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Abstract

In this report, we summarize the first NTIRE challenge
on light field (LF) image super-resolution (SR), which aims
at super-resolving LF images under the standard bicubic
degradation with a magnification factor of 4. This challenge
develops a new LF dataset called NTIRE-2023 for valida-
tion and test, and provides a toolbox called BasicLFSR to
facilitate model development. Compared with single im-
age SR, the major challenge of LF image SR lies in how
to exploit complementary angular information from plenty
of views with varying disparities. In total, 148 participants
have registered the challenge, and 11 teams have success-
fully submitted results with PSNR scores higher than the
baseline method LF-InterNet [1]. These newly developed
methods have set new state-of-the-art in LF image SR, e.g.,
the winning method achieves around 1 dB PSNR improve-
ment over the existing state-of-the-art method DistgSSR [2].
We report the solutions proposed by the participants, and
summarize their common trends and useful tricks. We hope
this challenge can stimulate future research and inspire new
ideas in LF image SR.
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1. Introduction

Light field (LF) cameras can capture both intensity and
directions of light rays, and record 3D geometry in a con-
venient and efficient manner. By encoding 3D scene cues
into 4D LF images (i.e., 2D for spatial dimension and 2D
for angular dimension), LF cameras enable many attractive
applications such as post-capture refocusing [3, 4], depth
sensing [5–12], virtual reality [13, 14] and view render-
ing [15–18].

In many applications, high-resolution (HR) LF images
are highly demanded to achieve higher perceptual quality
and benefit downstream applications. However, HR LF im-
ages are generally obtained at an expensive cost due to the
spatial-angular trade-off issue in LF imaging [19]. Conse-
quently, it is highly necessary to reconstruct HR LF images
from their low-resolution (LR) counterparts, i.e., to achieve
LF image super-resolution (SR).

In recent years, remarkable progress has been achieved
in image SR with deep learning techniques. However, most
approaches focus on super-resolving single images [20–25],
stereo images [26–30] or videos [31–34], and cannot be di-
rectly extended to the task of LF image SR. For LF images,
how to effectively incorporate both spatial and angular in-
formation is important but challenging.

To develop and benchmark LF image SR methods, we
host the first LF image SR challenge on the NTIRE 2023
workshop. This challenge employs the widely used and
publicly available LF datasets [35–39] as training set, and
proposes a new LF dataset called NTIRE-2023 for both val-
idation (model development) and test (final ranking). The
popular bicubic degradation is used to generate LR LF im-
ages, and the objective of this challenge is to make the
super-resolved LF images as faithful as the groundtruth HR
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ones. Besides, this challenge provides an open-source and
easy-to-use toolbox named BasicLFSR to facilitate partic-
ipants to quickly get access to LF image SR and develop
their own models. In summary, this challenge aims at es-
tablishing a new benchmark for LF image SR, and aspires
to highlight specific challenges and research problems. We
hope that this challenge can inspire the community to ex-
plore the cross area of low-level vision and 3D vision, and
stimulate future research in LF image processing.

This challenge is one of the NTIRE 2023 Work-
shop series of challenges on: night photography render-
ing [40], HR depth from images of specular and trans-
parent surfaces [41], image denoising [42], video col-
orization [43], shadow removal [44], quality assessment
of video enhancement [45], stereo super-resolution [46],
light field image super-resolution [47], image super-
resolution (×4) [48], 360° omnidirectional image and video
super-resolution [49], lens-to-lens bokeh effect transforma-
tion [50], real-time 4K super-resolution [51], HR nonho-
mogenous dehazing [52], efficient super-resolution [53].

2. Related Work
In this section, we briefly review several major works in

LF image SR. We divide existing LF image SR methods
into traditional non-learning methods, CNN-based methods
and Transformer-based methods. Note that, we only focus
on the plain-lens based methods, and do not discuss those
hybird-lens based LF image SR methods [54–58].

2.1. Traditional Methods

Light field image SR is a long-standing problem and
has been investigated for decades. Bishop et al. [59] pro-
posed a Bayesian deconvolution approach to super-resolve
LF images based on the estimated disparities. Wanner et
al. [60] first estimated disparity maps using structure tensor,
and then developed a variational framework for LF image
SR. Farrugia et al. [61] constructed a patch-volume dictio-
nary of HR-LR LF image pairs, and proposed a multivariate
ridge regression method to learn the linear mapping from
LR patch volumes to their HR counterparts. In [62], Alain
et al. considered the ill-posed LF image SR problem as an
optimization problem based on the sparsity prior. Rossi et
al. [63] combined the inter-view information using graph
regularization, and formulated LF image SR as a quadratic
problem which can be solved efficiently with standard con-
vex optimization.

