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Abstract

Recently, using diffusion models for zero-shot image
restoration (IR) has become a new hot paradigm. This type
of method only needs to use the pre-trained off-the-shelf
diffusion models, without any finetuning, and can directly
handle various IR tasks. The upper limit of the restoration
performance depends on the pre-trained diffusion models,
which are in rapid evolution. However, current methods
only discuss how to deal with fixed-size images, but dealing
with images of arbitrary sizes is very important for practi-
cal applications. This paper focuses on how to use those
diffusion-based zero-shot IR methods to deal with any size
while maintaining the excellent characteristics of zero-shot.
A simple way to solve arbitrary size is to divide it into fixed-
size patches and solve each patch independently. But this
may yield significant artifacts since it neither considers the
global semantics of all patches nor the local information of
adjacent patches. Inspired by the Range-Null space Decom-
position, we propose the Mask-Shift Restoration to address
local incoherence and propose the Hierarchical Restoration
to alleviate out-of-domain issues. Our simple, parameter-
free approaches can be used not only for image restoration
but also for image generation of unlimited sizes, with the
potential to be a general tool for diffusion models. Code:
https://github.com/wyhuai/DDNM/tree/main/hq demo.

1. Introduction

Recent progress in diffusion models [27, 29, 10, 25, 8, 2]
has enlightened a lot works in solving Image Restoration
(IR) tasks [34, 4, 28, 13, 12, 17, 26, 6, 7, 5, 24, 22, 35,
18, 37]. These diffusion-based IR methods can be roughly
divided into supervised [24, 22, 35, 14] and zero-shot [34, 4,
28, 13, 12, 26, 17, 6, 7, 5]. Zero-shot methods reveal a new
hot paradigm since they only need to use the pre-trained off-
the-shelf diffusion model, and can directly handle various
IR tasks without any finetuning. In this paper, we focus on
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(a) Input LR image (64×32)

(b) SR result (1024×512) using DDNM, by patch

(c) SR result (1024×512) using DDNM, with MSR & HiR

Figure 1. Example of 16× Super-Resolution (SR) that brings a
64×32 Low-Resolution (LR) image into 1024×512 SR results.
(b) Simply dividing the result into eight 256×256 patches and us-
ing DDNM [34] to solve them independently will get poor results,
because it neither considers the global semantics nor the bound-
ary information of adjacent patches. (c) We propose Mask-Shift
Restoration (MSR) to solve the boundary artifacts and Hierarchi-
cal Restoration (HiR) to address the lack of global semantics.
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zero-shot methods [34, 4, 28, 13, 12, 26, 17, 6, 7, 5] which
are concise, flexible, and in rapid progress.

Existing diffusion-based IR methods mainly focus on IR
problems with fixed output sizes. But in real-world appli-
cations, the desired output size may be arbitrary, depend-
ing on the user’s demands. There are two main difficulties
in applying these zero-shot IR methods to arbitrary output
size: (1) The used diffusion models are usually pre-trained
on fixed-size images, thus facing out-of-domain (OOD) is-
sues when extending to arbitrary sizes; (2) The default net-
work structure may not support arbitrary output size. The
OOD issue can be solved by training the diffusion models
with random cropped images. But the network structure
constraint is hard to address. A common practice to bypass
this constraint is to divide the input image into fixed-size
patches and use the network to process each patch indepen-
dently, then, concatenate the result patches as the final re-
sult, as shown in the middle of Fig. 1. However, this may
lead to evident block artifacts and unreasonable restora-
tion, because it neither considers the global semantics of
all patches nor the local information of adjacent patches.

We observe that the neighboring correlation is well con-
sidered in inpainting tasks in DDNM [34], which inspired
us to leave overlapped regions when dividing patches, then
take the overlapped region as extra mask constraints when
solving the following patches. We name this method Mask-
Shift Restoration (MSR), which assures the coherence be-
tween patches and effectively eliminates boundary artifacts.

