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Abstract

Efficient deep learning-based approaches have achieved
remarkable performance in single image super-resolution.
However, recent studies on efficient super-resolution have
mainly focused on reducing the number of parameters and
floating-point operations through various network designs.
Although these methods can decrease the number of pa-
rameters and floating-point operations, they may not nec-
essarily reduce actual running time. To address this is-
sue, we propose a novel multi-stage lightweight network
boosting method, which can enable lightweight networks to
achieve outstanding performance. Specifically, we leverage
enhanced high-resolution output as additional supervision
to improve the learning ability of lightweight student net-
works. Upon convergence of the student network, we further
simplify our network structure to a more lightweight level
using reparameterization techniques and iterative network
pruning. Meanwhile, we adopt an effective lightweight net-
work training strategy that combines multi-anchor distilla-
tion and progressive learning, enabling the lightweight net-
work to achieve outstanding performance. Ultimately, our
proposed method achieves the fastest inference time among
all participants in the NTIRE 2023 efficient super-resolution
challenge while maintaining competitive super-resolution
performance. Additionally, extensive experiments are con-
ducted to demonstrate the effectiveness of the proposed
components. The results show that our approach achieves
comparable performance in representative dataset DIV2K,
both qualitatively and quantitatively, with faster inference
and fewer number of network parameters.

1. Introduction

Single Image Super-Resolution (SISR) aims to re-
construct a high-resolution (HR) image from a low-
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Figure 1. Comparison with recent efficient SR methods. The
figure shows the GFLOPs of these methods when the input is
256×256, the number of parameters of these models and their
average inference time using NVIDIA 2080ti under the DIV2K
validation set.

resolution (LR) input and has become an essential task
in low-level computer vision for enhancing image resolu-
tion [1, 2]. Recent SISR approaches [1, 3–10] based on
deep learning have achieved great success by significantly
improving the quality of reconstructed images. However,
these methods frequently require large amounts of compu-
tational resources, making it challenging to deploy them on
resource-constrained devices for real-world applications.

To address this issue, there is a growing need to de-
velop efficient SISR models with higher inference speed
while maintaining good trade-offs between image qual-
ity and computation cost. Prior research has attempted
to reduce model parameters or floating-point operations
(FLOPs) to improve efficiency. Recursive networks with
weight-sharing strategies are often used to decrease the
number of parameters, but they may not necessarily reduce
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the number of operations and inference time due to their
complex graph topology. Similarly, commonly used tech-
niques to reduce FLOPs, such as depth-wise convolutions,
feature splitting, and shuffling [4,8,11,12], may not always
improve computational efficiency.

Therefore, we consider the problem of achieving effi-
cient super-resolution from another perspective, that is, how
to obtain an efficient super-resolution model only through
better training strategies without too much additional net-
work design. As shown in Fig. 1, the strategies we pro-
posed make the SR model faster and smaller. It is difficult to
train a small network directly, and it is easier to train a large
teacher network first and then guide the small student net-
work to learn through knowledge distillation. However, due
to the large gap between the learning ability of the teacher
network and the student network, it is difficult for the stu-
dent network to learn enough high-frequency information
if it is directly distilled. Inspired by HGGT [13], the HR
images we used are not the original HR images in the data
set, but the enhanced HR images. The enhanced images can
provide richer high-frequency information, which can help
student network with limited learning ability to learn more
easily. Inspired by repVGG [14], we designed the network
structure including series branches, parallel branches and
residuals in the process of designing the student network.
These additional branches can increase the learning ability
of the student network. When the student network training
converges, it can be reparameterized and simplified into a
lightweight structure. This operation enhances the learning
ability of the model without introducing additional model
complexity. In order to make full use of the guiding abil-
ity of the teacher network, we use a multi-level distillation
strategy, that is, set anchor points at different nodes of the
network, and use the features of different levels at the an-
chor points to perform distillation.

Usually, for the convenience of training in image tasks,
we will use relatively small patches for training. However,
recent studies [15] pointed out that using this method will
cause the input distribution to be different during training
and testing so that it cannot be effective enough when the
network performs some global operations during testing.
Therefore, in order to make the model perform better in
the testing phase, the input size during training and test-
ing should be as close as possible. However, directly using
large-sized patches for training will make the training very
time-consuming, and the inability to use larger batches will
further affect the stability of training. At the same time, it is
not conducive to using large patches as input for networks
with limited expressive capabilities to mine global informa-
tion. So we adopted a progressive learning method, that
is, gradually increasing the input patch during training, and
achieved good results. The trained student network still has
some unimportant redundant parameters, so we further it-

eratively pruned the model to further compress the model
size.

