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Abstract

Efficient and lightweight single-image super-resolution
(SISR) has achieved remarkable performance in recent
years. One effective approach is the use of large kernel de-
signs, which have been shown to improve the performance
of SISR models while reducing their computational require-
ments. However, current state-of-the-art (SOTA) models
still face problems such as high computational costs. To
address these issues, we propose the Large Kernel Distil-
lation Network (LKDN) in this paper. Our approach sim-
plifies the model structure and introduces more efficient at-
tention modules to reduce computational costs while also
improving performance. Specifically, we employ the re-
parameterization technique to enhance model performance
without adding extra cost. We also introduce a new op-
timizer from other tasks to SISR, which improves training
speed and performance. Our experimental results demon-
strate that LKDN outperforms existing lightweight SR meth-
ods and achieves SOTA performance.

1. Introduction
Single image super-resolution (SISR) is an essential

problem in low-level computer vision (CV) that involves
reconstructing a high-resolution (HR) image from its low-
resolution (LR) counterpart. After the introduction of deep
learning to super-resolution by SRCNN [9], there has been a
significant surge in the development of deep-learning-based
SR models. Due to their impressive ability to reconstruct
high-resolution images from low-resolution observations,
these algorithms have gained popularity in the CV commu-
nity. Although deeper and larger models are often consid-
ered the optimal approach for designing SR models with
strong representation ability [31,57], there is a growing em-
phasis on developing lightweight models that can approxi-
mate the performance of larger models with greatly reduced
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parameters and less computational complexity.
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Figure 1. Comparison of model performance and complexity on
Urban100 [18] with SR(×4).

Among the numerous design approaches for lightweight
super-resolution models, information distillation connec-
tions [19] have been identified as a highly effective method.
This approach fuses features of varying hierarchies to facil-
itate the transmission of more distinctive features into the
network, resulting in efficient feature reuse and achieving a
better balance between reconstruction accuracy and compu-
tational efficiency.

RFDN [32] reevaluated the information multi-distillation
network [19] and introduced multi-feature distillation con-
nections that are highly adaptable and lightweight, and
it won the champion of AIM 2020 Efficient SR Chal-
lenge [54]. Meanwhile, BSRN [30] achieved the first place
in the model complexity track in NTIRE 2022 Efficient
SR Challenge [28] by incorporating residual feature dis-
tillation connections with effective attention modules and
re-parameterizing the redundant convolution of RFDN by
using blueprint separable convolution [14] (BSConv). Be-
sides, RFLN [25] emerged as the champion of the runtime
track by improving the efficiency of RFDN through the use
of residual local feature blocks that reduce network frag-
ments while maintaining model capacity. The newly pro-
posed VAPSR [60] is designed with a concise structure and
fewer parameters while achieving SOTA performance. By
enhancing the pixel attention mechanism [59], incorporat-
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ing large kernel convolutions, and implementing efficient
depth-wise separable large kernel convolutions. Addition-
ally, VAPSR achieves comparable performance to RFDN
while utilizing only 28.18% of its parameters and outper-
forms BSRN.

Although BSRN has made great progress in terms of
model parameter and computation, excessive residual con-
nections and complex attention modules (i.e. contrast-
aware attention [19] (CCA) and enhanced spatial atten-
tion [32] (ESA)) have led to low model computation effi-
ciency. As analyzed in RLFN, the complex ESA module is
redundant and it is difficult to quantitatively analyze which
parts are truly useful. While VAPSR achieves better perfor-
mance than BSRN, the model’s running speed is slower due
to the presence of a large number of inefficient element-
wise multiplications. By removing redundant modules in
the network and introducing more efficient ones, we can
build a more efficient SR network.

In this paper, we propose a novel lightweight SR net-
work, named large kernel distillation network (LKDN),
which builds upon the baseline model of BSRN. Our
approach simplifies the model structure and employs a
more efficient attention module, called large kernel atten-
tion (LKA), to improve model performance and compu-
tational costs. We demonstrate the effectiveness of LKA
in lightweight SR tasks. Additionally, we leverage the re-
parameterization technique to further enhance the perfor-
mance without adding any additional computational cost.
To achieve faster convergence and state-of-the-art (SOTA)
performance, we incorporate the recently proposed Adan
optimizer [52], which has shown success in various tasks
such as high-level CV, natural language processing (NLP),
and reinforcement learning. Our proposed LKDN achieves
SOTA performance among existing efficiency-oriented SR
networks, as shown in Figure 1. The main contributions of
this article are:
(1) After analyzing the computational efficiency of
BSRN [30] and VAPSR [60], We achieved better per-
formance while reducing the number of parameters and
computational consumption through simplifying the model
structure and introducing a more efficient attention module.
(2) We used the technique of re-parameterization to improve
the model performance without introducing any additional
inference burden.
(3) We introduced a new optimizer that can simultaneously
boost the training speed and performance of SISR models.