To further alleviate the OOD problem, we propose to first
restore the result at a small size, then use the small result as
a global prior for the final result. We name this method
Hierarchical Restoration (HiR). Note that both MSR and
HiR perfectly fit the zero-shot properties, and can be flexi-
bly combined. The bottom of Fig. 1 shows the result using
both MSR and HiR based on DDNM. From the perspective
of Range-Null space Decomposition (RND), MSR and HiR
are essentially adding extra linear constraints to the given
inverse problem. This property makes it perfectly suitable
for DDNM, which is exactly built on the principle of RND.

Our contribution includes:
1. We propose Mask-Shift Restoration (MSR), a simple

but effective method to eliminate boundary artifacts
when processing a large image in patches.

2. We propose Hierarchical Restoration (HiR) to allevi-
ate the out-of-domain problem and the lack of global
semantics when processing a large image in patches.

3. We provide typical pipelines for using MSR and HiR
for diverse applications, including but not limited to
image generation, super-resolution, colorization, in-
painting, and denoising. It is worth noting that our pro-
posed methods are parameter-free and training-free,
and can be applied to diverse diffusion models and
zero-shot restoration methods.

2. Preliminaries
2.1. Diffusion Models

Diffusion models have diverse interpretations [29, 25, 2,
16, 15], but in this paper, we put aside the mathematical
meaning and introduce the diffusion model in the most con-
cise and general way. Diffusion models [27, 29, 10, 25, 8, 2]
define a T -step forward process and a T -step reverse pro-
cess. The forward process adds random noise to data, while
the reverse process constructs desired data samples from the
noise. Specifically, the forward process yields a noisy im-
age xt from a clean image x0:

xt = atx0 + σtϵ, ϵ ∼ N (0, I) (1)

where t ∼ {0, ..., T}, at and σt are predefined scale factors,
N represents the Gaussian distribution.

The core of the reverse process is estimating the clean
image x0 from the noisy image xt:

x0|t =
1

at
(xt − σtϵt) (2)

which is a reverse of Eq. 1, with ϵt denotes the estimation
of noise ϵ and x0|t represents the estimation of x0 at time
step t. Typically, a denoiser Zθ is used to yield ϵt:

ϵt = Zθ(xt, t) (3)

Then we can use Eq. 1 to generate the previous state xt−1,
with x0|t as the estimation of x0:

xt−1 = at−1x0|t + σt−1ϵ, ϵ ∼ N (0, I) (4)

With the above formulations, one can generate a clean
image x0 from a random noise xT∼N (0, I) by iterating
Eq. 2 and Eq. 4 while deceasing t from T to 0.

Such a reverse process is the simplest form. Further, for
Eq. 4, we can interpolate the newly added noise ϵ with the
estimated previous noise ϵt under the premise of invariant
total variance:

xt−1 = at−1x0|t+σt−1(ηtϵ+
√
1− η2t ϵt), ϵ ∼ N (0, I)

(5)
where ηt is an interpolation factor that controls the ratio of
the newly introduced noise ϵ. Note that Eq. 5 describes a
general form of reverse sampling methods. The critical dif-
ference between different sampling methods is the setting
of ηt. For DDIM [25], ηt is a time-independent scalar; For
DDPM [10] and Analytic-DPM [2], ηt is a time-dependent
function.

To train the denoiser Zθ, one can randomly pick a clean
image x0 from the dataset and pick a random time-step t
to yield a noisy image xt using Eq. 1. Then, update the
network parameters θ with the following gradient descent
step [10], and repeat the whole process until converged.

∇θ||ϵ−Zθ(xt, t)||22. (6)
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2.2. Denoising Diffusion Null-space Model (DDNM)

Recent progress shows that pre-trained diffusion models
can be used to solve linear inverse problems in a zero-shot
manner [34, 17, 4, 28, 12], without extra training or opti-
mization. DDNM [34] explains the nature of such methods.

