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Figure 1. We introduce a new baseline termed RT4KSR for upscaling images from 720p and 1080p input to 4K in real-time at > 60FPS.

Abstract

Over the past few years, high-definition videos and im-
ages in 720p (HD), 1080p (FHD), and 4K (UHD) resolution
have become standard. While higher resolutions offer im-
proved visual quality for users, they pose a significant chal-
lenge for super-resolution networks to achieve real-time
performance on commercial GPUs. This paper presents a
comprehensive analysis of super-resolution model designs
and techniques aimed at efficiently upscaling images from
720p and 1080p resolutions to 4K. We begin with a sim-
ple, effective baseline architecture and gradually modify its
design by focusing on extracting important high-frequency
details efficiently. This allows us to subsequently down-
scale the resolution of deep feature maps, reducing the over-
all computational footprint, while maintaining high recon-
struction fidelity. We enhance our method by incorporat-
ing pixel-unshuffling, a simplified and speed-up reinterpre-
tation of the basic block proposed by NAFNet, along with
structural re-parameterization. We assess the performance
of the fastest version of our method in the new NTIRE 2023
Real-Time 4K Super-Resolution challenge and demonstrate
its potential in comparison with state-of-the-art efficient
super-resolution models when scaled up. Our method was
tested successfully on high-quality content from photogra-
phy, digital art, and gaming content.

*Corresponding authors. Code and models are open-sourced at:
https://github.com/eduardzamfir/RT4KSR

1. Introduction

In image super-resolution (SR), one deals with the
ill-posed problem of recovering the high-resolution (HR)
counterpart of a previously down-sampled and possibly fur-
ther degraded low-resolution (LR) source image. Previ-
ous research has introduced several classical methods for
single image SR, as documented in [5, 6, 17, 42, 46–48].
Nonetheless, with the emergence of Deep Learning, re-
search on single image SR rapidly shifted towards deep
learning-based approaches [7, 13, 30, 35, 36, 51, 58, 62].
While much progress in restoration performance has been
achieved through larger and deeper networks, these im-
provements have incurred a higher demand for time and
computational resources, necessitating more efficient and
lightweight solutions. As media streaming platforms have
achieved overwhelming success, and the amount of im-
age and video content created and shared online has be-
come practically inexhaustible, the need for stable and
high-bandwidth internet connections has significantly in-
creased. However, the media industry has adopted the prac-
tice of compressing its content before transmission and re-
constructing it to its full resolution at the consumer’s end.
Efficient and lightweight super-resolution methods have be-
come increasingly important as a result.

To further the development of efficient and fast SR meth-
ods, in conjunction with the NTIRE 2023 Real-Time 4K SR
challenge [10] we investigate previous SR concepts in the
context of upscaling diverse types of content, including dig-
ital art and photography, to ultra-high resolution. Following
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Figure 2. Blueprint of modern SR methods. Most CNN-based SR
methods have three-part structure in common, consisting of shal-
low feature extraction, computation on deep features and a final
up-scaling module [1, 10, 13, 31, 35, 64].

this study, we propose a fast and lightweight model tailored
for 4K image SR from large input resolutions (720p, 1080p
→ 4K). Moreover, our method showcases its scalability
and achieves comparable results on established benchmarks
while surpassing them in terms of runtime and efficiency.
Additionally, we explore the significance of training data
when presented with the challenge of enhancing computer-
generated visuals along with photorealistic content.

Starting with the basic blueprint shown in Fig. 2 for
learning-based super-resolution approaches, we gradually
modify a simple and shallow network architecture to im-
prove its performance in terms of runtime and reconstruc-
tion fidelity. Drawing concepts from the image compression
research [53], the key aspect of our approach is downsiz-
ing the deep features to accelerate the computation, while
simultaneously retaining valuable high-frequency (HF) in-
formation from the LR input. Therefore, we efficiently ex-
tract high-frequency details first before downsampling the
feature. To ensure effective computation of deep features,
we utilize the potent NAFNet [7] block. Additionally, we
simplify the design of its basic components and apply struc-
tural re-parameterization [12] at inference time to further re-
duce the total runtime of our method. After extracting high-
frequency details, we refine them through a dedicated par-
allel branch before reintroducing them to the deep features.
This compensates for the previously performed downsam-
pling operation. We provide exhaustive ablation studies us-
ing the novel 4K RTSR [10] benchmark as a reference.

