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Abstract

This paper reviews the NTIRE 2023 challenge on im-
age super-resolution (×4), focusing on the proposed solu-
tions and results. The task of image super-resolution (SR)
is to generate a high-resolution (HR) output from a corre-
sponding low-resolution (LR) input by leveraging prior in-
formation from paired LR-HR images. The aim of the chal-
lenge is to obtain a network design/solution capable to pro-
duce high-quality results with the best performance (e.g.,
PSNR). We want to explore how high performance we can
achieve regardless of computational cost (e.g., model size
and FLOPs) and data. The track of the challenge was to
measure the restored HR images with the ground truth HR
images on DIV2K testing dataset. The ranking of the teams
is determined directly by the PSNR value. The challenge
has attracted 192 registered participants, where 15 teams
made valid submissions. They achieve state-of-the-art per-
formance in single image super-resolution.

† Yulun Zhang, Kai Zhang, Zheng Chen, Yawei Li, and Radu Tim-
ofte are the challenge organizers, while the other authors participated in
the challenge. ∗ Corresponding author: Kai Zhang. Appendix A con-
tains the authors’ teams and affiliations. NTIRE 2023 webpage: https:
//cvlai.net/ntire/2023/. Code: https://github.com/
zhengchen1999/NTIRE2023_ImageSR_x4.

1. Introduction

Single image super-resolution (SR) is a field of research
that focuses on the recovery of high-resolution (HR) im-
ages from their low-resolution (LR) counterparts that have
undergone a certain degradation process. The topic has re-
cently garnered significant attention from both the vision
and graphics communities, with a surge of interest in the
field. There has been a constant growth of related papers,
and substantial progress has been made with employing
CNN and Transformer [5,7,13,23,30,33,37,41,59,63,65].

Advancements in image SR techniques have facilitated
the utilization of images for various tasks. Consequently,
the range of applications for these techniques has constantly
expanded to various fields, including surveillance, remote
sensing, automotive industry, medical image analysis, and
electronics. Furthermore, the widespread adoption and us-
age of mobile and wearable devices provide an excellent op-
portunity for developing new applications and faster meth-
ods. In this challenge, we mainly focus on higher perfor-
mance with larger models usually.

For image SR, the LR image is obtained by applying a
specific degradation process to its HR counterpart. Varia-
tions in this process can introduce different types of noise,
blurring, or other artifacts, ultimately resulting in the loss
of high-frequency information. The primary objective of
image SR methods is to recover as much high-frequency
information as possible. There are various standard prob-
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lems for image SR that depend on the degradation process.
The most commonly used degradation model is bicubic
down-sampling, which involves different downscaling fac-
tors. This classical degradation model facilitates the com-
parison of different image SR methods directly. In practice,
a model performing pretty well under Bicubic degradation
can also obtain consistent performance in other degrada-
tions or even other related applications. So, Bicubic degra-
dation can serve as a testing ground for validating the supe-
riority of newly proposed image SR methods.

In recent times, methods based on neural networks
(e.g., CNN and Transformer) have exhibited impressive per-
formance for image restoration, especially image super-
resolution (SR). SRCNN [12] first utilizes a three-layer
convolutional neural network (CNN), achieving noteworthy
enhancements over conventional SR methods (e.g., sparse
coding based methods). Due to the fast-paced evolution
of hardware technologies, numerous larger and deeper neu-
ral networks are being trained for image super-resolution.
VDSR [20] builds a 20-layer network based on residual
learning. RCAN [62] proposes a residual-in-residual struc-
ture to train a model over 400 layers. Moreover, numerous
spatial and channel attention mechanisms [33,37,63,65] are
proposed to improve the reconstruction quality. Apart from
the development of large CNN models with high perfor-
mance, Transformer proposed in the natural language pro-
cessing (NLP) field is introduced to alternate CNN. The
core component of the Transformer is the self-attention
(SA) mechanism, which can directly model long-range de-
pendencies for an accurate restoration. Several methods
have successfully applied Transformer to image SR [5,7,30,
59, 61]. Those methods further achieve performance gains
and show promising potential for future research.