DDNM starts with noise-free linear image inverse prob-
lems. Given a degraded image y = Ax where A is a linear
operator and x is the original image, image restoration aims
at yielding a result x̂ that satisfies two constraints:

Consistency : Ax̂ ≡ y, Realness : x̂ ∼ q(x),
(7)

where q(x) denotes the distribution of the GT images.
Such a problem has a general solution that analytically

satisfies the Consistency constraint:

x̂ = A†y + (I−A†A)xr. (8)

where A† is the pseudo-inverse of A (satisfies AA†A ≡
A), and xr is the unknown null-space variable to be solved.
Note that Eq. 8 originates from the Range-Null space De-
composition [34, 32, 3]. Another interpretation is that A†y
can be seen as a special solution of Ax = y since AA†y ≡
AA†Ax ≡ Ax ≡ y; and (I − A†A)xr can be seen as
a general solution of Ax = 0 since A(I − A†A)xr ≡
(A−A)xr ≡ 0 holds whatever xr is.

To conclude, Eq. 8 defined a solution that analytically
satisfies the Consistency constraint but needs to find proper
null-space variable xr to meet the Realness constraint. As
we will get to later, the methods proposed in this paper
heavily rely on the use of Eq. 8.

In DDNM [34], the critical step using diffusion models
for inverse problems is taking each estimation x0|t as the
null-space variable xr in Eq. 8:

x̂0|t = A†y + (I−A†A)x0|t. (9)

then use this consistent result x̂0|t for subsequent sampling:

xt−1 = at−1x̂0|t+σt−1(ηtϵ+
√
1− η2t ϵt), ϵ ∼ N (0, I)

(10)
Algo. 1 shows the whole process of DDNM. See Appendix
for DDNM with noisy situations.

Algorithm 1 Sampling process of DDNM
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: ϵt = Zθ(xt, t)
4: x0|t =

1
at

(xt − σtϵt)

5: x̂0|t = A†y + (I−A†A)x0|t

6: xt−1 = at−1x̂0|t + σt−1(ηtϵ+
√

1− η2t ϵt), ϵ ∼ N (0, I)

7: return x0

(b) OOD problem on generation

(d) OOD problem on super-resolution

(a)

(c) 

Figure 2. Out-Of-Domain (OOD) problem. (a) 256×256 images
generated by diffusion model trained on aligned 256×256 CelebA
dataset. (b) 512×512 images generated by the same diffusion
model. We can see that the model can not generate bigger faces
even enforce to generate a 512×512 image. (c) Applying the same
diffusion model to DDNM [34] for 16× SR task yields good re-
sults of size 256×256. (d) Applying the same diffusion model to
DDNM for 16× SR task yields terrible results of size 512×512.
This is caused by the OOD problem.

Algorithm 2 Mask-Shift Restoration, based on DDNM
Additional Requirement: The already restored region ẋ0 and the corre-
sponding mask Am.
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: ϵt = Zθ(xt, t)
4: x0|t =

1
at

(xt − σtϵt)

5: x̂0|t = A†y + (I−A†A)x0|t
6: x̄0|t = Amẋ0 + (I−Am)x̂0|t

7: xt−1 = at−1x̄0|t + σt−1(ηtϵ+
√

1− η2t ϵt), ϵ ∼ N (0, I)

8: return x0

Algorithm 3 Hierarchical Restoration, based on DDNM
Additional Requirement: The low-resolution result ẍ0 and the corre-
sponding downsampler Asr and its pseudo-inverse A†

sr. The already re-
stored region ẋ0 and the corresponding mask Am.
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: ϵt = Zθ(xt, t)
4: x0|t =

1
at

(xt − σtϵt)

5: x̃0|t = A†
srẍ0 + (I−A†

srAsr)x0|t
6: x̂0|t = A†y + (I−A†A)x̃0|t
7: x̄0|t = Amẋ0 + (I−Am)x̂0|t

8: xt−1 = at−1x̄0|t + σt−1(ηtϵ+
√

1− η2t ϵt), ϵ ∼ N (0, I)

9: return x0
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Step 2Step 1 (c) Updated result (e) Final result (a) Input LR image