Our contributions can be summarized as follows:

• For the first time, we propose the use of enhanced HR
images to improve the learning ability of lightweight
networks.

• We propose a novel multi-stage lightweight training
strategy combining distillation, progressive learning,
and pruning.

• We conducted extensive experiments to demonstrate
the effectiveness of our method, and our method out-
performed all other competitors in the NTIRE 2023 ef-
ficient super-resolution challenge in terms of time con-
sumption and model size.

2. Related Work
2.1. Single Image Super-Resolution

In the past few years, deep neural networks (DNN) have
shown remarkable capability on improving SISR perfor-
mance. The pioneering work is SRCNN [16] which ap-
plies the bicubic downsampling on HR images to construct
data pairs and employs a simple convolution neural net-
works (CNN) to learn the end-to-end mapping from LR
to HR images. Then plenty of CNN-based methods have
been proposed to achieve better performance [6, 7, 17–24].
For example, Kim et al. [17] proposed a 20-layer net-
work with residual learning, which inspired the develop-
ment of deeper and wider networks for SISR. EDSR [18]
followed the idea of residual learning and modified residual
blocks by removing the batch normalization layer to build a
very deep and wide network. RCAN [22] have introduced
channel attention and second-order channel attention re-
spectively, which exploit feature correlations for improved
performance. Moreover, recent works [25–29] have been
proposed to improve the perceptual visual quality of real-
world images. Meanwhile, some studies based on blind im-
age super-resolution were proposed [30–32], addressing the
problem of degenerate kernels present in real-world super-
resolution. In addition, some works employ some advanced
losses such as the VGG loss [16], perceptual loss [33], and
GAN loss [34] to learn realistic image details. Recently,
transformer-based super-resolution methods [35, 36] have
gained popularity, which achieve high performance. How-
ever, most of these methods require a large amount of com-
putational resources and have a high number of parameters,
FLOPs and inference time, and do not facilitate practical
deployment and application in edge devices.

2.2. Efficient Image Super-Resolution

Efficient Image Super-Resolution aims to reduce the
computational effort and the number of parameters of the
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Figure 2. The multi-stage feature distillation pipeline of our method.

SR network while achieving faster inference times and
maintaining high performance. In real-world SR model de-
ployments, the computing power of the deployed devices
is often limited, such as edge devices, etc. In this case,
the efficiency of the SR network becomes an important
aspect. To fit the increasing demands for deploying SR
models with limited computing resources, numerous works
have refocused their attention to efficient image SR tech-
niques [4,8,11,37–39]. At the same time, a number of com-
petitions, just like NTIRE and AIM, have launched efficient
image SR entries to promote the development of relevant
research [40,41]. In recent related studies, CARN [11] pre-
sented local and global cascading mechanisms to achieve
a lightweight SR network. IMDN [4] designs an informa-
tion multi-distillation network by constructing the cascaded
information multi-distillation blocks to extract hierarchical
features. The following work RFDN [8] further improves
the network by introducing feature distillation blocks that
employ 1×1 convolution layers to implement dimensional
change. Based on RFDN, RLFN [37] investigates its speed
bottleneck and enhances its speed by removing the hierar-
chical distillation connections. Furthermore, RLFN pro-
poses a feature extractor to extract more information of
edges and textures. With these advancements, they achieved
first place in the NTIRE 2022 Efficient Super-Resolution
Challenge [40].

3. Method

We propose an efficiency distillation and iterative prun-
ing SR network named DIPNet which consists of four main
components. In Sec. 3.1, we revisit the RLFB and propose a

reparameterization residual feature block (RRFB), and our
network structure is mainly constructed by stacking multi-
ple RRFBs, as shown in Fig. 2. In Sec. 3.2, we introduce the
method of model-guided ground-truth enhancement strat-
egy to improve the quality of original HR. Then we dis-
cuss the multi-anchor feature distillation in Sec. 3.3, which
can effectively improve the performance of the network. Fi-
nally, we propose an iterative pruning strategy in Sec. 3.4 to
further reduce the number of model parameters.