Collaborating with the NTIRE workshop, we organized
a challenge specifically focused on example-based single-
image super-resolution (×4). This task requires restoring
high-frequency information in a high-resolution image us-
ing a single low-resolution input image and a set of prior ex-
amples that include low and corresponding high-resolution
images. The aim of the challenge is to obtain a network de-
sign/solution capable to produce high-quality results with
the best performance (e.g., PSNR).

This challenge is one of the NTIRE 2023 Workshop se-
ries of challenges on: night photography rendering [43],
HR depth from images of specular and transparent sur-
faces [57], image denoising [29], video colorization [19],
shadow removal [47], quality assessment of video enhance-
ment [35], stereo super-resolution [48], light field image
super-resolution [50], image super-resolution (×4) [64],
360° omnidirectional image and video super-resolution [4],
lens-to-lens bokeh effect transformation [10], real-time 4K
super-resolution [11], HR nonhomogenous dehazing [3], ef-

https://cvlai.net/ntire/2023/

ficient super-resolution [28].

2. NTIRE 2023 Image Super-Resolution (×4)
Challenge

This challenge is part of the NTIRE 2023 associated
challenges, which aims are: (1) provide an overview of the
latest trends and advances in image SR; (2) offer a platform
for academic and industrial attendees to interact and explore
collaborations. This section will elaborate on the specifics
of the challenge.

2.1. DIV2K Dataset [2, 45]

The DIV2K dataset comprises 1,000 RGB images with
a 2K resolution, exhibiting diverse content. It is split into
three sets: 800 images for training, 100 images for valida-
tion, and 100 images for testing. In this challenge, the low-
resolution (LR) version of the DIV2K dataset is created by
down-sampling the high-resolution images with a bicubic
interpolation using a downscaling factor of 4. The valida-
tion set has already been provided to the participants, while
the high-resolution images in the testing set are kept hidden
throughout the challenge.

2.2. Flickr2K Dataset [31, 45]

The Flickr2K dataset is a large-scale dataset of high-
resolution images and is commonly used in image SR. The
dataset contains 2,650 Flickr 2K images from the online
photo-sharing platform Flickr. The images in the Flickr2K
dataset are diverse in content, ranging from landscapes and
nature scenes to portraits and still life photography. They
are also diverse in quality, with some images being sharp
and clear while others are blurry or contain noise.

2.3. LSDIR Dataset [27]

The LSDISR is a large-scale dataset where all high-
resolution images are collected from Flickr. To ensure the
pixel-level quality of the collected dataset, annotators were
invited to manually inspect each of the collected images
and remove the low-quality ones. The LSDIR contains
86,991 high-resolution images divided into a training set
with 84,991 images, a validation set with 1,000 images, and
a testing set with 1,000 images.

2.4. Track and Competition

The aim is to obtain a network design/solution capable
to produce high-quality results with the best performance
(e.g., PSNR).
Track: Restoration Track. The ranking of participating
teams was determined based on the PSNR value of their re-
stored high-resolution images compared to the ground truth
high-resolution images on the DIV2K testing dataset.
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Challenge phases. (1) Development and validation phase:
The participants were given access to the training and val-
idation image pairs of the DIV2K dataset. Additionally,
participants were allowed to utilize supplementary data,
such as the Flickr2K dataset and LSDIR Dataset, during
training. To obtain prompt feedback, participants could
submit their restored high-resolution images to the evalu-
ation server, which would calculate the PSNR of the super-
resolved image generated by their models. (2) Testing
phase: Participants were given access to 100 LR testing im-
ages during the final testing phase, while the corresponding
high-resolution ground-truth images were kept hidden from
them. Subsequently, participants submitted their restored
high-resolution images to the Codalab server and provided
their factsheet and code to the organizers via e-mail. The
organizers then verified and executed the submitted code to
obtain the final results, which were later communicated to
the participants at the end of the challenge.
Evaluation protocol. The evaluation process involves
comparing the super-resolved images with their correspond-
ing ground truth high-resolution images using standard met-
rics such as Peak Signal-to-Nnoise Ratio (PSNR) and Struc-
tural Similarity (SSIM) [51] index, which are widely used
in the literature. We calculate the PSNR and SSIM values
on the Y channel of the YCbCr color space after discarding
a 4-pixel boundary around each image. The average results
over all the processed images of the DIV2K testing dataset
are reported. We allow for a slight drop in accuracy to de-
termine the final ranking. A code example for computing
these metrics is provided at https://github.com/
zhengchen1999/NTIRE2023_ImageSR_x4. The
repository also includes the code and pre-trained weights
of the submitted solutions.