2. Related Work

2.1. Efficient SR Models

The development of lightweight super-resolution net-
works has received increasing attention in recent years
due to their practical applications in resource-constrained

scenarios such as mobile devices and embedded systems.
Many lightweight SR models have been proposed to re-
duce the computational cost and memory footprint while
maintaining the model capacity and achieving satisfactory
performance. The common strategies for lightweight SR
networks include network pruning [15, 36, 58], parame-
ter sharing [23, 45], knowledge distillation [12, 16, 56],
depth-wise separable convolutions [2, 30, 41, 43], attention
mechanisms [13, 19, 32, 59, 60], efficient upsampling meth-
ods [26,40,47,59] and re-parameterization technique [3,55].
In addition to the aforementioned techniques, in terms of
network structure design, information distillation connec-
tions [19, 25, 30, 32] has also been demonstrated as an ef-
fective approach to building lightweight SR network archi-
tectures. We thus maintain the network topology design of
information distillation while enhancing the attention mech-
anism and implementing re-parameterization in LKDN.

2.2. Large Kernel Design

Since the introduction of VGG [42], small convolution
kernels such as 3 × 3 have been widely used due to their
high efficiency and lightweight nature. Transformer [49],
as a model that achieves a larger receptive field through
global self-attention operation, has achieved excellent per-
formance in NLP. In addition, both global [11] and lo-
cal [34] vision-Transformers have demonstrated impressive
performance in the field of CV. This characteristic has in-
spired researchers to design better convolutional neural net-
works (CNNs) by utilizing larger convolution kernels. For
example, ConvNeXt [35] uses large convolution kernels to
obtain a larger receptive field and achieve comparable per-
formance to Swin-Transformer. RepLKNet [7] scales up
kernels to 31 × 31 using depth-wise convolution and re-
parameterization, achieving comparable or superior results
to Swin-Transformer on various tasks. VAN [13] explores
the effective application of attention mechanisms in CV
and proposes a new large kernel attention (LKA) module.
SLaK [33] proposes a recipe for applying extremely large
kernels from the perspective of sparsity, allowing for the
smooth scaling up of kernels to 61× 61 with improved per-
formance. Drawing inspiration from such designs, we de-
veloped a large kernel distillation block (LKDB) with large
kernel attention (LKA) to further improve the representa-
tion ability of LKDN.

2.3. Re-parameterization

Re-parameterization is a piratical technique for design-
ing lightweight models that can improve performance with-
out increasing the inference burden. ACNet [5] em-
ploys asymmetric convolution to strengthen kernel struc-
tures, yielding better results than normal convolution.
RepVGG [8] decomposes a standard 3 × 3 convolution
into a multi-branch topology comprising identity mapping,
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Figure 2. The architecture of large kernel distillation network (LKDN).
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Figure 3. The details of each component. (a) LKDB: Large Kernel Distillation Block; (b) BSConv: Blueprint Separable Convolution; (c)
LKA: Large Kernel Attention; (d) RBSB: Re-parameterized Blueprint Shallow Block.

1 × 1 convolution, and 3 × 3 convolution, enabling tra-
ditional VGG-style CNNs to achieve similar performance
and faster inference speed than SOTA on several high-
level vision tasks. Diverse Branch Block [6] combines di-
verse branches of varying scales and complexities to en-
rich the feature space, constructing a convolutional network
unit resembling Inception [44]. MobileOne [48] leverages
the re-parameterization technique to enhance the model’s
accuracy and speed, eventually achieving SOTA perfor-
mance within effective architectures while being many
times faster on mobile devices. As a result. we employed
re-parameterization techniques to optimize the feature ex-
traction block in LKDN.