2. Related Work

Efficient Architectures. In recent years, achieving near
real-time SR on resource-constrained platforms has gained
popularity [24, 33, 34, 57]. As a result, researchers have
proposed optimized neural architectures [23], network com-
pression methods, and training strategies to address the need
for efficient solutions [2, 14, 29, 44].

IMDN [22] introduces a lightweight information multi-
distillation network that employs cascaded blocks to ex-
tract hierarchical features using an information distillation
mechanism (IDM). RFDN [37] refines the architecture of
IMDN [22] by proposing the residual feature distillation
network, which replaces IDM with feature distillation con-

nections. ECBSR [61] introduces an edge-oriented con-
volutional block that utilizes structural re-parameterization
[12] to enhance the learning capability of the model with-
out impacting the inference time. While accessing preced-
ing network layers can be compute-intensive, sequential op-
erations can minimize memory consumption and runtime
overhead. RLFN [28] leverages this idea to achieve high
reconstruction accuracy through the use of simple 3 × 3
convolutions instead of concatenation and feature distilla-
tion layers, as well as a multi-stage training strategy. Simi-
larly, FMEN [16] employs a lightweight backbone by stack-
ing multiple optimized convolutions and reducing compute
through re-parameterization at inference time. ESRT [38]
combines a lightweight CNN to dynamically adjust the
feature map size, allowing for the extraction of deep fea-
tures with low computational cost, with a lightweight Trans-
former [15, 49] to capture long-term dependencies between
similar patches. VapSR [65] introduces large receptive
field design with depth-wise convolutions into the atten-
tion mechanism and presents a novel pixel normalization
approach for improved training stability. Furthermore, the
Mobile AI workshop in 2022 [24] highlighted the chal-
lenge of achieving efficient and accurate quantization for
image super-resolution on edge devices. To address this
issue, most of the methods proposed at the workshop uti-
lized a shallow CNN architecture and re-parameterization
techniques to reduce inference time while maintaining com-
petitive restoration performance. NAFNet [7] presents a
highly efficient approach for image restoration by simplify-
ing commonly used architectural components, i.e. removing
nonlinearities, outperforming previous techniques across a
wide range of image restoration problems.

Upscaling to Ultra-High Definition. The field of super-
resolving images or videos to achieve ultra-high resolu-
tions, such as 4K and 8K, remains relatively unexplored in
the research community. While modern display technolo-
gies can handle ultra-high definition (UHD) content, effec-
tive broadcasting and streaming require significant band-
width. As a result, the industry standard involves down-
scaling prior to data transfer and upscaling back to full
resolution on the consumer’s end. This process demands
highly efficient super-resolution (SR) approaches [8,11,26].
Moreover, cloud-based gaming experiences a large gain in
popularity, where upscaling digital content presents addi-
tional challenges, e.g. aliasing, consequently requiring tai-
lored approaches [52, 54]. The upscaling of images to 4K
resolution in real-time remains a relatively unexplored topic
within the broad research community of SR. The NTIRE
2023 4K RTSR challenge [10] addresses this open question
by demanding lightweight yet effective SR solutions from
its participants. It also provides them with a competitive
benchmark for 4K image SR. Moreover, to the best of our
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(a) RT4KSR architecture.
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(b) Reparameterizable Residual Block [16].

Figure 3. Overview of proposed RT4KSR architecture. (a) Initially,
structural high-frequencies (HF) are extracted from the LR input,
followed by a shared convolution that extracts both HF and LR fea-
tures. These features are then separately processed by the DFEB
and HFB modules. The HFB module is responsible for enhanc-
ing the HF components before enriching the output of the DFEB
module, preceding the upscaling stage. (b) During training, chan-
nels C are first expanded by 2C and refined before squeezed back
to C. During inference, RRB is a standard 3× 3 convolution with
C channels thanks to reparameterization [16].

knowledge, Zhang et al. [59] offer a comprehensive dataset
for evaluating recent SR techniques on upscaling to 4K and
8K resolution. However, this dataset does not consider the
increased model runtime and has limited content.

