM-JTG (see Figure 8) started by extracting both
the shallow features of the shadow images and the corre-
sponding edge maps using strided convolutions (s = 4). Af-
ter feature concatenation and a simple convolutional layer,
the feature set is processed by six Swin Transformer blocks,
in a strategy similar to the previous work in [41]. Based on
the observation that large window size can activate more in-
put information and the Hybrid Attention Block (HAB) can
increase the receptive field of the transformer model [12],
they added the Residual Hybrid Attention Group (RHAG)
to their model. This consists of additional CNN blocks
working in parallel with the window-based Transformer
blocks, aiming to further enhance the representation abil-
ity of the original Swin blocks. Finally, after the skip con-
nection is added of the network’s output, PixelShuffle is
adopted to reconstruct the high-resolution shadow-free im-
ages.

The training objective is a combination of L1 loss, color
loss and spatial loss, aiming to suppress artifacts of the
edges shadow areas and the overall exposure deviation in
the process of optimization.

4.7. LVGroup HFUT

A visual representation of the LVGroup HFUT proposed
solution is detailed in Figure 9. The backbone architecture
is based on NAFNet [8], but with a different configuration
of the resolution-altering and dense-encoding operations.

Specifically, they use five up/down convolution layers fol-
lowed by a sequence of NAFBlocks as building blocks of
their model.

Due to the pixel offset between shadow-affected im-
ages and the corresponding ground-truth, the heavy blur
will occurred during training. To tackle misalignment, they
deployed pixel offset correction as the first stage of their
model, to alleviate this particular effect.

The training procedure is further optimized for con-
vergence, with an early-stopping mechanism avoiding the
overfitting behaviour of the proposed model.

4.8. IIM TTI

Team IIM TTI proposed a processing pipeline (see Fig-
ure 10), in which every step is tailored around one challenge
of the proposed task . They start with a homography esti-
mation step, to account for the roughly aligned data used
for training. Then, they perform a semi-automatic shadow
mask estimation, using their method (MASMA), which de-
tects the shadow affected regions in the HSV image space.
In the next step, they use MTMT [13] for shadow detection,
using the pretrained ImageNet ResNeXt as backbone.

In the last step, MTMT and Shadowformer [26] are
trained together for shadow detection and shadow removal.
The methosd achieves significant performance in the per-
ceptual domain, with notable results for the LPIPS and
MOS metrics.

A combination of the SSIM loss and a Structure Preser-
vation Loss is used as the training objective of the proposed
model.

4.9. NTU607-shadow

Their solution and details are published in [7]. Shortly,
team NTU607-shadow proposes a two-stage recovery strat-
egy [9–11] which contains a pseudo-free generator and an
image shadow remover. In the first stage, they train a GAN-
based free image generator, which can roughly remove
shadows. This stage is based on SpA-Former [78]. They use
the first model to remove the shadow and obtain the shadow
mask by calculating the difference between the original im-
ages and shadow-free images simultaneously. The second
stage considers shadow masks and original images to ob-
tain refined shadow-free images. To this end, they deploy
ShadowFormer [26] for this step of their proposed solution.
The ShadowFormer leverages original images and shadow
masks as inputs and generates shadow-free images.

To train their version of SpA-Former [78], Adam opti-
mizer [32] is adopted and the batch size is set to b = 3. The
network is trained for 200 epochs with the momentum β1 =
0.5, β2 = 0.999. The learning rate is initialed as 4 × 10−4.
They use the L1, L2 and the softplus function as loss terms
blended in the optimized objective.

In the second step, for ShadowFormer [26], the image
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LASR arch. CLAN arch.

Figure 6. The schematic representation of the architecture of the SYU-HnVLab proposed solution.