2.2. CNN-based Methods

In the past decade, convolutional neural networks
(CNNs) have been extensively studied and achieved re-
markable performance in LF image SR. Yoon et al. [64]

https://cvlai.net/ntire/2023/

proposed the first CNN-based LF image SR method (i.e.,
LFCNN). In their method, input LF images were grouped
into pairs or quads, and fed to a three layer CNN to inte-
grate complementary information from adjacent views. As
the pioneering work, LFCNN [64] shows great potential of
CNNs in LF image SR. Afterwards, many deeper CNNs
with various angular information incorporation mechanisms
were developed to achieve improved SR performance.

Wang et al. [65] proposed a bidirectional recurrent CNN
(i.e., LFNet) to incorporate angular information from the
sub-aperture images (SAIs) along the horizontal or vertical
angular direction. Zhang et al. [66] stacked SAIs along four
different angular directions, and developed a four-branch
residual network to implicitly learn the epipolar geometry
from stacked SAIs for LF image SR. In their subsequent
work, Zhang et al. [67] improved the SR performance by
performing 3D convolutions on SAI stacks of different an-
gular directions. Cheng et al. [68] developed a framework
to exploit both internal and external similarities for LF im-
age SR. Meng et al. [69] applied 4D convolutions to simul-
taneously incorporate spatial and angular information from
4D LF data, and developed a high-dimensional dense resid-
ual network (HDDRNet) for LF image SR. Jin et al. [70]
proposed an all-to-one method for LF image SR, and per-
formed structural consistency regularization to preserve the
parallax structure. Wang et al. [71] applied deformable
convolution to LF spatial SR, and designed a collect-and-
distribute scheme to incorporate the complementary infor-
mation among different views. Mo et al. [72] proposed a
dense dual-attention network (DDAN) for LF image SR, in
which a view attention module and a channel attention mod-
ule were designed to adaptively capture discriminative in-
formation from different views and channels, respectively.

Instead of directly processing 4D LF data or image
stacks, some methods disentangled 4D LFs into different
subspace for LF image SR. Yeung et al. [73] alternately
reshaped LF images between SAI pattern and macro-pixel
pattern, and designed spatial-angular separable convolu-
tions for LF image SR. In [1], Wang et al. proposed spa-
tial and angular feature extractors to extract corresponding
information from macro-pixel images (MacPIs), and de-
veloped an LF-InterNet to repetitively interact the spatial
and angular information for LF image SR. In their subse-
quent work, Wang et al. [2] further generalized the inter-
action mechanism into LF disentangling mechanism, and
developed three CNNs (i.e., DistgSSR, DistgASR and Dist-
gDisp) for spatial SR, angular SR and disparity estima-
tion, respectively. Following [1], Liu et al. [74] proposed
an intra-inter view interaction network (LF-IINet) with two
parallel branches to extract global inter-view information
and model the correlations among all intra-view features,
respectively. These two branches are mutually interacted to
fuse angular and spatial information for LF image SR.
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Besides the aforementioned works that design advanced
network structures to pursuit superior SR accuracy, several
works also studied some special yet important issue in LF
image SR. Cheng et al. [75] addressed the domain gap issue
by proposing a “zero-shot” learning framework, in which
the network learns to achieve spatial SR without using ex-
ternal training data except the given input LR LF. Wang et
al. [76] addressed the degradation formulation issue in LF
image SR, and proposed a method to handle LF image SR
with multiple degradation. Xiao et al. [77] proposed a data
augmentation approach tailored for LF image SR, which
can be applied to existing LF image SR networks to further
improve their SR performance

2.3. Transformer-based Methods

Transformer networks, which were originally developed
for natural language processing [78], have recently gained
much attention in computer vision community. Recently,
Transformers have been successfully applied to many low-
level vision tasks such as image restoration [25, 79, 80] and
video SR [81–83], and achieved superior performance than
CNN-based methods.