3. Method
In this section, we first revisit the blueprint approach for

SR based on deep models and introduce our proposed archi-
tecture in Sec. 3.1. Next, in Sec. 3.2 we describe the training
schedule to enhance the performance of our method in the
NTIRE 2023 4K RTSR challenge [10].

3.1. Model Architecture

Over the past few years, the SR research community
has developed a common structure for CNN-based neu-
ral architectures. The majority of methods follow a three-
part blueprint shown in Fig. 2 that includes an initial ex-
traction of shallow features, a computationally intensive
refinement in deep feature space, and a final upscaling
stage to achieve the target resolution. Moreover, previous
works [20,36,62,63] have shown the tremendous benefit of
adding local and global residual connections. The methods
proposed in [24] effectively utilize this blueprint to achieve
strong reconstruction capabilities while maintaining a low
computational footprint. In our work we adopt this afore-
mentioned structure and prioritize real-time inference with
a focus on a shallow and lightweight design. We begin with
a simple stack of 3 × 3 convolutions, each followed by a
GeLU [19] non-linearity visualized in Fig. 5a. Contrary to

prior work [24, 31, 56], we address SR from large-scale in-
puts, which poses an additional layer of complexity for real-
time processing. In Deep Learning, a common approach is
to reduce the spatial resolution of feature maps to keep the
computational burden low. However, it has been demon-
strated that decreasing spatial resolution within the network
can negatively impact the reconstruction performance of
SR methods, since high-frequency (HF) details are already
scarce in the LR input image. Yet, the atypical large size of
LR inputs in our use-case allows us to effectively process
the HF information differently.

An overview of our final architecture design is presented
in Fig. 3. First, we efficiently extract the HF components
from the LR input. Subsequently, the LR input and ex-
tracted HF maps undergo processing via a shared convo-
lution for shallow feature extraction. Next, we enhance the
HF features in a dedicated high frequency branch (HFB)
while simultaneously compressing the features in the deep
feature extraction branch (DFEB) of the network. Lastly,
we inject the enhanced HF components back into the deep
features. We add a LayerNorm [3] and another convolu-
tion before upscaling to the desired output resolution using
PixelShuffle [44]. In particular LayerNorm provides con-
sistent improvement and stable training, becoming a stan-
dard in image restoration [7, 9]. Next, we gradually modify
the basic structure to enhance the network capabilities while
aiming at keeping computational costs low.

Enhancing High Frequencies. Inspired by [38, 40], we
aim at efficiently extracting and enhancing the remaining
HF details in the LR input. To achieve this goal, we explore
two straightforward approaches that are both rapid and do
not introduce additional complexity that could impede the
processing speed of our method. (i) We reduce the size
of the LR input through average pooling, immediately fol-
lowed by upscaling it back to the original resolution using
Nearest Neighbor interpolation. (ii) We use an inexpensive
Gaussian blur operation on the input to obtain its blurred
version. Both approaches yield an image that represents the
signal’s uniformity, which we then subtract from the initial
LR input to obtain the HF components.

In Figure 4, we conduct a visual comparison between
discussed approaches where the Down-and-Up operation
falls short in extracting fine-grained details, while utiliz-
ing the Gaussian Blur aids in extracting circular contours.
Tab. 2a quantifies the impact of both approaches on our
method. The HF details are then further refined by a shallow
parallel branch using a 3× 3 convolution and GeLU activa-
tion before being injected back into the deep features. Tab. 1
presents a direct comparison between the baseline and its
variant with the HFB. Although both modifications depicted
in Figs. 5a and 5b exhibit improved PSNR and SSIM, they
also entail longer runtime.
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LR Down-and-Up Gaussian Blur

Figure 4. Extracting high frequency (HF) information. Applying
the Down-and-Up generates speckled information with higher in-
tensities, whereas employing Gaussian Blur yields more intricate
details, particularly in circular regions.