3.1. Reparameterization Residual Feature Block

Following RFDN [8] and RLFN [37], we also use an
information distillation network to reconstruct high-quality
SR images. Based on the block RLFB of RLFN, we in-
troduce the re-parameterizable topology to the block. The
original block of RLFB is shown in Fig. 3(a), we expand the
RLFB in RLFN to the structure reparameterization resid-
ual feature block (RRFB) shown in Fig. 3(b) in the training
phase. The structure of RRB which is shown in Fig. 3(c)
excavates the potential ability of complex structure during
optimization, while maintaining computational efficiency,
as it is computationally equivalent to a single 3x3 convolu-
tion during inference.

3.2. Model Guided Ground-truth Enhancement

According to our understanding, almost all existing SR
methods directly use the original HR images in the train-
ing phase. However, the perceptual quality of the origi-
nal HR images may not be high enough as mentioned by
HGGT [13]. Inspired by HGGT, we proposed a model
guided ground-truth (GT) enhancement strategy to enhance
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Figure 3. (a) Structure of RLFB. (b) The structure of RRFB.

the quality of HR. We first train a large network with Hy-
brid Attention Transformer [36] backbone for 1x super-
resolution. The HR image IHR is then utilized as input
for 1x super-resolution, yielding an enhanced HR output
Ienh. Then the low-resolution image ILR and the enhanced
HR Ienh is used for 4x super-resolution training. Different
from HGGT, we do not conduct manual patch selection and
retain the patch in the flat area since that manual selection
tends to generate results that were more visually pleasing,
but may not improve objective metrics. As shown in Fig. 4,
the quality of the enhanced ground-truth in some patches is
significantly better than the original ground-truth.

3.3. Multi-anchor Feature Distillation

In order to further enhance the performance of our
lightweight model, we proposed a multi-anchor feature dis-
tillation method. As illustrated in Fig. 2, our multi-anchor
feature distillation consists of two stages. In the first stage,
we also train a large teacher network HAT [36], denoted
as T . It is worth noting that we use the enhance high-
resolution image Ienh as discussed in Sec. 3.2 for 4x super-
resolution training through minimizing the following loss:

LT = ||T (ILR)− Ienh||1. (1)

After training the teacher network, we perform a multi-
level distillation on the proposed student network, denoted
as S . Once the student network training converges, it can
be restored to the RLFB structure by the reparameteriza-
tion technique. During distillation, we use the feature maps
extracted from four different depths of T to supervise the
learning of each of the four blocks in S. Specifically, we
minimize the following losses:

Lfeat = λi

4∑
i=1

||F T
i − ψ(FS

i )||1, (2)

where FS
i represents the feature map of the output of the

i-th block of S, while F T represents the feature of the out-

Img 0009 in DIV2K Original GT Enhance GT

Img 0008 in DIV2K Original GT Enhance GT

Img 0003 in DIV2K Original GT Enhance GT

Figure 4. Visual comparison of the original GT and the enhance
GT.

put of some residual hybrid attention groups (RHAGs) of
T , ψ represents the operation of using a 1 × 1 convolution
to expand the feature channels of S to the number of fea-
ture channels of T , and λi is a weight for controlling the
importance of the supervision from each depth level.

We also use the outputs of T as pseudo ground-truth and
the enhanced ground-truth to further supervise the learning
of S . Specifically, we compute the following losses:

Lout = ||T (ILR)− S(ILR)||1 + ||S(ILR)− Ienh||1, (3)

During distillation, the final loss is a combination of Lfeat

and Lout:
Ldis = Lfeat + Lout, (4)

After distillation, we employ a progressive learning strategy
to finetune S. We gradually increase the size of the input
patch while using L2 loss for supervised training until the
model fully converges:

Lpl = ||S(ILR)− Ienh||22, (5)

3.4. Iterative Pruning Strategy

Finally, we iteratively pruned the reparameterized stu-
dent network S:

Si
p = φ(Φ(Si−1

p ; r)), (6)
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Figure 5. Visual comparison of the results of ours and other methods on the validation set of DIV2K.

where Φ is the pruning operation, r is the pruning rate, φ
means the finetuning operation, Si

p means the network after
the i-th pruning. Inspired by AGP [42], L2 filter pruning is
used in our iterative pruning method for model training. We
stop pruning until the network cannot make effective predic-
tions, and use the network obtained from the last effective
pruning as the final network.