2.4. Adan Optimizer

The Adam optimizer [24] is widely utilized in various
deep learning domains. By utilizing first and second or-
der gradient moment estimation, it dynamically adjusts the
learning rate of each parameter to achieve faster conver-
gence than stochastic gradient descent (SGD). However,
Adam can also suffer from non-convergence [39] and lo-
cal optima [21, 51]. Recently, Adan optimizer [52] com-

bines modified Nesterov impulse, adaptive optimization,
and decoupling weight attenuation. Adan uses extrapola-
tion points to perceive gradient information beforehand, al-
lowing for efficient escape from sharp local minima and in-
creasing model generalization. Based on extensive exper-
iments, it has been shown that the Adan optimizer outper-
forms existing SOTA optimizers for both CNNs and Trans-
formers. Therefore, we aim to apply the Adan algorithm to
lightweight super-resolution tasks.

3. Method
3.1. Network Architecture

Our approach follows the same framework design as
BSRN [30], as depicted in Figure 2. It comprises four com-
ponents: shallow feature extraction, multiple stacked fea-
ture distillation blocks, multi-layer feature fusion, and im-
age reconstruction block.

Compared to traditional super-resolution models, our ap-
proach involves replicating the input image n times during
the pre-processing stage, followed by a concatenation of the
replicated images. Given the input ILR, this procedure can
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be expressed as:

InLR = Concat(InLR), (1)

where Concat(·) denotes the concatenation operation along
the channel dimension, and n is the number of replicated in-
put image ILR. Then the initial feature extraction is imple-
mented by a 3×3 BSConv to generate shallow features from
the input LR image as: F0 = hext(I

n
LR), where hext(·) de-

notes the module of shallow feature extraction, and F0 de-
notes shallow feature. The structure of BSconv is shown in
Figure 3(b), which consists of a 1 × 1 convolution and a
depth-wise convolution.

The next part of LKDN is to extract deep features
through a stack of LKDBs, which can be formulated as:

Fk = Hm
LKDB(. . . H

1
LKDB(F0) . . . ), 1 ≤ k ≤ m, (2)

where Hk
LKDB(·) denotes the kth LKDB, m is the number

of used LKDBs, and Fk represents the output feature of the
kth LKDB.

After gradually refining by the LKDBs, all the interme-
diate features are fused and activated by a 1×1 convolution
layer and a GELU [17] activation. A 3 × 3 BSConv layer
is used to smooth the fused features. The process of multi-
layer feature fusion can be formulated as:

Ffusion = Hfusion(Concat(F1, . . . , Fk)), (3)

where Hfusion(·) denotes the feature fusion module, and
Ffusion is the fused features.

Finally, a skip connection is employed in the model to
enhance the residual learning and the SR images are ob-
tained through image reconstruction as:

ISR = Hrec(Ffusion + F0), (4)

where Hrec(·) denotes the image reconstruction module,
and ISR is the output of the model. The reconstruction
process only includes a 3× 3 convolution and pixel-shuffle
operation [40].

3.2. Rethinking the BSRN

The performance of BSRN models has been improved by
ESA, CCA, and multiple residual connections. However,
the complex structure results in lower computational effi-
ciency. RLFN used a pruning sensitivity analysis tool based
on a one-shot structured pruning algorithm to analyze the
redundancy of the ESA block and discovered a significant
amount of redundancy. Therefore, we removed the ESA
and CCA modules of BSRN and introduced more efficient
attention modules.

Recent studies [13,60] have shown that the performance
of a model can be improved while maintaining acceptable
complexity by using large kernel convolution reasonably.

VAN [13] utilizes convolution decomposition to split a large
kernel convolution into three parts: a spatial local convolu-
tion, a spatial long-range convolution, and a channel con-
volution. Specifically, a K × K convolution is decom-
posed into a (2d − 1) × (2d − 1) depth-wise convolution,
a ⌈K

d ⌉× ⌈K
d ⌉ depth-wise dilation convolution with dilation

d, and a 1 × 1 convolution. By decomposing large kernel
convolution, the model can capture long-range relationships
with minimal computational cost and parameters. Similar
to VAPSR, we perform convolution decomposition in a dif-
ferent order, and as a result, the LKA module is shown in
Figure 3(c) and can be expressed as follows:

Xatten = ConvDW−D(ConvDW (Conv1×1(F )), (5)

Output = Xatten ⊗ F, (6)

where ConvDW−D(·) and ConvDW (·) denotes dilated
depth-wise convolution and depth-wise convolution respec-
tively, Xatten denotes attention map, ⊗ denotes element-
wise product operation, and F denotes the input feature.
By decomposing a large 17 × 17 convolution into a 1 × 1
point-wise convolution, a depth-wise 5×5 convolution, and
a depth-wise dilation convolution with a kernel size of 5 and
dilation of 3, our model can reduce complexity and improve
performance. Replacing ESA and CCA modules with LKA
modules can also further improve inference speed.