Compressing Deep Features. In practical applications,
the runtime of SR methods can be decreased by reducing
the network’s depth or width. Nonetheless, this often re-
sults in inferior restoration performance. In addition to
achieving the optimal balance between depth and width,
downsizing the spatial dimensions provides another means
of lowering the runtime. However, this usually results in
the loss of valuable details, which is, in fact, crucial for
SR tasks that aim to recover previously lost information.
Earlier studies [37, 38] employed strided convolutions or
pooling operations to attain the required spatial resolution.
When we apply the Down-and-Up scheme to the DFEB of
our method, as shown in Tab. 1, we observe a significant
loss of reconstruction fidelity due to pooling. Intriguingly,
the improvements obtained by incorporating the HFB into
our method are not as prominent when the deep features are
downscaled. To address this issue, we explore the use of the
PixelUnshuffle [44] operation for feature downsampling, in
addition to the initial extraction of HF components. Pix-
elUnshuffle [44] reduces the spatial dimensions by a factor
of s, while increasing the channel dimension by a factor of
s2. Although incorporating PixelUnshuffle naively into our
architecture significantly reduces its efficiency, it does im-
prove the reconstruction accuracy, as shown in Tab. 1 and
the visualization in Fig. 5c. An architecture that employs
the unshuffling may benefit from a larger channel dimen-
sion. However, to compensate for the loss of inference effi-
ciency, we investigate the possibility of squeezing the chan-
nel dimensions after the unshuffling process and then map-
ping them back after the output of the DFEB. While this
approach can reduce the runtime, the model is unable to
recover the loss of information resulting from channel re-
duction, see Tab. 1. To address this issue, we restructure

the 3 × 3 convolution used for extracting shallow features
so that it occurs after the LR input has been unshuffled, see
Fig. 5d. Both HF and LR features undergo additional pro-
cessing through the DFEB and HFB modules. Prior to the
upscaling stage, we merge the refined high-frequency com-
ponents with the deep features, and then increase the output
resolution by ×4 (for ×2 SR). Next, we detail the enhance-
ments made to both the DFEB and HFB modules in order to
improve their modeling capacity leading to the final design
of our model.

Increasing Block Complexity. The architecture design at
this point has limitations in terms of the expressiveness of
its features as the basic component of the DFEB is a stan-
dard 3 × 3 convolution and GeLU activation repeated N
times, see Fig. 5a. Recently, NAFNet [7] has shown strong
reconstruction capabilities with a more complex block de-
sign. We enhance our plain block by incorporating compo-
nents from the basic block of NAFNet visualized in Fig. 5e.
Specifically, we replace the 3 × 3 convolution with an in-
verted depthwise separable convolution, which is followed
by GeLU non-linearity to increase the feature dimensions
from C to 2C. The basic block also includes Channel At-
tention [7, 50, 62], LayerNorm [3], and a local skip con-
nection. To expedite the performance of this block design,
we substitute the standard Channel Attention with its effi-
cient version [50]. A final 1 × 1 convolution maps the fea-
ture dimensions back to C. As anticipated, incorporating
the NAFNet-inspired block in Fig. 5f enhances the model-
ing capacity of our method, see Tab. 1. However, this also
results in a substantial increase in runtime. Although we
can address this issue by downsampling the deep features,
we encounter challenges in maintaining the accuracy gains
achieved by the more intricate block design, see Tab. 1. Un-
fortunately, this renders the modified architecture impracti-
cal for our use case. In the following section, we will out-
line our approach to streamline the network design while
preserving both high inference speeds and reconstruction
fidelity.