In the past two years, researchers have explored Trans-
formers for LF image SR. Wang et al. [84] proposed a
detail-preserving Transformer (DPT) for LF image SR, in
which SAIs of each vertical and horizontal views are con-
sidered as a sequence, and the long-range geometric depen-
dency is learned via a spatial-angular locally enhanced self-
attention layer. Liang et al. [85] proposed a simple yet ef-
fective Transformer network (i.e., LFT) for LF image SR. In
their method, an angular Transformer is designed to incor-
porate complementary information among different views,
and a spatial Transformer is developed to capture both lo-
cal and long-range dependencies within each SAI. Guo et
al. [86] develop a raw LF data generation pipeline to uti-
lize the rich information from the raw LF data to enhance
their spatial resolution. They introduced a volume Trans-
former to aggregate information of all views into center
view, and designed a cross-view Transformer to align the
center view feature to all views for non-local information
utilization. Wang et al. [87] proposed a Multi-granularity
Aggregation Transformer (MAT) for LF image SR, in which
the LF feature representation was learned via three de-
signed granularity aggregation units. More recently, Liang
et al. [88] investigated the non-local spatial-angular correla-
tions in LF image SR, and developed a Transformer-based
network called EPIT to achieve state-of-the-art SR perfor-
mance. The proposed EPIT achieves a global receptive field
along the epipolar line, and is robust to disparity variations.

3. NTIRE 2023 Challenge
In this section, we introduce the NTIRE 2023 LF image

SR Challenge. We first introduce the datasets used in this

challenge, and then briefly describe the BasicLFSR toolbox.
Afterwards, we review the two phases of this challenge, and
finally summarize the common trends in the submitted so-
lutions.

3.1. Dataset

Training Set. This challenge follows the existing LF image
SR works [2, 71, 74, 84, 85, 88], and uses the EPFL [35],
HCInew [36], HCIold [37], INRIA [38] and STFgantry [39]
datasets for training. All the 144 LFs in the training set
have an angular resolution of 9 × 9. The participants are
required to use these LF images as HR groundtruth to train
their models. External training data or models pretrained on
other datasets are not allowed in this challenge.
Validation Set. In this challenge, we develop a new LF
dataset (namely, NTIRE-2023) for both validation and test,
as shown in Fig. 1. The validation set contains 16 synthetic
scenes rendered by the 3DS MAX software1 and 16 real-
world images captured by Lytro Illum cameras. For syn-
thetic scenes, all virtual cameras in the camera array have
identical internal parameters and are co-planar with the par-
allel optical axes. All scenes in the validation set have an
angular resolution of 5 × 5. The spatial resolutions of syn-
thetic LFs and real-world LFs are 500×500 and 624×432,
respectively. All the LF images in the validation set are
bicubicly downsampled by a factor of 4, and only the LR
versions are released to the participants. Challenge partic-
ipants are required to apply their developed models to the
LR LF images, and submit the super-resolved LF images to
the CodaLab server for validation.
Test Set. To rank the submitted models, a new test set con-
sisting of 16 synthetic LFs (rendered in the same way as in
the validation set) and 16 real-world LFs (captured by Lytro
Illum cameras) are provided, as shown in Fig. 1. Same as
the validation set, only 4× downsampled LR LF images
with an angular resolution of 5×5 are released to the par-
ticipants.

3.2. The BasicLFSR Toolbox

This challenge provides a PyTorch-based, open-source,
and easy-to-use toolbox named BasicLFSR to facilitate par-
ticipants to quickly get access to LF image SR and develop
their own models. The BasicLFSR toolbox has the follow-
ing three characteristics: (1) It provides a complete pipeline
to develop novel LF image SR methods. (2) It integrates a
number of LF image SR methods, and retrains them on uni-
fied LF datasets. The codes and checkpoints of each model
are publicly available. (3) It provides a fair and comprehen-
sive benchmark for LF image SR. The quantitative results of
each method are listed, and their super-resolved LF images
are available for download.

1https://www.autodesk.eu/products/3ds-max/overview
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Real-World LFs Synthetic LFs Real-World LFs Synthetic LFs

Figure 1. An illustration of the center-view images in the developed NTIRE-2023 LF dataset. Both validation and test sets contain 16
real-world and 16 synthetic LFs, respectively.