3.2.1 Re-parameterization

According to [55], excessive skip connection operations can
increase memory access cost and inference time. How-
ever, the efficient separable distillation block (ESDB) used
in BSRN includes four skip connections. To address this
issue, we replace the residual connection of the ESDB
with a re-parameterizable skip connection and add the
branch of BSConv. To replace the Blueprint Shallow
Residual Block (BSRB) in BSRN, we introduce the Re-
parameterized Blueprint Shallow Block (RBSB) structure,
as shown in Figure 3(d). Specifically, we introduce a re-
parameterizable skip connection on the 1 × 1 point-wise
convolution and the 3 × 3 depth-wise convolution. Addi-
tionally, we parallel a 1 × 1 depth-wise convolution on the
3× 3 depth-wise convolution.

The re-parameterization process consists of two steps.
First, the input feature F0 is passed through a re-
parameterized 1× 1 point-wise convolution:

F1 = Conv1×1(F0) + F0. (7)

Then, a re-parameterized 3 × 3 depth-wise convolution is
applied:

F2 = ConvDW3×3
(F1) + ConvD1×1

(F1) + F1. (8)
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The expressions for F1 and F2 during inference using the
re-parameterization technique are thus as follows:

F1 = Conv1×1(F0),

F2 = ConvDW3×3(F0).
(9)

3.2.2 Large Kernel Distillation Block

After analyzing the characteristics of BSRN and VAPSR,
we developed an even more efficient large kernel distilla-
tion block (LKDB). The complete structure of LKDB can
be seen in Figure 3(a). It comprises four components: fea-
ture distillation, feature fusion, feature enhancement, and
feature transformation. In the first stages, given the input
Fin, the feature distillation operation can be described as:

Fd1
, Fr1 = D1(Fin), R1(Fin),

Fd2
, Fr2 = D2(Fr1), R2(Fr1),

Fd3
, Fr3 = D3(Fr2), R3(Fr2),

Fd4
= D4(Fr3),

(10)

where Di, Ri denote the ith distillation and ith refinement
layer, respectively. Fdi

, Fri represents the ith distilled fea-
tures and ith refined features, respectively. In the feature
fusion stage, all the distilled features produced by previous
distillation steps are concatenated together and then fused
by a 1× 1 convolution as:

Ffusion = Hfusion(Concat(Fd1
, Fd2

, Fd3
, Fd4

)), (11)

where Hfusion denotes the 1 × 1 convolution layer, and
Ffusion is the fused feature. For the feature enhance-
ment stage, we introduce an efficiency large kernel attention
(LKA) block as:

Fenhance = HLKA(Ffusion), (12)

where HLKA denotes the LKA module, and Fenhance is
the enhanced feature. To enhance the performance of the
model, we employ a 1× 1 convolution in the feature trans-
formation stage, while a pixel normalization [60] module is
incorporated to ensure stable model training as:

Ftrans = Normpixel(Htrans(Fenhanced)), (13)

where Htrans denotes the 1×1 convolution transformation,
Ftrans is the transformed feature, and Normpixel refers to
the pixel normalization operation [60]. Finally, a long skip
connection is used to strengthen the residual learning ability
of the model as:

Fout = Ftrans + Fin. (14)

4. Experiments

4.1. Datasets and Evaluation Metrics

We utilized a training set of 800 images from DIV2K [1]
and 2650 images from Flickr2K [31]. Our evaluation of
the models is performed on commonly used benchmark
datasets, including Set5 [4], Set14 [53], B100 [37], Ur-
ban100 [18], and Manga109 [38]. The training data was
augmented with random horizontal flips and 90-degree ro-
tations. The evaluation metrics used are the average peak-
signal-to-noise ratio (PSNR) and the structural similar-
ity [50] (SSIM) on the luminance (Y) channel.