Model reparameterization. First introduced in [12],
structural reparameterization has rapidly gained traction
within the research community as a means of reducing
model runtime during inference. Many participants of
the NTIRE and AIM efficiency challenges [24, 33] have
adopted various forms of reparameterization for their archi-
tectures. We closely follow [16] and replace the depthwise
separable convolutions within the DFEB with a reparame-
terizable residual block (RRB), cf. Fig. 3b. The RRB ex-
pands the channel dimension C by a factor of fExp = 2
with a 1 × 1 convolution. Next, a 3 × 3 convolution en-
hances the learned features in a higher dimensional space,
followed by a final 1 × 1 convolution that compresses the
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Figure 5. Network configurations. We start from a shallow CNN (Fig. 5a) and gradually increase its complexity. By downscaling or
unshuffling the feature maps (Figs. 5c and 5d) and inserting reparameterizable (Fig. 5g) convolutions we reduce the inference time. CA,
Norm and HF denote channel attention [50], LayerNorm [3] and HF extraction, respectively. Modifications are highlighted in red.

channels back to C, retaining only the most discriminative
features. Short and long residual connections facilitate fea-
ture propagation. During inference, we can summarize the
RRB using a single 3 × 3 convolution. This reduces pro-
cessing time while still preserving the expressive power of
higher feature channels. Additionally, we eliminate the ef-
ficient Channel Attention module, final 1 × 1 convolution,
and local residual, retaining only the normalization opera-
tion preceding the RRB. Our new reparameterizable basic
block is visualized in Fig. 5g. Furthermore, we enhance the
model capacity of the HFB by substituting the 3× 3 convo-
lution with the RRB, see Fig. 5h.

3.2. Towards Learning the High Frequency Details

Besides traditional pixel-wise reconstruction loss func-
tions, the Computer Vision community proposed several
perceptual losses [18,25,40,60] to improve SR models and
impose meaningful priors during model training. Explic-
itly modeling the high frequencies is a key concept of our
model. Therefore, we extract high frequency information,
e.g. edges and contours, from the SR output and HR target
image using the same Gaussian blur operation as within our
model. As an auxiliary optimization task, we minimize the
L1 distance between obtained HF maps. The loss is formu-
lated as follows:

LHF = ∥(y − (y ∗ b))− (ŷ − (ŷ ∗ b))∥1 (1)

We incorporate this auxiliary loss solely to enhance the
performance of our model in the NTIRE 4K RTSR chal-
lenge [10]. Typically, participants develop increasingly

complex training strategies to improve the performance of
their methods in this challenge.

4. Experiments
4.1. Experimental Setup

Datasets and Metrics. Our training dataset is a combi-
nation of 800 images from DIV2K [1], 2650 images from
Flickr2K, and 1000 images from LSDIR [32]. Follow-
ing standard practice, we report PSNR and SSIM met-
rics on RGB. To explore the real-time performance of our
method on large-scale inputs, we conduct most of our exper-
iments on the new benchmark proposed in the NTIRE 2023
4K RTSR challenge [10]. Additionally, we evaluate our
approach on canonical SR benchmarks, namely Set5 [4],
Set14 [55], Urban100 [21] and BSD100 [41], when com-
paring our results to previously published work.

Training Details. We extract random crops of size 128×
128 from the RGB training set and further augment the
crops by random rotation, horizontal and vertical flipping.
LR images are generated online using bicubic downsam-
pling of the original HR images. We use ADAM [27] opti-
mizer to minimize the L1 loss between the SR output and
HR target for 100 epochs with the batch size set to 64 and
an initial learning rate of 1e−3, along with a step scheduler
with step size 20 and decay factor 0.5.

Runtime evaluation. Unlike other studies [33], we assess
the runtime of our proposed architectures by repetitively
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Table 1. Results on the NTIRE 2023 RTSR4K Benchmark. The runtimes are computed using Nvidia RTX 3090. For better comparison we
color-code the runtime using < 24 FPS , 30 > x > 24 FPS , 60 > x > 30 FPS , 120 > x > 60 FPS and > 120 FPS , respectively.