4. Experiments
4.1. Settings and Details

Training and Test Datasets. We adopt widely used
high-quality (2K resolution) DIV2K [44] dataset which in-
cludes 800 training samples for training, following some of
the prior research [4, 8, 11, 37]. We test the performance
of our method on five benchmark dataset: Set5, Set14,
BSD100, Urban100 and Manga109. We also test the data
for DIV2K and LDSIR [45], which are provided by NTIRE
2023 Challenge on Efficient Super Resolution.

Evaluation and metrics. We use two common metrics
called peak signal-to-noise ratio (PSNR) and structure sim-
ilarity index (SSIM) to evaluate our method and compari-
son methods on the RGB space, following the evaluation
settings of the NTIRE 2023 challenge on efficient super-
resolution. In addition, to verify the efficiency of our meth-

ods, we statistics the number of parameters, GFLOPs, and
inference time of each method network structure in a stan-
dard way as validation metrics, which are obtained statisti-
cally in the same computing environment.

Comparison methods. We select representative open-
sourced methods, which include CARN [11], IMDN [4],
RFDN [8], RLFN [37] and so on. The results of each
method are generated by the implementations from the orig-
inal authors with default settings for a fair comparison.

Implementation details. All training experiments are
done on NVIDIA 2080ti. During the training phase, we use
random flip and rotation augmentation and choose Adam as
the optimizer. When training the teacher net and distilling
the student network, we set an initial learning rate of 1e-4,
halved the learning rate every 100,000 iterations, and then
used L1 loss for supervision. When using the progressive
learning strategy to finetune the distilled network, an initial
learning rate of 2e-5 is used, which is halved every 20,000
iterations. In this process, the training patch size is pro-
gressively increased to improve the performance, which is
selected from [64, 128, 256, 384]. In the iterative pruning
process, the ratio of each pruning is 0.05, and it is repeated
three times in total. After each pruning, ILR and Ienh are
used for finetune, and 384 × 384 patches are used as input
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Figure 6. More visual comparison on the other benchmarks.

Method PSNR Time (ms) Params (M) GFLOPS Activations Memory (M)
CARN [11] - 72.41 1.59 130.04 232.98 2192.74
EDSR [18] - 72.36 1.52 130.05 232.98 2192.74
IMDN [4] 29.13 38.29 0.72 46.59 122.68 922.15
RFDN [8] 29.04 29.19 0.43 27.10 112.03 813.06
EFDN [43] 29.01 22.12 0.27 16.73 111.11 687.44
RLFN [37] 29.00 19.02 0.32 19.70 80.04 494.80

DIPNet (Ours) 29.00 14.77 0.24 14.90 72.97 521.02

Table 1. Comparison of our method and some recent efficient super-resolution methods. Times represent the average inference time
measured on the DIV2K dataset with an NVIDIA 2080ti in milliseconds (ms). GFLOPS and memory is measured when the input is
256×256. PSNR is the result of testing on DIV2K. The best and second-best results are marked in red and blue colors, respectively.

during finetune.

4.2. Model Compexity

In Fig. 1, we provide an overview of the deployment
performance of our DIPNet. We can find that our DIP-
Net obtains the best inference time. To evaluate the method
complexity of our model precisely, we compare several rep-
resentative open source networks in Table 1. The table
shows that our DIPNet consumes the least resource while
maintaining 29.00 PSNR. Specifically, in terms of running
time, we compare our approach with RFDN on an NVIDIA
2080ti. The iterative pruning strategy that we employ en-
ables significant speed improvements with minimal cost,
our speed is significantly faster than RFDN.

4.3. Qualitative Comparison

As shown in Fig. 5, we compare our method with some
recent efficient super-resolution methods. As can be seen

from the figure, although our model is smaller, we can
still obtain a good super-resolution effect. Compared with
other larger methods, there is no obvious difference in the
super-resolution effect. Even in some scenarios, the super-
resolution effect of our method is more obvious, such as
in the first and second rows in the figure, our method gets
clearer lines. This is due to our use of enhanced ground-
truth (GT), which makes our method more inclined to learn
clearer objects during training.