4.2. Implementation Details

The proposed LKDN model is composed of 8 LKDBs
with a distillation structure channel number and attention
module channel number set to 56, and is trained with BSB
to reduce training time. The mini-batch size and input patch
size for each LR input are set to 64 and 48×48, respectively.
We train the model using the common L1 loss function and
the Adan optimizer [52], with β1 = 0.98, β2 = 0.92 and
β3 = 0.99. We set the exponential moving average (EMA)
to stabilize training to 0.999. The learning rate is set to a
constant 5× 10−3 for the entire 1× 106 training iterations.

We propose a smaller version of LKDN, called LKDN-S,
for the NTIRE 2023 Efficient SR Challenge [29]. LKDN-S
comprises 5 LKDBs and 42 channels, and is trained with
RBSB. We also employ re-parameterization techniques in
the up-sample layer of LKDN-S. The training process of
LKDN-S involves two stages: an initial training stage and a
fine-tuning stage. In the initial training stage, we randomly
crop 128 mini-batch HR patches with a size of 256 × 256.
We train LKDN-S using the common L1 loss function with
a learning rate of 5× 10−3 and 9.5× 105 iterations. In the
fine-tuning stage, we set the patch size of HR images and
batch size to 480 × 480 and 64, respectively. LKDN-S is
fine-tuned using the L2 loss function with a learning rate of
2×10−5, and a total of 5×104 iterations. The EMA is set to
0.999 and Adan optimizer [52], with β1 = 0.98, β2 = 0.92
and β3 = 0.99 is applied in both stages.

We implement all our models using PyTorch 1.11 and
Nvidia GeForce RTX 3080 GPUs.

4.3. Ablation Study

4.3.1 Large Kernel Attention

We conducted ablation studies to verify the efficacy of the
LKA module, as presented in Table 1. In this table, C
and A denote the input channels of the distillation struc-
ture and attention module, respectively. Removing the ESA
and CCA modules from BSRN resulted in a significant drop
in model performance. However, utilizing the LKA mod-
ule increased the receptive field of the model, leading to
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Table 1. Ablation study on large kernel attention.
Method Params[K] Multi-Adds[G] Set5 [4] Set14 [53] B100 [37] Urban100 [18] Manga109 [18]
BSRN 352 19.4 32.29 / 0.8950 28.63 / 0.7824 27.59 / 0.7365 26.12 / 0.7870 30.58 / 0.9091

BSRN-woESA&CCA 315 18.2 32.13 / 0.8945 28.56 / 0.7814 27.54 / 0.7355 25.92 / 0.7811 30.31 / 0.9071
LKDN C64 A32 322 18.4 32.28 / 0.8963 28.69 / 0.7835 27.63 / 0.7381 26.19 / 0.7894 30.72 / 0.9113
LKDN C56 A56 322 18.3 32.30 / 0.8962 28.70 / 0.7838 27.65 / 0.7385 26.22 / 0.7901 30.76 / 0.9114

Table 2. PSNR / SSIM comparison of different basic blocks in the feature distillation connections of LKDN-S.
Method Set5 [4] Set14 [53] B100 [37] Urban100 [18] Manga109 [18]
BSRB 32.05 / 0.8932 28.52 / 0.7801 27.53 / 0.7349 25.85 / 0.7787 30.23 / 0.9050
BSB 32.06 / 0.8935 28.54 / 0.7805 27.54 / 0.7352 25.89 / 0.7797 30.29 / 0.9057

RBSB 32.11 / 0.8936 28.55 / 0.7805 27.55 / 0.7354 25.90 / 0.7803 30.29 / 0.9060

Table 3. PSNR / SSIM comparison of applying Adam [24] and Adan [52] optimizers.
Method Training-time[h] Set5 [4] Set14 [53] B100 [37] Urban100 [18] Manga109 [18]

LKDN Adam 50 32.41 / 0.8975 28.77 / 0.7854 27.69 / 0.7399 26.36 / 0.7949 30.93 / 0.9132
LKDN Adan 45 ↓ 32.39 / 0.8979 28.79 / 0.7859 27.69 / 0.7402 26.42 / 0.7965 30.97 / 0.9140