Figure 7. A visual representation of the solution proposed by MegSRD team.

is randomly cropped as 320 × 320, without data augmen-
tation. The AdamW optimizer [42] is utilized with a batch
size of b = 8 to train the network. The network is trained
for 500 epochs with the momentum β1 = 0.5, β2 = 0.999
and a weight decay of 0.02. The learning rate is initialed as
2 × 10−4, and the training objective is based on the Char-
bonnier loss function.

4.10. MM911

Team MM911 builds the proposed solution around the
current state-of-the-art on the corrected [35] version of the
ISTD [64] dataset. The solution is called SHARDS [53],
and proposes shadow removal at lower scales, followed by
a refinement step that integrates the upscaling of the shadow

free prediction to the original resolution of the input.
Without provided shadow masks, they use the Mask-

free-LSRNet for low resolutions shadow removal, perform-
ing the task at a lower resolution of the shadow affected in-
puts (400×400). The other step is performed by the second
component, the Mask-free-DRNet, upscaling the predicted
images from 400×400 to 1920×1440 and learning and an
additional fine-tuning procedure, thus increasing the quality
of the predicted full-resolution shadow-free images.

4.11. leaves

Team leaves emphasizes the importance of the shadow
mask in the shadow removal operation. Thus, they proposed
a solution based on SpA-former [78], that they trained in or-
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Figure 8. The overall architecture of the solution proposed by Team UM-JTG.
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Figure 9. The structure of the LVGroup HFUT proposed solution.

der to estimate the shadow masks based on a binary thresh-
olding of the difference between the shadow affected image
and its corresponding shadow-free prediction. Using the set
of shadow masks estimated in the first step of their solu-
tion, they deployed ShadowFormer [26], to get their final
predictions.

The prediction step uses an ensemble strategy, with mul-
tiple snapshots taken during training being aggregated in an
averaging strategy, predicting the final shadow-free recon-
structed frames.

4.12. MegSRF

The solution proposed by MegSRF is shown in Fig. 11.
In the training process, the shadow-effected image I is
downsampled (2×) with area interpolation to Is. Following
downsampling, Is is fed into the NAFNet [8] to generate
the returning factor fs with low resolution. Then, the factor
is upsampled (2×), to the original resolution of the image
I .

Finally, the input image variants I and Is are multiplied
by f and fs respectively, getting the shadow-free images Î
and Îs. The model of the proposed solution is described in
the Equation 3 and Equation 4.

  \begin {aligned} \hat {I} &= I * f \\ f &= \mathcal {U}(f_s) \\ \end {aligned} \label {eq:megsrfeq1}    
 

(3)

  \begin {aligned} \hat {I}_s &= I_s * f_s \\ f_s &= \psi (I_s) \\ I_s &= \mathcal {D}(I) \\ \end {aligned} \label {eq:megsrfeq2}    
 

 

(4)

Here U and D are upsampling and downsampling opera-
tions. ψ donotes the NAFNet model. The training objective
is a combination of L1 loss on I and the perceptual loss Lp.

Specifically, for a pair of the network output Î and its
ground truth IGT , they compute the loss terms defined in
Equation 5.

  \begin {aligned} \mathcal {L}_1 &= ||\hat {I} - I^{\mathrm {GT}}||_1 \\ \mathcal {L}_p &=\|\phi _j(\hat {I_s})-\phi _j(I^{\mathrm {GT}}_s)\|_1 \end {aligned} \label {eq:megsrfeq4}    
   




(5)

Here, ϕj is a pre-trained VGG-16 with normalization
loss in the j-th layer. The final loss L is a combination
of the two aforementioned loss terms.

In the evaluation process, the unsharp mask (USM)
method is implemented on the factor f , as described in the
Equation 6.