3.3. Challenge Phases

Development Phase. The participants can download the
LR validation set and apply their developed models to the
LR LF images to generate their SR versions. A valida-
tion leaderboard is available online, and the participants can
compare their scores with the ones achieved by the baseline
models (provided by the challenge organizers) or models
developed by other participants.
Test phase. The participants are required to apply their
models to the released LR test set, and submit their super-
resolved LF images to the test server. The test server is
available online during this phase, and will be closed after
the test deadline. The participants are asked to submit the
SR results, codes and a fact sheet of their methods before
the given deadlines. After this challenge, the final rank is
released to the participants, and the test server will be re-
open to facilitate the development of novel LF image SR
methods in the future.
Evaluation Metrics. Peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) are used as metrics for per-
formance evaluation. The implementation details of PSNR
and SSIM can be found in the BasicLFSR toolbox. The
submitted results are ranked by the average PSNR values
on the test set (both real-world and synthetic scenes).

3.4. Challenge Results

Among the 148 registered participants, 12 teams have
successfully participated the final test phase and submitted
their results, codes, and factsheets. The top 11 of them pro-
duced PSNR scores higher than the baseline method LF-
InterNet [1]. Table 1 reports the PSNR and SSIM scores
achieved by these methods on both test and validation sets,
together with their major details. We briefly describe these
solutions in Section 4, and introduce the corresponding
team members in Appendix 6.

It can be observed from Table 1 that all these methods
surpass the state-of-the-art method DistgSSR [2], and 9 of

them surpass the recent top-performing method EPIT [88].
Note that, the winner solution proposed by the OpenMeow
achieves around 1 dB improvement in PSNR over Dist-
gSSR [2] on both test and validation sets, which signifi-
cantly push the state-of-the-art of LF image SR to a new
height. Moreover, the accuracy of the top 2 methods are
very close with a minor PSNR difference of 0.02 dB on the
test set. In addition, although the second runner-up solu-
tion proposed by the VIDAR team produces slightly inferior
PSNR results than the winner solution and the runner-up so-
lution, it achieves the highest SSIM score of 0.9323 on the
test set.
Architectures and main ideas. All the proposed methods
are based on deep learning techniques. Transformers are
used as the basic architecture in 6 solutions, while other
models are purely based on CNNs. The idea of LF disen-
tangling [2] was adopted in most solutions, and the recently
developed method EPIT [88] was used as the backbone by
the OpenMeow team (winner) and the BNU-AI-TRY team.
Subspace division. Since an LF has a complex structure
and its spatial and angular information is highly coupled
with varying disparities, it is challenging for deep neural
networks to exploit informative cues from such a high-
dimensional tensor. Consequently, 7 teams adopted the dis-
entangling mechanism in [2] to divide the 4D LFs into four
2D subspaces including spatial subspace (i.e., SAIs), angu-
lar subspace (i.e., macro-pixels), horizontal EPI subspace,
and vertical EPI subspace. Three teams performed feature
extraction and incorporation in spatial and EPI subspaces,
while one team learned LF image SR in spatial and angular
subspaces.
Data Augmentation. The participants commonly per-
formed random flipping and rotation for training data aug-
mentation. In addition, two teams randomly sampled 5× 5
LFs from 9 × 9 LFs to further augment the training set.
However, some advanced data augmentation approaches
such as CutBlur [89] and RGB channel shuffling have not
been adopted in this challenge.
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Table 1. NTIRE 2023 LF Image SR Challenge results, final rankings, and the main characteristics of the solutions. Note that, the average
PSNR value achieved on the test set is used for final ranking. The best results are in red, the second best results are in blue, and the third
best results are in green.

Rank Team
Test Set Validation Set

#Params Architec* Subspace Ensemble
Average Lytro Synthetic Average Lytro Synthetic