DDNM DDNM

Figure 3. Example of Mask-Shift Restoration for 4× SR. Given an input LR image (a) with a non-square size, we first use DDNM to SR
the first square patch and update the result (Step 1). Then, we shift the patch right, leaving some overlapped regions with the previous
patch. Since the overlapped region is already restored, we set them as fixed and only solve the rest region (Step 2). To this end, we need an
extra inpainting (mask) constraint, which is perfectly suitable for zero-shot methods like DDNM to handle. Zoom in for the best view

3. Method
We have introduced the basic principles of the diffusion

model and DDNM. We can see that the limitation of the
image processing size lies in the denoiser. Usually, the de-
noiser is pre-trained on fixed-size images. How do we use
such pre-trained denoisers for unlimited-size image restora-
tion? In the following part, we propose two methods to
achieve this goal, both inherit the zero-shot property.

3.1. Process as a Whole Image

Typical diffusion models [27, 29, 10, 25, 8, 2] use U-Net
structures [21] as the denoiser backbone. Theoretically, U-
Net is a convolutional network and thus supports scalable
input size.

Hence a simple solution is to directly change the model
processing size. A similar approach has been widely
adopted by Stable Diffusion [20] for flexible generated size.
Despite supporting flexible input size, the denoiser trained
on fixed image size may face Out-Of-Domain (OOD) prob-
lem when applied to other image sizes. As shown in Fig. 2,
a diffusion model trained on CelebA 256×256 fails to gen-
erate desired 512×512 face images. One way to solve the
OOD issue is to train the 256×256 denoiser with a ran-
dom cropped dataset, rather than an aligned one. Interest-
ingly, ImageNet and LAION-5B happen to be non-aligned
datasets, and hence suffer relatively minor OOD issues.

3.2. Process as Patches

Directly changing the model processing size may work,
but it still has the following limitations: (1) It may yield bad
results when facing OOD problems, as shown in Fig. 2(b).
(2) It still has limitations on image size, e.g., divisible by 32;
(3) Large sizes, e.g., 1024×1024, may cause unaffordable
memory consumption; (4) The classifier guidance [8] can
not be applied since it is usually designed for fixed input
sizes; (5) Other potential network backbones [19] may not
support flexible processing size.

How to use diffusion models with fixed processing sizes
to solve arbitrary image sizes? A simple solution is dividing
the input image y into patches, solving each patch indepen-

dently, then concatenating the results. But this may cause
evident boundary artifacts, as shown in the middle of Fig. 1.
This is because each patch is solved independently and their
connection is not considered.

3.3. Mask-Shift Restoration

Among the many image restoration tasks, inpainting is
the typical one that considers the connection between the
masked and unmasked region. Zero-shot methods like
DDNM [34] and RePaint [17] show good performance in
solving inpainting.

Our insight is that we can leave overlapped regions when
dividing patches, then take these overlapped regions as an
extra constraint when solving the following patches. The
neat thing is that this constraint can be integrated into ex-
isting zero-shot methods [34, 4, 28, 13, 12, 26, 17, 6, 7, 5],
with just one extra line of code!

Let’s take a 4×SR task for example, as shown in Fig. 3.
Given an input image yfull with size 64×96, our aim is
to get an SR result with size 256×384. Here we set the
degradation operator A as the average-pooling downsam-
pler, and its pseudo-inverse A† as the replication upsampler
[32]. Fig. 3(a) shows the result of A†yfull. We first di-
vide A†yfull into two square patches A†ẏ and A†y of size
256×256. Note that A†ẏ and A†y has an overlap of size
256×128.

We first use default DDNM to process A†ẏ and get the
SR result ẋ0 (Step 1 in Fig. 3). Note that A†ẏ and A†y
has an overlap of size 256×128, and this overlapped re-
gion is already restored in ẋ0. So when we use DDNM
to solve A†y, we can take the restored overlapped region
as a known part in an inpainting setting (Step 2 in Fig. 3).
Specifically, we insert an extra inpainting constraint behind
Eq. 9 in DDNM:

x̄0|t = Amẋ0 + (I−Am)x̂0|t. (11)

where Am denotes the mask operator for overlapped region
between A†ẏ and A†y. The whole algorithm is summa-
rized in Algo. 2, named as Mask-Shift Restoration (MSR).