  \hat {I} = I * USM(f) \label {eq:megsrfeq3}      (6)

4.13. Couger AI

Team Couger AI proposed an end-to-end model
lightweight model (see Figure 12), aiming to remove the
shadow and restore the shadow-free images using a low
inference cost. The proposed approach is mainly inspired
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Figure 10. Overall diagram of the IM TTI team proposed methodology. In preprocessing, they account for image misalignment by a
Homography Estimation, followed by the ground-truth shadow mask estimation by SAMSA. After the shadow mask estimator, Shadow-
Former [26] is used to predict shadow-free reconstructions and a shadow mask compared to the prediciton of the shadow detector. In the
last step, CutShadow is used for augumentation, improving the quality of the reconstructed images.

Figure 11. The pipeline of the method proposed by Team MegSRF.
The shadow-effected image I is downsampled (Is) and fed into the
NAFNet [8] to generate the retuning factor fs at low resolution.
Then, the factor is upsampled (f ) to the same size of I , and an
unsharp mask (USM) method is applied to f . Then the factor f is
multiplied to I to get a shadow-free predicted image.

by [45]. The network consists of three branches, fusing dif-
ferent complexity features. Similar to [45], a residual dense
attention block is used as a backbone in an encoder-decoder
structure as the first branch. The residual dense attention
block uses a combination of dense connections, feature at-
tention, and residual learning to extract and enhance image
features. The output of this branch is concatenated with the
two other branches to enhance the feature detailing shadow-

Figure 12. Architecture diagram of the shadow removal solution
proposed by Team Couger AI

free area of the original images. A gradient loss is used to
guide the training procedure, improving the quality of the
predicted images.

4.14. Noir

They propose an image shadow removal encoder-
decoder model based the UNet structure [51]. The model
mainly consists of two blocks, the Conv2dGN block, and
the Attention block. The Conv2dGN block is composed of
a convolutional layer, a group normalization layer, and a
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SeLU activation function. The Attention block is similar to
the multi-head attention mechanism. Neither of the afore-
mentioned blocks affects the resolution of the feature maps,
keeping it consistent between the blocks used to forward
propagate the image. The structure of the model and ad-
ditional information about the resolution manipulation are
provided in Figure 13.

The encoder first downsamples the image by bilinear in-
terpolation and then processes it twice using the Conv2dGN
block, increasing the number of channels characterizing the
feature maps. This step is repeated several times until the
size of the feature map becomes (45×60×128). Then, the
Attention module is used to process and fuse the global in-
formation of the image at the current scale feature map.

The decoder restores the image to its original size. Here,
UNet skip connections are used to concatenate the corre-
sponding image features, providing different scale infor-
mation at the decoder level. After passing through the
Conv2dGN block, the image is upscaled by bilinear inter-
polation. Finally, the image is restored to its original size
further refined through two convolutional layers.

Using the Generative Adversarial Network framework,
team Noir applied a discriminator to enhance the shadow
removal efficiency of their proposed model. The discrim-
inator is similar to the encoder, using downsampling and
Conv2dGN blocks to change the outout size to 11×15×3.
Then, the output is flatten and processed by a multilayer
perceptron structure, predicting the probability of the sam-
ple to be real or fake. The training procedure is guided by
the WGAN-GP [25] loss function, which uses a gradient
penalty to improve the training procedure stability.

The loss function of the proposed generator id defined in
Equation 7, and the training objective for the discriminator
is defined in Equation 8.

  \label {proposed model loss} L_{proposed} = MSELoss(r, t) - D(r)    (7)

  \label {discriminator loss} L_d = D(r) - D(t) + \lambda _{gp}L_{gp}^D(interp.)    

 (8)

Here, r and t represent the output of proposed model and the
ground truth image, and interp. is an interpolated image
between r and t. λp and λgp are hyper-parameters of the
proposed model.

On one hand, the loss function of the proposed model
aims to achieve a high fidelity reconstruction in terms of
mean Squared error, while being characterized by improved
semantic properties (guided by the discriminator compo-
nent). The discriminator and the proposed generator are
trained in an adversarial framework to increase the percep-
tual properties of the results produced by the proposed so-
lution.