1 OpenMeow⋆ 30.66/.9314 30.82/.9475 30.51/.9152 32.71/.9496 33.36/.9562 32.07/.9430 20.34M Hybrid Spa & Ang & EPI Data & Model
2 DMLab⋆ 30.64/.9318 30.92/.9489 30.35/.9146 32.43/.9485 33.24/.9559 31.62/.9410 28.99M CNN Spa & Ang & EPI Data
3 VIDAR⋆ 30.56/.9323 30.67/.9491 30.45/.9154 32.54/.9494 33.24/.9568 31.85/.9419 10.52M Transf Spa & Ang & EPI Data & Model
4 IIR-Lab 30.38/.9285 30.56/.9450 30.20/.9119 32.24/.9465 32.84/.9529 31.64/.9402 2.63M Transf Spa & Ang & EPI -
5 INSIS 30.35/.9287 30.56/.9458 30.15/.9117 32.12/.9455 32.86/.9526 31.39/.9383 5.43M CNN Spa & Ang & EPI Data
6 BNU-AI-TRY 30.13/.9290 29.97/.9453 30.29/.9126 32.29/.9468 32.96/.9539 31.63/.9396 8.83M Transf Spa & EPI Data & Model
7 BIT912 30.11/.9293 30.10/.9465 30.13/.9120 32.05/.9449 32.76/.9528 31.35/.9371 4.08M Transf Spa & Ang & EPI -
8 HawkeyeGroup 30.06/.9285 29.99/.9447 30.13/.9124 32.13/.9463 32.86/.9543 31.40/.9383 3.35M Transf Spa & Ang -
9 SHU-IVIPLab 29.90/.9265 29.78/.9433 30.01/.9096 32.01/.9442 32.69/.9517 31.32/.9366 7.79M CNN Spa & Ang & EPI Data

10 CBNU-MIP-Lab 29.85/.9279 29.64/.9447 30.06/.9111 32.13/.9464 32.70/.9533 31.55/.9395 14.82M CNN Spa & EPI -
11 LFSR-gdut-team 29.83/.9262 29.64/.9422 30.01/.9103 31.83/.9431 32.53/.9508 31.13/.9354 7.28M CNN Spa & EPI -
- EPIT [88] 29.87/.9259 29.72/.9420 30.03/.9097 32.04/.9447 32.54/.9507 31.53/.9387 1.47M Transf Spa & EPI ✗

- LFT [85] 29.77/.9252 29.66/.9420 29.88/.9084 31.75/.9423 32.42/.9501 31.08/.9344 1.16M Transf Spa & Ang ✗

- DistgSSR [2] 29.64/.9244 29.39/.9403 29.88/.9084 31.75/.9424 32.26/.9490 31.23/.9357 3.58M CNN Spa & Ang & EPI ✗

- LF-InterNet [1] 29.45/.9198 29.23/.9369 29.45/.9028 31.33/.9381 32.06/.9468 30.61/.9295 5.48M CNN Spa & Ang ✗

- Bicubic 25.79/.8378 25.11/.8404 26.46/.8352 27.51/.8714 27.49/.8719 27.53/.8710 - ✗ Spa ✗

Note: “Transf” denotes that the model adopts Transformer as a basic component, “CNN” denotes that the model was developed based on convolutions only.
“Hybird” denotes that the model contains sub-models which are developed based on CNNs and Transformers, respectively.

Ensemble Strategy. Both data ensemble (a.k.a. test-time
augmentation) and model ensemble were adopted in sev-
eral solutions to boost the SR performance. For data en-
semble [90], the inputs were flipped and rotated, and the re-
sultant SR images were aligned and averaged for enhanced
prediction. Note that, the INSIS team proposed a shear
ensemble approach tailored with LF image SR for perfor-
mance enhancement. The OpenMeow, VIDAR, and BNU-
AI-TRY teams adopted model ensemble, and averaged the
results produced by multiple models for better results.
Conclusions. By analyzing the settings, the proposed meth-
ods and their results, we can conclude that:

• The proposed solutions significantly improve the state-
of-the-art in LF image SR.

• Transformers are increasingly popular in LF image SR,
but the well-designed CNNs (e.g., the solution pro-
posed by the DMLab team) can also achieve competi-
tive SR performance.

• Most methods exploring multi-dimensional informa-
tion from spatial, angular and EPI subspaces. Spatial
and EPI subspaces are quite important for achieving
competitive SR performance.

• There seems to be a considerable room of further
performance improvement, because ensemble strat-
egy and some advanced data augmentation approaches
have not been widely used.