Table 4. Following [28], we compare the computational costs.
Method DIV2K val [dB] Params[K] Multi-Adds[G] Runtime[ms]

BSRN [30] 29.07 352 19.4 83.75
VAPSR [60] 29.15 342 19.5 105.82

LKDN 29.18 322 18.3 85.65

improved performance while maintaining lower parameter
and computation costs than BSRN. Further performance
improvements were achieved by adjusting the channel num-
bers of the distillation structure and attention module. Com-
pared to the original BSRN, LKDN can achieve perfor-
mance gains of more than 0.1 dB on the Urban100 [18]
and Manga109 [18] while maintaining lower parameter and
computation costs.

4.3.2 Re-parameterization

To demonstrate the effectiveness of the proposed RBSB in
Figure 3(d), we replaced the basic blocks in the feature
distillation structure for comparison. Figure 4(a) displays
the BSRB used in BSRN, while Figure 4(b) illustrates the
blueprint shallow block (BSB) obtained by directly remov-
ing the residual connections. The evaluation results we
conducted on LKDN-S are presented in Table 2, demon-
strating that eliminating unnecessary residual connections
can improve performance while reducing model complex-
ity. Re-parameterization can thus further improve perfor-
mance while maintaining model complexity.

4.3.3 Optimizer

The previous optimization of SR models primarily relied
on the Adam optimizer [24]. However, the Adan opti-
mizer [52], which has recently achieved state-of-the-art re-
sults on various vision tasks, has piqued the interest of re-
searchers in the field. Therefore, we investigated the effects
of the Adan optimizer on SR tasks. Table 3 shows that us-
ing the Adan optimizer yields a training speedup of roughly
10% compared to using the Adam optimizer, with a sig-
nificant performance improvement on various benchmark

datasets. Moreover, as demonstrated in Figure 5, the Adan
optimizer leads to faster convergence.
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Figure 5. Convergence comparison between Adan [52] and
Adam [24] optimizers, using Urban100 [18] SR(×4).

4.4. Comparison with the State-of-the-art Methods

We have evaluated our proposed LKDN with various
state-of-the-art lightweight SR methods. These methods
have been compared for upscale factors of ×2, ×3, and
×4. Table 5 presents the quantitative comparison results
for these methods. With the incorporation of efficient atten-
tion modules, LKDN has outperformed other methods in
terms of achieving the best performance while maintaining
a lightweight model.

Figure 6 presents a qualitative comparison of our pro-
posed method. The results indicate that our model is more
capable of reconstructing high-similarity structures than ex-
isting methods. As an example, in images ”img 11” and
”img 92”, existing methods typically generate obvious dis-
tortion and blurriness, while our approach accurately cap-
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Table 5. Quantitative comparison with state-of-the-art methods on benchmark datasets. ’Multi-Adds’ is calculated with a 1280× 720 GT
image. The best and second best are in red and blue respectively.

Method Scale Params.[K] Multi-Adds[G] Set5 [4] Set14 [53] B100 [37] Urban100 [18] Manga109 [38]

Bicubic ×2 - - 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 30.80 / 0.9339
SRCNN [9] ×2 8 52.7 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 35.60 / 0.9663

FSRCNN [10] ×2 13 6.0 37.00 / 0.9558 32.63 / 0.9088 31.53 / 0.8920 29.88 / 0.9020 36.67 / 0.9710
VDSR [22] ×2 666 612.6 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 37.22 / 0.9750

LapSRN [26] ×2 251 29.9 37.52 / 0.9591 32.99 / 0.9124 31.80 / 0.8952 30.41 / 0.9103 37.27 / 0.9740
DRRN [45] ×2 298 6796.9 37.74 / 0.9591 33.23 / 0.9136 32.05 / 0.8973 31.23 / 0.9188 37.88 / 0.9749

MemNet [46] ×2 678 2662.4 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 37.72 / 0.9740
IDN [20] ×2 553 124.6 37.83 / 0.9600 33.30 / 0.9148 32.08 / 0.8985 31.27 / 0.9196 38.01 / 0.9749

CARN [2] ×2 1592 222.8 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 38.36 / 0.9765
IMDN [19] ×2 694 158.8 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
PAN [59] ×2 261 70.5 38.00 / 0.9605 33.59 / 0.9181 32.18 / 0.8997 32.01 / 0.9273 38.70 / 0.9773