4.15. CVPR IITRPR

Team CVPR IITRPR proposed a computationally ef-
ficient, lightweight network (see Figure 14) for image
shadow removal, characterized by a low number of param-
eters (0.97M). This solution is based on previous work [49]
for image inpainting, which uses the localization informa-
tion about the affected regions as a mask as one of the inputs
pushed through the model. Unlike [49], the only input pro-
vided to the model is the shadow-affected iamge.

The proposed architecture consists of the multi-encoder
level feature fusion module, auxiliary decoder, and actual
reconstruction decoder. The encoder multi-level feature fu-
sion module extracts relevant information from each of the
encoder levels. This information is then processed with an
auxiliary decoder, followed by a space depth correlation
module to assist the actual reconstruction decoder for the
shadow removal task. The weights of the network are opti-
mized by calculating the loss (Loss1−4) at each level char-
acterizing the decoder.

4.16. NUSSZ-ShadowRemove

The proposed solution is based on SpA-Former [78],
consisting of transformer layer and a series of joint Fourier
transform residual blocks and two-wheel joint spatial atten-
tion.

First of all, from the Transformer network, the feature
map is processed by a 3×3 convolution, then fed to the bot-
tleneck structure and a Two-Wheel RNN Joint Spatial At-
tention (TWRNN).

The Two-Wheel RNN Joint Spatial Attention module is
designed to make the network emphasize specific shadow
patterns, as it can discover and find the focus map from
the input element map. The attention graph is a two-
dimensional matrix, in which the value of each element is a
continuous value, indicating the activation characteristic to
each pixel.

Deep convolution is introduced to emphasize the local
context global attention map before computing feature co-
variance to generate from a layer normalized tensor. The
transformer block first generates the predictions for the
query (Q), key (K), and value (V), enriching the local con-
text. This is achieved by applying 1×1 convolution to ag-
gregate pixel-by-pixel cross-channel context, followed by
3×3 deep convolution to encode channel space context.
Next, the query and key projections are reshaped such that
their dot product operation generates an output map with
the size of the transposed attention map.

The RNN model is used to project the descent in four
main directions. Three standard residual blocks are first
used to extract features, used to guide the three subsequent
attention residual blocks. The task of these blocks is to
eliminate shadows by learning negative residual. Finally,
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Figure 13. The structure of the team Noir proposed encoder-decoder model.

Figure 14. A visual representation of the solution proposed by Team CVPR IITRPR.

the generated feature map is fed into two standard residual
blocks to reconstruct the final shadow-removed image.

FTR [71] is a common practice in end-to-end image re-
covery architectures, consisting of employing a ResBlock
which learns the difference between blurred and clear im-
age pairs.

4.17. Concentration

Team Concentration extends on their previous work
[73], proposing a novel cleanness-navigated-shadow net-
work (CNSNet), with a shadow-oriented adaptive normal-
ization (SOAN) module and a shadow-aware aggregation
with transformer (SAAT) module based on the shadow
mask information. Under the guidance of the localization
information provided by the shadow mask, the SOAN mod-
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Figure 15. Illustration of the Concentration Team proposed cleanness-navigated-shadow network (CNSNet) for shadow removal. It in-
volves three key elements: soft-region mask predictor (green box), shadow-oriented adaptive normalization (SOAN) module (orange box),
and shadow-aware aggregation with transformer (SAAT) module (purple box). First, the predictor takes in a shadow image and its corre-
sponding shadow mask to obtain a soft-region mask. Then, both hard and soft masks are concatenated with the input image, entering the
UNet-like network to produce the shadow-free results. Note that the guidance (dotted arrows) of both hard and soft masks is applied in the
region-wise SOAN and pixel-wise SAAT modules, respectively.

ule formulates the statistics from the non-shadow region and
adaptively applies them to the shadow region for region-
wise restoration. The SAAT module utilizes the shadow
mask to precisely guide the restoration of each shadowed
pixel by considering the highly relevant pixels from the
shadow-free regions for global pixel-wise restoration.