Scale Method # Params FLOPs (G) PSNR (dB,↑) SSIM (↑) Runtime (ms, ↓)

RGB RGB RTX 3090

×2

Bicubic - - 33.92 0.8829 0.46

(a) Baseline 35.2K 429.98 34.11 0.8834 11.70
(b) Baseline + High Frequency Branch (HFB) 34.6K 515.98 34.13 0.8836 14.44
(-) Baseline + Down-and-Up 35.2K 200.66 34.01 0.8830 07.79
(c) Baseline + HFB + Down-and-Up 35.2K 286.65 34.00 0.8827 10.48

(-) Baseline + PixelUnshuffle 346.6K 1347.28 34.15 0.8835 16.46
(d) Baseline + PixelUnshuffle + Squeeze-and-Excite Channels 40.0K 217.65 34.01 0.8829 8.42

(e) NAFNet Basic Block 30.0K 353.54 34.16 0.8844 40.71
(-) NAFNet Basic Block + HFB 30.6K 439.54 34.17 0.8846 43.40
(-) NAFNet Basic Block + Down-and-Up 30.0K 181.55 34.00 0.8829 14.92
(f) NAFNet Basic Block + HFB + Down-and-Up 30.6K 267.54 34.01 0.8828 17.61

(h) Rep. Basic Block + HFB + PixelUnshuffle (final) 44.5K 171.99 34.20 0.8848 7.09

×3

Bicubic - - 31.31 0.8251 0.44

(a) Baseline 38.5K 477.76 31.43 0.8252 5.57

(h) Rep. Basic Block + HFB + PixelUnshuffle (final) 57.5K 219.77 31.72 0.8297 3.74

passing a randomly initialized tensor through the network
for n = 244 iterations. This approach enables us to avoid
incorporating the costly data loading process to GPU mem-
ory, which could impair the actual inference speed of the
evaluated model architectures. As proposed in [10], we
measure the runtime using mixed-precision.

4.2. Ablation Studies

In this section, we analyze the correlation between fi-
delity improvement and runtime consumption for different
network aspects. Our studies are conducted for ×2 SR on
the 4K RTSR [10] benchmark.

Non-learnable HF extraction. As mentioned in Sec. 3.1,
we explore two widely-used and efficient approaches to ex-
tract HF details from images. While learning-based tech-
niques have shown significant advancements over tradi-
tional hand-crafted methods, the overall efficiency of the
model is crucial for our use case. This ablation study aims
to determine which approach is the most effective in extract-
ing valuable HF information to compensate for the feature
downscaling inside the DFEB. The findings are showcased
in Tab. 2a, indicating that the application of Gaussian blur
not only results in more visually meaningful information
but also improves the quantitative performance. As a result,
we incorporate the Gaussian blur approach for extracting
HF components into our final method.

Simplifying NAFNet’s basic block. In Sec. 3.1, we ex-
plained our decision to use the basic block proposed by

Table 2. Model architecture. We present the PSNR and SSIM
results of the S-variant of our method on the full RGB test samples
of the 4K RTSR benchmark [10].

(a) Comparison of HF extraction.

Scale Method PSNR (dB,↑) SSIM (↑)

×2
RT4KSR-S + Down-and-Up 34.17 0.8844
RT4KSR-S + Gaussian Blur 34.20 0.8848

×3
RT4KSR-S + Down-and-Up 31.70 0.8295
RT4KSR-S + Gaussian Blur 31.72 0.8297

(b) Ablation on the basic block.

Scale Method Runtime (ms,↓) PSNR (dB,↑) SSIM (↑)

×2
Plain 05.19 34.16 0.8842
Residual 05.54 34.15 0.8841
LayerNorm [3] 07.09 34.20 0.8848

×3
Plain 02.83 31.66 0.8285
Residual 02.98 31.65 0.8283
LayerNorm [3] 03.74 31.72 0.8297

(c) ×2 and ×3 results in the NTIRE 2023 4K RTSR challenge [10].

Method Runtime (ms,↓) Score (↑) PSNR (dB,↑) SSIM (↑)

S + aux. Loss 7.09 3.74 9.27 14.01 34.22 31.74 .8854 .8299

NAFNet [7] as a starting point and detailed the modifica-
tions we made to arrive at our final version. In this ex-
periment, we aim to investigate the impact of each mod-
ification on both the total runtime and the reconstruction
performance of our approach. Our findings, presented in
Tab. 2b using the 4K RTSR [10] benchmark, reveal that
including normalization results in a significant increase in
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runtime, but yields the best reconstruction accuracy in terms
of PSNR and SSIM. This result holds consistently across
both upscaling scenarios from 720p (×3) and 1080p (×2)
to 4K resolution. Our approach offers a practical trade-off
between runtime and accuracy, besides adjusting the net-
work’s depth or width. For our final contribution, we decide
to incorporate the LayerNorm [3] operation for improved
reconstruction fidelity.