4. Challenge Teams and Methods
4.1. OpenMeow: DistgEPIT⋆

The OpenMeow team proposed a hybrid network called
DistgEPIT for LF image SR. Readers can refer to [91] for
more details of their method. The proposed DistgEPIT
contains a DistgSSR-based branch [2] and an EPIT-based
branch [88], which can learn the spatial-angular relationship
from the MacPI representation while handling the large dis-
parity issue by adopting the EPI representation. As shown
in Fig. 2, the DistgEPIT network adopts the non-local cas-
cading block (i.e., Basic-Transformer unit in EPIT [88]) to
exploit information from sub-aperture images (SAIs) along
the horizontal and vertical angular directions. The long-
range modeling ability of the non-local cascading block
benefits the learning of pixel-wise correlations from remote
views. After extracting deep features via several non-local
cascading blocks, the OpenMeow team uses several Distg-
Blocks [2] for refinement. The final SR results are gener-
ated by fusing the bicubicly upsampled image, the output
of the EPIT branch, and the output of the DistgSSR branch.

Moreover, this team proposed a position-sensitive post-
processing method to eliminate the margin of LF patches
introduced by the commonly used zero-padding in the LF
divide-and-integrate operation2. Specifically, they adopted
a sliding window approach to crop the chop in an overlap-
ping manner without introducing any padding operations.
In cases where the last row or last column is cropped, the
window backtracks to make up the entire chop.

2Please refer to the BasicLFSR toolbox for the implementation details.
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Figure 2. The OpenMeow Team: The network architecture of the proposed DistgEPIT.

Ensemble Strategy: The OpenMeow team performed
model ensemble by using three different configurations
of DistgEPIT and two different configurations of Dist-
gSSR. Specifically, in the first DistgEPIT model (i.e., Dist-
gEPIT wider), each local correlation module has 128 chan-
nels and includes 4 Distg-Groups (each Distg-Group has
4 Distg-Blocks). The second configuration of DistgEPIT,
called DistgEPIT deeper, has 64 channels but increases the
number of non-local correlation blocks from 5 to 8. More-
over, the number of Distg-Groups in the local correlation
module is increased from 4 to 8. The third configuration
of DistgEPIT, called DistgEPIT Parallel, extracts features
from both local and non-local correlation modules in paral-
lel, and fuses MacPIs at the top level using two cascaded
Distg-Groups (each Distg-Group has two Distg-Blocks).
The two configurations of DistgSSR have 64 and 128 chan-
nels, respectively, and the convolution kernels in the origi-
nal upsampling layer of DistgSSR are modified from 1× 1
to 3 × 3. In total, 12 groups of model parameters were
obtained from different training phases. For data augmen-
tation, horizontal flip, vertical flip, and 90-degree rotation
were used, and the final results were obtained by aligning
and averaging the results of all models and data.

4.2. DMLab: RR-HLFSR⋆

This team presented a residual in residual learning based
hybrid LF image SR network (namely, RR-HLFSR), which
is an enhanced version of their recently published method
HLFSR [92]. The main improvement of RR-HLFSR as
compared to HLFSR is that the local residual learning and
global residual learning are introduced to the basic hybrid

feature extraction, as shown in Fig. 3. Thanks to the resid-
ual learning mechanism, the RR-HLFSR network can be
developed deeper than HLFSR, and achieves considerable
improvements in SR performance.

The proposed RR-HLFSR network contains three types
of 2D feature extractors that work in different sub-spaces
of 4D LFs: Inter-Intra Spatial Feature Extractor (II-SFE),
Inter-Intra Angular Feature Extractor (II-AFE), and Multi-
Orientation Epipolar Feature Extractor (MO-EFE). Specif-
ically, the II-SFE and II-AFE are designed to explore the
correlation among pixels within each SAI and each macro-
pixel, respectively. The MO-EFE is designed to handle mul-
tiple stacks of SAIs with different epipolar geometry orien-
tations to extract abundant sub-pixel information.

Moreover, since diverse information can be extracted
from multiple sub-spaces, how to effectively fuse various
features from different feature extractors is crucial in fur-
ther improving the quality of recovered LF images. This
method designed an attention fusion module (AFM) that
handles fused information from different branches. By us-
ing the simple but effective modules, the SR performance is
enhanced.

4.3. VIDAR: SAVformer⋆

This method is mainly inspired by their published work
LFSSR-SAV [93] and the mile-stone single image restora-
tion method Swin-Transformer [79]. In LFSSR-SAV [93],
the authors proposed a novel spatial-angular correlated con-
volution (SAC-conv) and adopted the spatial-angular sep-
arable convolution (SAS-conv) [73] for efficient LF fea-
ture extraction, and verified that both SAS-conv and SAC-
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Figure 3. The DMLab Team: The network architecture of the proposed RR-HLFSR.