4.18. ZJUME251

Unlike the previous ISTD dataset [65], most of the shad-
ows in the challenge dataset are produced by the object it-
self under the influence of illumination rather than the pro-
jection of an external object. Generating shadow mask im-
ages using a fixed threshold segmentation method is chal-
lenging. Therefore, Team ZJUME251 proposes a shadow
mask image generation algorithm with better robustness.
By converting the image to YUV color space, extracting
its Y-channel image, and calculating the difference between
Ishadow-free and Ishadow, they produced more accurate shadow
masks. Inspired by [81], they retrain the shadow detec-
tor network using the masks estimated using the luminance
component if the YUV representation.

Following the design approach of [37], they propose

the Shadow Image Decomposition and Reconstruction Net-
work (SIDRN) as a solution for the single image shadow
removal task. Considering a linear model between the
shadow-free pixels and the pixels in shadow affected re-
gions, a shadow parameter estimator is designed to predict
the (w, b) pair, that can be used to estimate a relit image in a
similar strategy as the one used in [35]. Using the described
linear model, the relit image can be computed as shown in
Equation 9.

 \label {eq:equation1} I_{\text {relit}} = w \cdot I_{\text {shadow}} + b.        (9)

According to well-known image decomposition system
[14], the shadow-free image can be expressed as in Equa-
tion 10.

  I_{\text {shadow-free}} = I_{\text {shadow}} \cdot \left (1-\alpha \right ) + I_{\text {relit}} \cdot \alpha . \label {eq:equation2}           (10)

The relit image, together with the shadow affected image
and the shadow mask are input into the shadow matte pre-
diction network to get the shadow-free image. Finally, con-
sidering non-linear and variable illumination conditions, an
inpainting network is designed to further refine the shadow-
free recovered images.
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4.19. Imsensor

In terms of the overall architecture, the Imsensor pro-
posed two-stage model achieves coarse-grained to fine-
grained optimization of the entire training process through
the design of two UNets [51]. Firstly, they use an adaptive
method to generate a shadow mask of the original image,
that is then used to generate the complementary non shadow
mask. This set of masks is used to guide an attention mecha-
nism performing the information exchange between the two
UNet structures. Finally, the set of learnt feature maps is
pushed through a confrontation network that estimates the
final shadow free recovered image.

5. Conclusion
For the first edition, the NTIRE23 Challenge for Im-

age Shadow Removal enjoyed significant attention from the
computer vision community. A number of 144 teams par-
ticipated in the NTIRE 2023 Image Shadow Removal Chal-
lenge, of which 19 teams were ranked in the final phase.
The described solutions show novelty in proposing new ar-
chitectures, or tailoring well established models to the par-
ticularities of the provided data. Several novel solutions
were proposed by our participants, improving over the ex-
isting state-of-the art.

The final ranking of the teams focuses on the percep-
tual quality of their submitted results, being based on the
resulting MOS of our user study, the LPIPS distance, and
the SSIM score. The reconstruction fidelity is shown by the
PSNR values. We aim at encouraging the research com-
munity into the direction of more efficient solutions, with a
larger deployment potential. The feedback from the chal-
lenge participants provided insightful ideas for the follow-
ing editions of the challenge.

Acknowledgments
This work was partially supported by the Humboldt

Foundation. We thank the NTIRE 2023 workshop and chal-
lenges sponsors: Sony Interactive Entertainment, Meta Re-
ality Labs, ModelScope, ETH Zürich (Computer Vision
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[5] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Fer-
ran Marques, and Jitendra Malik. Multiscale combinatorial
grouping. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 328–335, 2014.
1

[6] Mingdeng Cao, Chong Mou, Fanghua Yu, Xintao Wang,
Yinqiang Zheng, Jian Zhang, Chao Dong, Ying Shan, Gen