As we can see from Fig. 3(c), the final result concate-
nated by the results of Step 1 and Step 2 does not show
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(a) Input image (512×768) (b) DDNM, by patch (c) DDNM, with MSR (d) DDNM, with MSR & HiR

Figure 4. Comparison on large scale inpainting. (b) and (c) yields unreasonable results since the patch is too small to capture global
semantic information. In contrast, (c) yields a decent result due to the use of Hierarchical Restoration (HiR). Zoom in for the best view.

DDNM
...DDNM DDNM

(a) Phase 1 of HiR

(b) Phase 2 of HiR

Result (256×384)

Result (512×768)

DDNM

Figure 5. Example of Hierarchical Restoration for Inpainting. (a) We first do a 2× downsampling for Fig. 4(a) and use MSR to restore a
small result. (b) Then we use this small result as extra low-frequency guidance, and use MSR at the original size to yield the final result.

boundary artifacts. Similarly, we can iteratively use MSR
to generate an unlimited-size image without boundary arti-
facts. Note that the overlapped region and the shifted di-
rection can be arbitrary, and the supported task is also not
limited to SR, but to all linear inverse problems.

3.4. Hierarchical Restoration

Though MSR assures local coherence, it owns a small
receptive field when dealing with a large image. This may
lead to a lack of grasp of global information, resulting in
poor semantic information recovery. In Fig. 4(a) we show a
masked image of size 512×768, where any 256×256 patch
can not cover the whole semantic subject. Fig. 4(b) shows
the result using MSR based on DDNM. Though with good
local coherence, it yields unreasonable semantic structures.

To extend the receptive field for better semantic restora-
tion, we propose Hierarchical Restoration (HiR). HiR con-
sists of two phases: a semantic restoration phase and a tex-
ture restoration phase.

Take Fig. 4(a) for example. For the semantic restora-
tion phase, we first undergo a 2× downsample to convert
the 512×768 input into a 256×384 one, where a 256×256

patch can cover the whole semantic subject. Then we use
MSR based on DDNM to get a 256×384 inpainting result
ẍ0, as shown in Fig. 5(a). This result is semantically rea-
sonable and can be used as a low-frequency reference. For
the texture restoration phase (Fig. 5(b)), we add an extra
low-frequency constraint before Eq. 9:

x̃0|t = A†
srẍ0 + (I−A†

srAsr)x0|t. (12)

where Asr and A†
sr represent the average-pooling down-

sampler and its pseudo-inverse upsampler [32], respec-
tively. Algo. 3 shows the whole algorithm of the second
phase of HiR.

As we can see from Fig. 4(d), the use of HiR significantly
improves semantic correctness. Note that the HiR is not
limited to inpainting tasks, but is also useful for large-scale
SR (Fig. 1(c)) and colorization (Fig. 7), etc.

3.5. Flexible Pipeline for Applications

Mask-Shift Restoration (MSR) can be seen as a general
patch connection technology, and Hierarchical Restoration
(HiR) can be seen as a general method to improve restora-
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tion quality. The essence of both MSR and HiR is to de-
termine part of the information via prior knowledge to nar-
row the solution space. In this paper, we implement MSR
and HiR via the Range-Null space Decomposition, which
is concise, effective, and mathematically elegant. Besides,
there remain other possible ways to implement MSR and
HiR, e.g., adding extra loss into optimization-based meth-
ods such as DPS. Hence the proposed MSR and HiR can be
also used for other diffusion-based zero-shot IR methods,
e.g., ILVR[4], RePaint[17], and DPS[5].

4. Experiment

In this section, we describe the configuration of the
experiment in detail. All experiments use the denoiser
pre-trained on ImageNet 256×256, provided by guided-
diffusion [8]. We use the classifier guidance [8] for sam-
pling. Besides, the time-travel sampling [34, 17] is also
used to improve the generative quality.