Training on diverse contents. The novel 4K RTSR [10]
features HR high-quality images from a variety of sources.
Consequently, we enhance our training data with various
sources of content, such as GTA5 [43] and LSDIR [32], in
addition to the conventional DIV2K [1] and Flickr2K [45]
datasets. To keep the dataset size reasonable, we include not
more than 2500 images from GTA5 [43] and 1000 images
from LSDIR [32]. In Tab. 3a, we present the performance
results of our S-variant model trained on various dataset
configurations. We find that by including a subset of LS-
DIR [32] in our training data, we observe a marginal im-
provement in performance compared to training solely on
DIF2K [1, 45]. We experiment the same behaviour with
the inclusion of a random subset of 1000 images of gam-
ing content from the GTA5 [43]. We attribute this to (i)
the fact that unlike photorealistic datasets, GTA5 [43] does
not offer high-resolution images exceeding [1914 × 1052],
(ii) the constrained model complexity -which acts as self-
regularization- does not allow to exploit the variety and
abundance of data [32] during training.

Increasing the model complexity. This ablation study
aims to explore the scalability of our method by increas-
ing the model complexity, with the trade-off of longer run-
time for improved model performance. We enhance our
model by increasing the number of blocks B and chan-
nels C. During inference, we report the runtime and num-
ber of channels of the reparameterized model. However, at
training time, the number of channels within the RRB dou-
bles. As illustrated in Tab. 3b, our findings reveal that by
considering reduced runtime, we can significantly enhance
the reconstruction performance of our method in terms of
PSNR and SSIM, with the XL-variant delivering the best re-
sults. Nonetheless, our current shallow architecture demon-
strates limitations in simply increasing its size, indicating
that more sophisticated approaches must be employed to ef-
fectively benefit from a larger model complexity.

NTIRE 2023 4K RTSR challenge. In Tab. 2c, we present
the results of our S-sized variant for both tracks of the chal-
lenge [10]. In addition to the standard SR metrics and the
runtime per image, the participating teams are evaluated
and ranked by the score function described in [10]. Unlike

Table 3. Training data and model complexity. We evaluate all
method variants on 4K RTSR [10] benchmark using PSNR and
SSIM (RGB). The S-variant is used for data ablation.

(a) Ablation on the training data.

Scale Dataset PSNR (dB,↑) SSIM (↑)

×2

DIV2K + Flickr2K (DIF2K) 34.18 0.8844
DIF2K + LSDIR 34.20 0.8848
DIF2K + GTA5 34.20 0.8850
DIF2K + LSDIR + GTA5 34.21 0.8850

×3

DIV2K + Flickr2K (DIF2K) 31.71 0.8293
DIF2K + LSDIR 31.74 0.8297
DIF2K + GTA5 31.73 0.8297
DIF2K + LSDIR + GTA5 31.75 0.8300

(b) Ablation on the network complexity for ×2. # B and # C indicate the
number of blocks and channels respetively.

Method # B # C Runtime (ms,↓) PSNR (dB,↑) SSIM (↑)

RT4KSR-XXS 2 24 05.18 34.13 0.8837
RT4KSR-XS 34 06.21 34.17 0.8842
RT4KSR-S 4 24 07.09 34.20 0.8848
RT4KSR-M 34 08.71 34.20 0.8849
RT4KSR-L 6 24 09.01 34.21 0.8851
RT4KSR-XL 32 11.22 34.26 0.8857
RT4KSR-XXL 8 24 10.92 34.23 0.8857
RT4KSR-XXXL 32 13.71 34.25 0.8857

other proposed solutions, we do not employ multiple train-
ing stages and extensive hyperparameter search. Our pri-
mary objective in this study is to provide a detailed account
of how to develop a competitive baseline for 4K real-time
SR while examining various architectural design choices.