4.4. Quantitative Comparison

As shown in Table 2, we compare our method with some
other state-of-the-art efficient super-resolution models on
four branchmark datasets Set5, Set14, and UrBan100. Ex-
periments show that our method still achieves good results
on these datasets. It is worth noting that here we do not di-
rectly use the final model used in the NTIRE competition in
order to achieve better results, but used a larger model with
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Scale Model Params Set5 Set14 BSD100 UrBan100 Manga109
(M) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

SRCNN [16] 0.024 36.66 / 0.9542 32.42 / 0.9063 31.36 / 0.8879 29.50 / 0.8946 35.60 / 0.9663
FSRCNN [46] 0.012 36.98 / 0.9556 32.62 / 0.9087 31.50 / 0.8904 29.85 / 0.9009 36.67 / 0.9710

VDSR [17] 0.666 37.53 / 0.9587 33.05 / 0.9127 31.90 / 0.8960 30.77 / 0.9141 37.22 / 0.9750
DRCN [47] 1.774 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133 37.55 / 0.9732

LapSRN [48] 0.251 37.52 / 0.9591 32.99 / 0.9124 31.80 / 0.8952 30.41 / 0.9103 37.27 / 0.9740
IDN [12] 0.579 37.83 / 0.9600 33.30 / 0.9148 32.08 / 0.8985 31.27 / 0.9196 38.01 / 0.9749

EDSR [18] 1.370 37.91 / 0.9602 33.53 / 0.9172 32.15 / 0.8995 31.99 / 0.9270 38.40 / 0.9766
CARN [11] 1.592 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 38.36 / 0.9765
ECBSR [10] 0.596 37.90 / 0.9615 33.34 / 0.9178 32.10 / 0.9018 31.71 / 0.9250 - / -

IMDN [4] 0.694 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
RFDN [8] 0.534 38.05 / 0.9606 33.68 / 0.9184 32.16 / 0.8994 32.12 / 0.9278 38.88 / 0.9773

Ours 0.527 37.98 / 0.9605 33.66 / 0.9192 32.20 / 0.9002 32.31 / 0.9302 38.62 / 0.9770

×4

SRCNN [16] 0.057 30.48 / 0.8628 27.49 / 0.7503 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555
FSRCNN [46] 0.013 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280 27.90 / 0.8610

VDSR [17] 0.666 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
DRCN [47] 1.774 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510 28.93 / 0.8854

LapSRN [48] 0.502 31.54 / 0.8852 28.09 / 0.7700 27.32 / 0.7275 25.21 / 0.7562 29.09 / 0.8900
IDN [12] 0.600 31.93 / 0.8923 28.45 / 0.7781 27.48 / 0.7326 25.81 / 0.7766 30.04 / 0.9026

EDSR [18] 1.518 31.98 / 0.8927 28.55 / 0.7805 27.54 / 0.7348 25.90 / 0.7809 30.24 / 0.9053
CARN [11] 1.592 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
ECBSR [10] 0.603 31.92 / 0.8946 28.34 / 0.7817 27.48 / 0.7393 25.81 / 0.7773 - / -

IMDN [4] 0.715 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
RFDN [8] 0.550 32.24 / 0.8952 28.61 / 0.7819 27.57 / 0.7360 26.11 / 0.7858 30.58 / 0.9089

Ours 0.543 32.20 / 0.8950 28.58 / 0.7811 27.59 / 0.7364 26.16 / 0.7879 30.53 / 0.9087

Table 2. Quantitative results of the state-of-the-art efficient super-resolution models on four benchmark datasets. The best and second-best
results are marked in red and blue colors, respectively.

GT Type T S
Ori. 31.27 28.94
Enh. 31.20 29.00

Table 3. PSNR of the teacher network and the student network
on the DIV2K validation set when using the original GT and the
enhanced GT, respectively. Ori. means training with original GT,
and Enh. means training with enhanced GT.

the similar structure, but even so our model is still relatively
small.

In Fig. 6 we show some examples of our method and
other methods on these datasets. It can be found that our
method is much better than other methods in some densely
textured areas. This is due to the fact that we use enhanced
GT to make our method can better distinguish these re-
peated regular contents.

4.5. Ablation Studies

Original GT vs. Enhanced GT. We compared our
enhanced ground-truth with the original ground-truth in
Fig. 4, and we can see that the enhanced ground-truth has

Shallow Features KD Deep Feature PSNR
28.95
28.96
28.98
29.00

Table 4. Effect of using different degrees of distillation on PSNR.
KD means knowledge distillation, Deep Feature means the fea-
tures of the last block, and Shallow Features means the features of
the first three blocks.