LAPAR-A [27] ×2 548 171.0 38.01 / 0.9605 33.62 / 0.9183 32.19 / 0.8999 32.10 / 0.9283 38.67 / 0.9772
RFDN [32] ×2 535 95.0 38.05 / 0.9606 33.68 / 0.9184 32.16 / 0.8994 32.12 / 0.9278 38.88 / 0.9773
RFLN [25] ×2 527 115.4 38.07 / 0.9607 33.72 / 0.9187 32.22 / 0.9000 32.33 / 0.9299 -
BSRN [30] ×2 332 73.0 38.10 / 0.9610 33.74 / 0.9193 32.24 / 0.9006 32.34 / 0.9303 39.14 / 0.9782
VAPSR [60] ×2 329 74.0 38.08 / 0.9612 33.77 / 0.9195 32.27 / 0.9011 32.45 / 0.9316 -

LKDN ×2 304 69.1 38.12 / 0.9611 33.90 / 0.9202 32.27 / 0.9010 32.53 / 0.9322 39.19 / 0.9784

Bicubic ×3 - - 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349 26.95 / 0.8556
SRCNN [9] ×3 8 52.7 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989 30.48 / 0.9117

FSRCNN [10] ×3 13 5.0 33.18 / 0.9140 29.37 / 0.8240 28.53 / 0.7910 26.43 / 0.8080 31.10 / 0.9210
VDSR [22] ×3 666 612.6 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 32.01 / 0.9340
DRRN [45] ×3 298 6796.9 34.03 / 0.9244 29.96 / 0.8349 28.95 / 0.8004 27.53 / 0.8378 32.71 / 0.9379

MemNet [46] ×3 678 2662.4 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 32.51 / 0.9369
IDN [20] ×3 553 56.3 34.11 / 0.9253 29.99 / 0.8354 28.95 / 0.8013 27.42 / 0.8359 32.71 / 0.9381

CARN [2] ×3 1592 118.8 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493 33.50 / 0.9440
IMDN [19] ×3 703 71.5 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
PAN [59] ×3 261 39.0 34.40 / 0.9271 30.36 / 0.8423 29.11 / 0.8050 28.11 / 0.8511 33.61 / 0.9448

LAPAR-A [27] ×3 544 114.0 34.36 / 0.9267 30.34 / 0.8421 29.11 / 0.8054 28.15 / 0.8523 33.51 / 0.9441
RFDN [32] ×3 541 42.2 34.41 / 0.9273 30.34 / 0.8420 29.09 / 0.8050 28.21 / 0.8525 33.67 / 0.9449
BSRN [30] ×3 340 33.3 34.46 / 0.9277 30.47 / 0.8449 29.18 / 0.8068 28.39 / 0.8567 34.05 / 0.9471
VAPSR [60] ×3 337 33.6 34.52 / 0.9284 30.53 / 0.8452 29.19 / 0.8077 28.43 / 0.8583 -

LKDN ×3 311 31.4 34.54 / 0.9285 30.52 / 0.8455 29.21 / 0.8078 28.50 / 0.8601 34.08 / 0.9475

Bicubic ×4 - - 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577 24.89 / 0.7866
SRCNN [9] ×4 8 52.7 30.48 / 0.8626 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555

FSRCNN [10] ×4 13 4.6 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280 27.90 / 0.8610
VDSR [22] ×4 666 612.6 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870

LapSRN [26] ×4 813 149.4 31.54 / 0.8852 28.09 / 0.7700 27.32 / 0.7275 25.21 / 0.7562 29.09 / 0.8900
DRRN [45] ×4 298 6796.9 31.68 / 0.8888 28.21 / 0.7720 27.38 / 0.7284 25.44 / 0.7638 29.45 / 0.8946

MemNet [46] ×4 678 2662.4 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942
IDN [20] ×4 553 32.3 31.82 / 0.8903 28.25 / 0.7730 27.41 / 0.7297 25.41 / 0.7632 29.41 / 0.8942

CARN [2] ×4 1592 90.9 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN [19] ×4 715 40.9 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
PAN [59] ×4 272 28.2 32.13 / 0.8948 28.61 / 0.7822 27.59 / 0.7363 26.11 / 0.7854 30.51 / 0.9095