Figure 4. The VIDAR Team: The network architecture of the proposed SAVformer.

conv are complementary at different aspects of 4D LF fea-
ture embedding. However, LFSSR-SAV is a CNN-based
method, and the limited receptive field of convolutions hin-
ders the utilization of the non-local self-similarity infor-
mation, especially the inter-view correspondence. There-
fore, this team introduced the Swin-Transformer to LFSSR-
SAV, and designed the spatial-angular versatile Transformer
network (namely, SAVformer) for LF image SR. Figure 4
shows the architecture of their SAVformer, which contains
Spatial-Former, Angular-Former and EPI-Former.

Loss Function: To better preserve the geometric consis-
tency, this team followed LF-ATO [70] to use the EPI gra-

dient loss Le and the L1 loss for network training, i.e.,

Ltotal = L1 + αLe, (1)

where α denotes the weighting factor which is set to 0.1.
Training Strategies: They trained their network in four
stages: 1) They first trained SAVformer with a batch size
of 4, a patch size of 32 × 32, and loss Ltotal for 16000
epochs (144 iterations per epoch). The learning rate was
initially set to 2 × 10−4 and decreased by a factor of 0.5
for every 5000 epochs. 2) They finetuned SAVformer with
a batch size of 4, a patch size of 48× 48, and loss Ltotal for
5000 epochs (144 iterations per epoch). The learning rate
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Figure 5. The IIR-Lab Team: The network architecture of the proposed SA-Altfromer.

was initially set to 1×10−4 and decreased by a factor of 0.5
for every 1000 epochs. 3) They finetuned SAVformer with
a batch size of 8, a patch size of 32 × 32, and loss Ltotal

for 10 epochs (9039 iterations per epoch). The learning rate
was initially set to 2 × 10−5 and decreased by a factor of
0.5 for every 15 epochs. 4) They finetuned SAVformer with
a batch size of 4, a patch size of 32× 32, and loss L1 for 50
epochs (9039 iterations per epoch). The learning rate was
initially set to 2× 10−5 and decreased by a factor of 0.5 for
every 15 epochs.

4.4. IIR-Lab: SA-Altfromer

Considering the EPIs and MacPIs are the two typical
LF representations that reflect the angular correlations, this
team applies Transformers on these two representations to
exploit the spatial and angular correlations. An overview of
the proposed SA-Altfromer is shown in Fig. 5(a).

The proposed method first cascades several BasicConv
blocks (as shown in Fig. 5(b)) to gradually extract the intra-
view features (i.e., spatial correlations). Then, this method
adopts 6 Altformer modules (see Fig. 5(c)) to alternately
perform multi-head self-attention (MHSA) operations on
EPI and MacPI subspace. In each Altformer, the horizontal
EPI features, vertical EPI features and MacPI features are
sequentially fed into the EPI-H, EPI-V, and MacPI Form-
ers. As shown in Fig. 5(d), the EPI-H, EPI-V, and MacPI
Formers are developed on the Basic Transformer modules.
After the Altformers, the enhanced feature by local connec-
tion is fed into an upsampling block to generate the final
super-resolved results.

4.5. INSIS: SAMSSR

As shown in Fig. 6, this team proposed a spatial-angular
multi-scale spatial SR network (namely, SAMSSR) to cover

the long-range disparity range and explicitly exploit the
sub-pixel correspondence in LF images. Readers can re-
fer to [94] for more details of their method. This team
first designed a Multi-Dimension Interaction Block (MDIB)
consisting of four branches to separately extract the spa-
tial information, angular information, and horizontal and
vertical spatial-angular coupling information. To decou-
ple the spatial-angular information along the epipolar line,
they designed a Spatial-Angular Multi-Scale Process Mod-
ule (MSPB) based on horizontal or vertical EPI structures,
and adopted dilated convolutions to fully incorporate the
long-range disparity information. In addition, to better in-
tegrate the multi-dimension and multi-scale characteristics,
this team adopted the channel attention mechanism at the
end of both MDIB and MSPB to fuse information from dif-
ferent branches.
Refinement with Shear Operation. To ensure that the pro-
posed SAMSSR performs well under large disparities, this
team additionally introduced the LF Shear Attention net-
work [95] as a second-stage model to improve the accuracy
of the final result. Specifically, they first applied the pre-
trained SAMSSR model to the sheared LF images with dif-
ferent disparity values {-1, -0.5, 0, 0.5, 1}, and obtained
a set of SR results which were then sheared back with the
4× disparity values {4, 2, 0, -2, -4} to restore the original
disparity. Afterward, they trained the LF Shear Attention
network [95] to distinguish the relevant information from
different sheared levels, and fused them to generate the fi-
nal SR result.