1804



Li, Radu Timofte, et al. NTIRE 2023 challenge on 360°
omnidirectional image and video super-resolution: Datasets,
methods and results. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 2023. 2

[7] Hua-En Chang, Chia-Hsuan Hsieh, Hao-Hsiang Yang, I-
Hsiang Chen, Yi-Chung Chen, Yuan-Chun Chiang, Wei-
Ting Huang, Zhi-Kai Chen, and Sy-Yen Kuo. TSRFormer:
Transformer based two-stage refinement for single image
shadow removal. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2023. 8

[8] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. arXiv preprint
arXiv:2204.04676, 2022. 2, 5, 8, 10, 11

[9] Wei-Ting Chen, Kuan-Yu Chen, I-Hsiang Chen, Hao-Yu
Fang, Jian-Jiun Ding, and Sy-Yen Kuo. Missing recov-
ery: Single image reflection removal based on auxiliary prior
learning. IEEE Transactions on Image Processing, 32:643–
656, 2022. 8

[10] Wei-Ting Chen, Zhi-Kai Huang, Cheng-Che Tsai, Hao-
Hsiang Yang, Jian-Jiun Ding, and Sy-Yen Kuo. Learning
multiple adverse weather removal via two-stage knowledge
learning and multi-contrastive regularization: Toward a uni-
fied model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17653–
17662, 2022. 8

[11] Wei-Ting Chen, Hao-Lun Lou, Hao-Yu Fang, I-Hsiang
Chen, Yi-Wen Chen, Jian-Jiun Ding, and Sy-Yen Kuo.
Desmokenet: A two-stage smoke removal pipeline based on
self-attentive feature consensus and multi-level contrastive
regularization. IEEE Transactions on Circuits and Systems
for Video Technology, 32(6):3346–3359, 2021. 8

[12] Xiangyu Chen, Xintao Wang, Jiantao Zhou, and Chao
Dong. Activating more pixels in image super-resolution
transformer. arXiv preprint arXiv:2205.04437, 2022. 8

[13] Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng,
and Pheng-Ann Heng. A multi-task mean teacher for semi-
supervised shadow detection. In CVPR, 2020. 8

[14] Yung-Yu Chuang, Dan B Goldman, Brian Curless, David H
Salesin, and Richard Szeliski. Shadow matting and com-
positing. In ACM SIGGRAPH 2003 Papers, pages 494–500.
2003. 14

[15] Marcos V Conde, Manuel Kolmet, Tim Seizinger, Thomas E.
Bishop, Radu Timofte, et al. Lens-to-lens bokeh effect trans-
formation. NTIRE 2023 challenge report. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2023. 2

[16] Marcos V Conde, Florin Vasluianu, Sabari Nathan, and Radu
Timofte. Real-time under-display cameras image restoration
and hdr on mobile devices. In Computer Vision–ECCV 2022
Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part II, pages 747–762. Springer, 2023. 4

[17] Marcos V. Conde, Florin Vasluianu, Javier Vazquez-Corral,
and Radu Timofte. Perceptual image enhancement for
smartphone real-time applications. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 1848–1858, January 2023. 4

[18] Marcos V Conde, Eduard Zamfir, Radu Timofte, et al. Effi-
cient deep models for real-time 4k image super-resolution.
NTIRE 2023 benchmark and report. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2023. 2

[19] Shuhao Cui, junshi huang, Shuman Tian, Mingyuan Fan, ji-
aqi zhang, Li Zhu, Xiaoming Wei, and Xiaolin Wei. Pyra-
mid ensemble structure for high resolution image shadow
removal. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2023.
5

[20] Yimian Dai, Fabian Gieseke, Stefan Oehmcke, Yiquan Wu,
and Kobus Barnard. Attentional feature fusion, 2020. 6

[21] Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg,
and Joost Van de Weijer. Adaptive color attributes for real-
time visual tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1090–
1097, 2014. 1