Given a desired result size, we divide it into patches from
left to right, top to bottom. Each patch has a size 256×256
and has overlaps of 128 pixels with its neighbor patch, ex-
cept for the boundary case. We solve the first patch using
the original DDNM and solve the following patches in se-
quence (left to right, top to bottom) using MSR based on
DDNM. Fig. 3 shows the results on 4× SR, with T = 100,
time-travel length [34] l = 10, repeat times r = 3. In
Fig. 6, we present qualitative comparisons between BSR-
GAN [36] and MSR-based DDNM. We experiment on 4×
SR and noisy 4× SR of different sizes, where MSR-based
DDNM uses T = 250, l = 10, and r = 3. For Fig. 1(c),
Fig. 4(d), and Fig. 7 we use HiR based on DDNM.

5. Related Work

Range-Null space Decomposition (RND) [30] is a con-
cept in linear algebra. When applied to linear inverse prob-
lems, RND explicitly defines the upper limit of recoverable
information. Chen et al. [3] introduce RND into image
inverse problems, and propose learning the range and null
space respectively. Wang et al. [32] propose using GAN
Prior to learn the Null-space and propose using average-
pooling and its pseudo-inverse as a general tool for SR
tasks. In DDNM [34], the authors propose using diffusion
sampling to learn the Null-space and propose several prac-
tical operators for diverse applications.

Diffusion-based Zero-Shot Image Restoration Meth-
ods can be roughly divided into RND-based [34, 4, 28, 13,
12, 26, 17] and optimization-based [6, 7, 5]. The essence
of these two branches lies in modifying only the sampling
process while keeping the network unchanged. Specifically,
they modify the intermediate image x0|t or its noisy version
xt. For a given input and a certain degradation operator,
RND-based methods use RND to explicitly assure the data

LR (256×64)

LR (141×99)

LR (256×96) DDNM, with MSR (1024×384)BSRGAN (1024×384)

BSRGAN (1024×256)

BSRGAN (564×396)

DDNM, with MSR (1024×256)

DDNM, with MSR (564×396)

Figure 6. Experiment on noisy 4× SR. Compared with BSRGAN
[36], a supervised IR method, we can see that our method performs
better in both realness and consistency. Due to the use of RND
[34, 32, 3], our method can faithfully inherit the correct color and
structure information in LR, while BSRGAN [36] fails (see the
results of butterfly). Zoom in for the best view

(b) DDNM, with HiR (1268×1024) (a) Input image (1268×1024) 

Figure 7. Colorization using HiR. Zoom in for the best view

consistency of x0|t or xt, while optimization-based meth-
ods optimize x0|t or xt toward the data consistency. Gen-
erally speaking, the RND-based methods perform better in
linear inverse problems but can not solve non-linear prob-
lems. The optimization-based methods cost more on mem-
ory and inference time but can support any differentiable
operator, even as a complex network [1].

6. Limitations & Discussions

Zero-shot IR methods [34, 4, 28, 13, 12, 26, 17, 6, 7, 5]
using diffusion models certainly open up a promising new
direction for IR problems. The method proposed in this
paper further enables those methods to support unlimited
image size. However, there remain some limitations to be
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solved. Firstly, the calculation and time consumption are
significantly more than those prevailing supervised meth-
ods. Secondly, the ceiling of performance depends on the
pre-trained diffusion models. It may yield more interest-
ing applications if applying our method to models like Ima-
gen [23], but they are not open-sourced yet. On the other
hand, wildly used models like Stable Diffusion [20] are
based on latent space, which makes it difficult to apply zero-
shot methods. Thirdly, the degradation operator is explicitly
needed, which makes it difficult for tasks like rain and haze
removal.

Another interesting observation is that MSR can be seen
as a general image connection method, where we can use
different models to restore special crops, e.g., use face
restoration models [9, 31, 32, 33, 11] for face crops, then
fuse them with the background using MSR to avoid bound-
ary artifacts.
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