LAPAR-A [27] ×4 659 94.0 32.15 / 0.8944 28.61 / 0.7818 27.61 / 0.7366 26.14 / 0.7871 30.42 / 0.9074
RFDN [32] ×4 550 23.9 32.24 / 0.8952 28.61 / 0.7819 27.57 / 0.7360 26.11 / 0.7858 30.58 / 0.9089
RLFN [25] ×4 543 29.8 32.24 / 0.8952 28.62 / 0.7813 27.60 / 0.7364 26.17 / 0.7877 -
BSRN [30] ×4 352 19.4 32.35 / 0.8966 28.73 / 0.7847 27.65 / 0.7387 26.27 / 0.7908 30.84 / 0.9123
VAPSR [60] ×4 342 19.5 32.38 / 0.8978 28.77 / 0.7852 27.68 / 0.7398 26.35 / 0.7941 30.89 / 0.9132

LKDN-S ×4 129 7.3 32.10 / 0.8938 28.62 / 0.7821 27.59 / 0.7371 26.07 / 0.7845 30.50 / 0.9078
LKDN ×4 322 18.3 32.39 / 0.8979 28.79 / 0.7859 27.69 / 0.7402 26.42 / 0.7965 30.97 / 0.9140

tures the lines. Furthermore, in ”img 73”, VAPSR calcu-
lates the incorrect number of windows, resulting in a signif-
icant decrease in PSNR and SSIM, while our method can
accurately restore the number of windows.

Table 4 provides a more in-depth analysis of BSRN,
VAPSR, and LKDN. The results show that LKDN out-
performs BSRN while maintaining a comparable inference

speed. Moreover, LKDN achieves faster inference speeds
than VAPSR while maintaining superior performance.

4.5. NTIRE 2023 Efficient SR Challenge

The goal of the NTIRE 2023 Efficient SR Challenge [29]
is to develop a SISR model that improves one or more as-
pects such as runtime, parameters, FLOPs, activations, and
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Urban100: img_11
SR 4

Bicubic
12.55/0.3040

HR
PSNR(dB) / SSIM

IMDN
15.97/0.6969

LapSRN
13.79/0.5136

PAN
14.19/0.5926

RLFN
14.46/0.6399

VAPSR
14.32/0.5818

RFDN
16.06/0.6950

BSRN
14.42/0.5877

LKDN (ours)
19.67/0.8260

Urban100: img_73
SR 4

Bicubic
12.77/0.2357

HR
PSNR(dB) / SSIM

IMDN
12.34/0.3031

LapSRN
11.37/0.2193

PAN
13.10/0.3742

RLFN
13.32/0.4285

VAPSR
11.05/0.2421

RFDN
15.99/0.6409

BSRN
13.89/0.4882

LKDN (ours)
16.57/0.6737

Urban100: img_92
SR 4

Bicubic
13.11/0.2022

HR
PSNR(dB) / SSIM

IMDN
12.25/0.2138

LapSRN
13.11/0.2507

PAN
13.96/0.3915

RLFN
16.52/0.5766

VAPSR
16.02/0.5727

RFDN
13.45/0.3015

BSRN
15.69/0.5752

LKDN (ours)
16.99/0.6653

Figure 6. Qualitative and quantitative comparison on SR (×4), the best and second best are in red and blue respectively.

depth of the RFDN [32], while maintaining a PSNR of at
least 29.00dB on validation datasets.

Our solution, LKDN-S, for the NTIRE 2023 Efficient SR
Challenge has proven to be both efficient and effective for
super-resolution tasks, achieving competitive performance
with just 129K parameters and 7.3G Multi-Adds for SR ×4.

5. Conclusion

We propose the Large Kernel Distillation Network
(LKDN) as an efficient single-image super-resolution
(SISR) solution. Through careful analysis of some state-of-
the-art lightweight models, we identified their weaknesses
and improved upon them to enhance the performance of

LKDN. By incorporating the large kernel design, simplify-
ing the model structure, introducing more efficient attention
modules, and employing re-parameterization, we achieve a
balance between performance and computational efficiency.
A new optimizer is also introduced to accelerate the conver-
gence of LKDN. Extensive experiments demonstrate that
LKDN outperforms state-of-the-art efficient SR methods in
terms of performance, parameters, and Multi-Adds.
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