3. Challenge Results
The final test results and rankings of the participating

teams are presented in Tab. 1. The evaluated methods are
briefly described in Sec.4, and the team members are listed
in Appendix A. As can be observed from Tab. 1, the ZZPM
team achieved the highest overall ranking in this Image
Super-Resolution Challenge. Moreover, the average PSNR
value of the top five teams is above 31 dB.

3.1. Architectures and main ideas

Several techniques were proposed to improve the perfor-
mance of image SR models during this challenge. Below,
we list some of the typical ideas proposed by the partici-
pants.

1. Adopting and modifying the Transformer archi-
tecture is the mainstream technology. Recently,
some methods that adopt Transformer architecture,
such as SwinIR [30], ART [59], and HAT [5], have

Team Rank PSNR (primary) SSIM

ZZPM 1 31.23 0.8750
Graphene 2 31.21 0.8665
IPLAB 3 31.18 0.8660
SRC-B 4 31.16 0.8656
LDCC 5 31.16 0.8655
NTU607-SR 6 30.97 0.8617
Swin2SR 7 30.86 0.8603
TUK-IKLAB 8 30.80 0.8595
GarasSjtu 9 30.78 0.8582
LVGroup HFUT 10 30.68 0.8563
AhRightRightRight 11 30.65 0.8555
helloooo 12 30.57 0.8551
chaobaer 13 30.23 0.8460
Alpha 14 30.02 0.8408
SVNIT NTNU 15 29.92 0.8436

Table 1. Results of NTIRE 2023 Image Super-Resolution Chal-
lenge. PSNR/SSIM results are measured on the DIV2K testing
dataset. The ranking of the teams is determined directly by the
PSNR (primary) and SSIM (secondary).

achieved better performance than CNNs in image SR.
Therefore, several teams participating in this challenge
have investigated modifying existing architectures to
enhance the model performance. For example, the
Graphene team proposed a cross-scale attention and
wavelet hallucination on the architecture of SwinIR.
The IPLAB team added a convolution module FEB to
the ART model.

2. Enhance model performance with global informa-
tion. Global information plays a crucial role in image
SR as it can activate more pixels and significantly en-
hance the performance of the reconstruction process.
Some teams try to utilize global information. For ex-
ample, the SRC-B team proposed a spatial frequency
block to extract the global information based on fast
fourier convolution. The LVGroup HFUT team in-
troduced an additional global feature branch based on
SwinIR.

3. Image augmentation methods could effectively im-
prove performance. The self-ensemble strategy [46]
has been shown to be effective in improving the per-
formance and is widely used. Some teams tried more
image augment methods. The ZZPM team adopted six
data augmentation methods to train five models, and
proposed a new fusion method to generate the results.

4. More training data is an important factor. In addi-
tion to DIV2K, the Flickr2K and LSDIR datasets are
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allowed as training data. Models trained on large-scale
datasets have better performance. Therefore, some
teams try to use more extra data, e.g., OST and FFHQ.
The LDCC team also selected the training data with
the proposed latent discriminative cosine criterion.

5. Advanced training strategy also boosts perfor-
mance. It is observed that some teams employed well-
designed training strategies in their methods. For in-
stance, the progressive training strategy is used, gradu-
ally increasing the patch size during the training phase.