4.6. BNU-AI-TRY: EPITv2 max

This method is mainly inspired by the recent EPIT
method [88], and aims to improve the capability of the
spatial-angular correlation modeling. Specifically, this team
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Figure 7. The BNU-AI-TRY Team: The network architecture of the proposed EPITv2 max.

increased the channels of feature maps in EPIT (64→128)
and re-designed the non-local cascading block in EPIT
by sequentially cascading the horizontal Basic-Transformer
unit, the vertical Basic-Transformer unit, and the spatial
convolution. An overview of their EPITv2 max is shown
in Fig. 7.
Data Augmentation. During training, this team cropped
each SAI into patches of size 128×128 with a smaller stride
than EPIT (32 v.s. 64) to generate more LF training patches
to alleviate the over-fitting issue.

4.7. BIT912: CSWinLFSR

This team observed that the Transformer-based method
LFT [85] requires a large number of computational re-
sources during LF feature extraction, and thus aimed to
reduce the computation cost of LFT and increase the net-
work layers for stronger modeling capability. Inspired by
the novel CSwin Transformer [96], this team replaced the
global self-attention operation in LFT with the criss-cross
shifted window self-attention in CSwin Transformer, and
proposed CSwinSpa, CSwinAng, and CSwinEPI modules
to extract spatial, angular, and EPI information, respec-

tively. Figure 8 shows the overview of the CSwinLFSR
network, which consists of three stages: shallow feature
extraction, spatial-angular feature learning module, and LF
reconstruction.

4.8. HawkeyeGroup: LF-DET

This team proposed a deep efficient Transformers (i.e.,
LF-DET) for LF image SR.

4.9. SHU-IVIPLab: SA-VSNet

Inspired by LFSSR-SAV [93], this team designed a
spatial-angular separable convolution (SAS-conv) module
and a spatial-angular correlated convolution (SAC-conv)
module for LF image processing. This team further intro-
duced 3D convolutions on neighboring view sequences to
explore the complementary benefits from the joint spatial
context and specific directional views for LF image SR. An
overview of proposed Spatial-Angular View-Sequence Net-
work (SA-VSNet) is illustrated in Fig. 9.

Specifically, this method follows a “coarse-to-fine” strat-
egy to obtain the SR results progressively. In the coarse
stage, this method first extracts the spatial features from
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Figure 9. The SHU-IVIPLab Team: The network architecture of the proposed SA-VSNet.

each view of the input LR LF, which are then fed to 16
SA-VS Conv blocks for joint feature interaction. Each SA-
VS Conv block consists of an SAS-Conv module, an SAC-
Conv module, and a View-Sequence 3D Convolution mod-
ule. The generated features are then processed by a Pix-
elShuffle layer to predict the initial HR LF images which
are supervised by the L1 loss. In the fine stage, this method
adopts four 3D residual blocks to further refine the initial
super-resolved results, and employs a hybrid loss function
consisting of the EPI gradient loss [70] and the L1 loss to
enhance details.

4.10. CBNU-MIP-Lab: EPIS-LFSR

Following the pipeline of LF-InterNet [1], this team re-
arranged the input LF images into MacPI pattern, and care-

fully designed a series of 2D convolutions for MacPIs. An
overview of the proposed network is shown in Fig. 10, and
readers can refer to [97] for more details of their method.
The input LR LF is first processed by a spatial convolu-
tion to extract shallow features. Then, the shallow features
are processed by 8 Extract-Groups (each group consists of 8
cascaded Extract-Blocks) to generate the deep features. The
proposed network is built in a residual-in-residual manner
for better SR performance.

4.11. LFSR-gdut-team: MAFNetSR

This team followed DistgSSR [2] to develop a series of
2D convolutions with channel attention for LF image SR.
This method was trained using the default training setting
in the BasicLFSR toolbox, and achieved better performance
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than most baselines.
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