Visual comparison. In Fig. 7, we show extracted crops
from the 4K RTSR benchmark [10]. Also in Fig. 6 we pro-
vide SR results on a real 60MP image. Our model shows
strong performance in reconstructing missing HF compo-
nents from the LR input. Although our results still have
room for improvement in dealing with shiny areas primarily
found in computer-generated content, they produce sharper
and visually more appealing outputs despite the presence of
checkerboard artifacts.

4.3. Comparision to State of the Art

To ensure a fair comparison with published work, we ex-
clusively train the XL and XXXL variants of our method for
×2 and ×4 SR on the DIV2K and Flickr2K datasets. Addi-
tionally, for ×4 SR, we trained 64×64 crops, following the
widely accepted training schedule in the SR literature. At-
tending to Tab. 4 our models are, on average, 755% smaller
than the approaches we compare them to, even those con-
sidered ”lightweight,” our performance is still impressive.
While there is still a measurable gap, we are able to close it
significantly in cases such as ×4 SR on Set14 [55].
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Table 4. Quantitative comparison with state-of-the-art. We compare RT4KSR-XL and RT4KSR-XXXL to published lightweight image
SR methods and report SSIM and PSNR (Y) for ×2 and ×4 on standard benchmarks. Model sizes are compared w.r.t RT4KSR-XXXL.

Method #Params Set5 [4] Set14 [55] BSD100 [41] Urban100 [21]

PSNR (dB,↑) SSIM (↑) PSNR (dB,↑) SSIM (↑) PSNR (dB,↑) SSIM (↑) PSNR (dB,↑) SSIM (↑)

Bicubic - 34.01 28.76 .9309 .8113 31.27 26.72 .8652 .7351 29.99 26.19 .8539 .6803 28.65 24.85 .8498 .6719
LapSRN [29] 251K(+228%) 37.52 31.54 .9591 .8850 32.99 29.19 .9124 .7720 31.80 27.32 .8952 .7280 30.41 25.21 .9103 .7560
CARN [2] 1,592K(+1442%) 37.76 32.13 .9590 .8937 33.52 28.60 .9166 .7806 32.09 27.58 .8978 .7349 31.92 26.07 .9256 .7837
IMDN [22] 694K (+629%) 38.00 32.21 .9605 .8948 33.63 28.58 .9177 .7811 32.19 27.56 .8996 .7353 32.17 26.04 .9283 .7838
LatticeNet [39] 756K (+685%) 38.15 32.30 .9610 .8962 33.78 28.68 .9193 .7830 32.25 27.62 .9005 .7367 32.43 26.25 .9302 .7873
SwinIR [35] 878K (+795%) 38.14 32.44 .9611 .8976 33.86 28.77 .9206 .7858 32.31 27.69 .9012 .7406 32.76 26.47 .9340 .7980

RT4KSR-XL 91.8K (-17%) 36.83 30.43 .9545 .8600 33.46 28.02 .9197 .7806 31.76 27.09 .8935 .7213 30.75 25.83 .8955 .7208
RT4KSR-XXXL 110.4K 36.92 30.45 .9550 .8610 33.51 28.04 .9202 .7814 31.82 27.11 .8943 .7222 30.85 25.86 .8971 .7221

Bicubic Ours GT

Figure 6. Qualitative samples. Super-Resolution results on a real
60MP photography. Our method can recover structural elements
and textures while being extremely efficient.

LR Bicubic Ours GT

Figure 7. Rendered samples from 4K RTSR [10] benchmark.

5. Conclusion
In this paper, we provide a comprehensive analysis of

super-resolution techniques for efficiently upscaling images
to 4K resolution from 720p and 1080p. To address this,
we started with a simple, yet effective baseline architec-
ture and derived a competitive design by focusing on ex-
tracting important high-frequency details and downsizing
feature maps for efficiency. Over-parameterization during
training allowed us to learn more expressive features and
transfer knowledge into inexpensive 3 × 3 convolutions at
inference time using structural re-parameterization. Our
proposed method reduces significantly the overall compu-
tational footprint in comparison to previous approaches and
achieves high reconstruction fidelity on the new 4K RTSR
benchmark and other standard SR test sets.
Acknowledgements. This work was supported by the
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