a clearer texture. And this enhanced ground-truth will help
our student network to better learn weaker textures. We fur-
ther make a quantitative analysis of the effect of enhanced
ground-truth in Table 3. From the table, we find that the
use of enhanced ground-truth for the teacher network makes
the performance of the network worse. This is because the
large network has a strong learning ability. It already has
the ability to learn most kinds of details, and the use of
enhanced ground-truth makes it learn more noise, which
leads to a decrease in its PSNR. The student network has
a limited learning capability that restricts its ability to ex-
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Method PSNR Time (ms) Params (M) GFLOPS Activations Memory (M)
KaiBai Group 28.95 20.49 0.272 16.76 65.10 296.45

Young 28.97 22.09 0.543 33.38 61.87 293.05
NoahTerminalCV TeamB 28.96 27.83 0.209 13.34 118.71 188.21

Sissie Lab 29.00 30.34 0.461 28.85 107.07 628.94
Antins cv 29.00 20.92 0.315 20.07 70.82 488.61
CMVG 29.01 24.42 0.307 18.98 81.55 454.51
DFCDN 29.00 18.71 0.245 15.49 82.76 376.99
Zapdos 28.96 18.59 0.352 21.97 63.01 420.50

DIPNet (Ours) 29.04 18.30 0.243 14.90 72.97 495.91

Table 5. Quantitative comparison of our results with those of other NTIRE 2023 Challenge on Efficient Super Resolution participating
teams. The best and second-best results are marked in red and blue colors, respectively.

Pruning times 0 1 2 3
PSNR 29.042 29.034 29.018 29.001

Table 6. In the iterative pruning process, the PSNR of the model
on the DIV2K validation set after each pruning. The 0th represents
the PSNR of the model before pruning.

Pruning Type One Stage Pruning Iterative pruning
L1 28.883 28.946
L2 28.894 29.001

Table 7. The PSNR when the model is cut to the same size using
different pruning strategies

plore all possible directions during the training process. As
a result, the network may only focus on certain directions
and fail to learn other important features necessary for high-
quality image generation. However, by incorporating an en-
hanced ground-truth, which contains more information than
the original ground-truth, the student network can overcome
its limited capacity to learn details and achieve better per-
formance in terms of PSNR. The enhanced ground-truth
provides additional guidance to the network, allowing it to
learn a wider range of features and produce more accurate
and detailed images.

Multi-stage feature distillation. The results in Table 4
show the advantages of our multi-level feature distillation.
Compared with direct end-to-end training of small models,
our method can significantly improve the model accuracy
by about 0.05dB, which benefits from the strong represen-
tation of the teacher model capacity. At the same time, our
student model does not add additional overhead. Mean-
while, we found that only using deep features is better than
using only shallow features, and the effect is best when the
two are used at the same time.

Iterative Pruning Strategy. We show the changes of
PSNR after each pruning in the iterative pruning process in
Table 6. It can be seen that the PSNR decline in the previous
pruning is relatively small, and there will be a relatively ob-

vious decline in PSNR when pruning later. But overall, the
reduction in PSNR brought by our iterative pruning method
is very small. Table 7 shows the impact of using different
pruning methods on the results. The experimental results
show that using iterative pruning is better than one-time
pruning. At the same time, L2 pruning is better than L1
pruning for our task.

4.6. NTIRE 2023 Challenge on Efficient SR

In this competition, we design a lightweight network to
maintain the PSNR of 29.00dB on DIV2K validation set
by reparameterization and multi-stage feature distillation.
It is worth mentioning that the baseline of the competition
is RFDN. We follow the official evaluation setting and re-
port the number of parameters, FLOPs, runtime, peak mem-
ory consumption, activations, and number of convolutions
in Table 5. Compared with AIM 2020 winner solution E-
RFDN, our model can decrease 43.9% parameters, 45.0%
FLOPs, 48.5% runtime, 37.1% peak memory consumption
and 34.9% activations. Compared with other participants in
NTIRE 2023 challenge [49] on efficient super-resolution,
our model achieves the best inference speed.

5. Conclusion

In this paper, we propose a novel approach to effi-
cient single image super-resolution by improving train-
ing strategies instead of solely depending on network de-
sign. Specifically, we leverage enhanced ground-truth im-
ages as additional supervision and employ a multi-stage
lightweight training strategy that combines distillation, pro-
gressive learning, and pruning. Our experiments demon-
strate the effectiveness of our method, achieving state-
of-the-art performance in terms of time consumption and
model size on the NTIRE 2023 efficient super-resolution
challenge. Our contributions include introducing the use
of enhanced GT images to improve the learning ability
of lightweight networks and proposing a novel multi-stage
lightweight training strategy.
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