[22] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59(2):167–181, 2004. 1

[23] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea,
Victor Villena-Martinez, Pablo Martinez-Gonzalez, and Jose
Garcia-Rodriguez. A survey on deep learning techniques for
image and video semantic segmentation. Applied Soft Com-
puting, 70:41–65, 2018. 1

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 2

[25] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. Advances in neural information processing
systems, 30, 2017. 12

[26] Lanqing Guo, Siyu Huang, Ding Liu, Hao Cheng, and Bihan
Wen. Shadowformer: Global context helps image shadow
removal. arXiv preprint arXiv:2302.01650, 2023. 2, 4, 8,
10, 11

[27] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1

[28] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann
Heng. Mask-ShadowGAN: Learning to remove shadows
from unpaired data. In ICCV, 2019. 2

[29] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 2

[30] Pakorn KaewTraKulPong and Richard Bowden. An im-
proved adaptive background mixture model for real-time
tracking with shadow detection. In Video-based surveillance
systems, pages 135–144. Springer, 2002. 1

[31] Xiaoyang Kang, Xianhui Lin, Kai Zhang, Zheng Hui, Wang-
meng Xiang, Jun-Yan He, Xiaoming Li, Peiran Ren, Xu-
ansong Xie, Radu Timofte, et al. NTIRE 2023 video col-

1805



orization challenge. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 2023. 2

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 8

[33] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Fels-
berg, Luka Cehovin, Gustavo Fernandez, Tomas Vojir, Gus-
tav Hager, Georg Nebehay, and Roman Pflugfelder. The vi-
sual object tracking vot2015 challenge results. In Proceed-
ings of the IEEE international conference on computer vision
workshops, pages 1–23, 2015. 1

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. Commun. ACM, 60(6):84–90, may 2017. 3

[35] Hieu Le and Dimitris Samaras. Shadow removal via shadow
image decomposition. In The IEEE International Conference
on Computer Vision (ICCV), October 2019. 2, 9, 14

[36] Hieu Le and Dimitris Samaras. From shadow segmentation
to shadow removal. In The IEEE European Conference on
Computer Vision (ECCV), August 2020. 2

[37] Hieu Le and Dimitris Samaras. Physics-based shadow im-
age decomposition for shadow removal. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):9088–
9101, 2021. 14

[38] Yawei Li, Yulun Zhang, Luc Van Gool, Radu Timofte, et al.
NTIRE 2023 challenge on efficient super-resolution: Meth-
ods and results. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, 2023. 2

[39] Yawei Li, Yulun Zhang, Luc Van Gool, Radu Timofte, et al.
NTIRE 2023 challenge on image denoising: Methods and re-
sults. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, 2023. 2

[40] Xiaohong Liu, Xiongkuo Min, Wei Sun, Yulun Zhang, Kai
Zhang, Radu Timofte, Guangtao Zhai, Yixuan Gao, Yuqin
Cao, Tengchuan Kou, Yunlong Dong, Ziheng Jia, et al.
NTIRE 2023 quality assessment of video enhancement chal-
lenge. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, 2023. 2

[41] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 8

[42] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 9

[43] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund,
and Thomas B Schön. Image restoration with mean-
reverting stochastic differential equations. arXiv preprint
arXiv:2301.11699, 2023. 5, 7

[44] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund,
and Thomas B Schön. Refusion: Enabling large-size realis-
tic image restoration with latent-space diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops, 2023. 5, 15

[45] Sabari Nathan and Priya Kansal. Skeletonnetv2: A dense
channel attention blocks for skeleton extraction. In 2021

IEEE/CVF International Conference on Computer Vision
Workshops (ICCVW), pages 2142–2149, 2021. 11

[46] Augustus Odena, Vincent Dumoulin, and Chris Olah. De-
convolution and checkerboard artifacts. Distill, 1(10):e3,
2016. 2
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