6. Various loss functions are considered. The loss func-
tion is also a crucial element in neural networks. Apart
from the commonly usedL1 andL2 loss, several teams
used more loss functions, like the fast fourier transform
(FFT) loss and MSE loss, to achieve PSNR gain. For
instance, the chaobaer team uses different losses at dif-
ferent stages of training.

7. Some other techniques are also attempted. Some
teams also proposed solutions based on the U-Net ar-
chitecture and Hadamard product.

3.2. Participants

The challenge attracted 33 registered participants, out of
which 15 teams submitted valid entries. These entries set
the state-of-the-art in image SR (×4).

3.3. Fairness

To ensure the fairness of the challenge, several rules were
established regarding fair and unfair practices. Firstly, train-
ing with the DIV2K test LR images is prohibited. Sec-
ondly, training with extra datasets, such as the Flickr2K and
LSDIR datasets, is allowed. Thirdly, using advanced data
augmentation strategies during training is considered a fair
practice.

3.4. Conclusions

The following conclusions can be drawn based on the
above analysis of the image SR challenge results.

1. The proposed methods submitted during this challenge
have contributed to the advancement of research and
implementation in the field of image SR.

2. The methods based on the Transformer architec-
ture demonstrate impressive performance and set new
records regarding restoration quality.

3. High-quality, large-scale datasets play a critical role in
image SR, especially for large neural networks.

4. Challenge Methods and Teams

4.1. ZZPM

Network Architecture. The overall workflow of the so-
lution proposed by the ZZPM team is illustrated in Fig. 1.
The method first performs data augmentation locally on the
training set on the DIV2K and LSDIR datasets. Multiple
models are then used to train on the augmented data. The
final result consists of the fusion of multiple models. A total
of six data augmentation methods are used, including Cut-
Blur, Blend, RGB permute, Mixup, CutMix, and CutMixup.
These methods greatly increase the diversity of the data and
improve the robustness of the model.

In the model selection phase, the team selects a total of
five models, including Liif-EDSR, Liif-RDN, RDN-LTE,
SwinIR-LTE, and SwinIR, which are widely used and have
shown excellent performance in super-resolution tasks.

I. The Liif-EDSR is a deep learning model used for im-
age super-resolution. It combines the Liif (Learned
Intrinsic Image Filtering) model with the EDSR (En-
hanced Deep Residual Networks) architecture to pro-
duce high-quality, high-resolution images. The Liif
component is responsible for image filtering and re-
finement, and the EDER part is for image super-
resolution. EDSR consists of multiple residual blocks,
each containing convolutional layers and skip connec-
tions.

II. The Liif-RDN is similar to Liif-EDSR. The RDN com-
ponent is used for super-resolution, and it consists of
multiple dense blocks, each containing convolutional
layers with densely connected feature maps.

III. The RDN-LTE is a variant of the Residual Dense Net-
works (RDN) architecture that has been optimized for
low-latency applications. It uses densely connected
convolutional layers to enable the model to learn and
refine image features at multiple scales.

IV. The SwinIR architecture consists of three main com-
ponents: the Swin Transformer encoder, the Swin
Transformer decoder, and the image restoration mod-
ule. It combines the Swin Transformer architecture
with an image restoration module for super-resolution.

V. The SwinIR-LTE is a variant of the SwinIR model
optimized for low-latency applications. It uses a
smaller model architecture and a more lightweight im-
age restoration module to reduce the computational
cost and latency of the model while maintaining high-
quality super-resolution results.

The main purpose of the post-processing part is to fuse
the outputs of the models. Here a new fusion method is
proposed. In order to fuse the outputs of the five models,
first calculate the mean of the five images to be fused. And
then, the MSE is calculated between each image and the
mean. The smaller the MSE value, the greater the weight
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Figure 1. ZZPM Team: Overall architecture of the method.

assigned to the model during fusion. Finally, the final output
result is obtained by performing a weighted fusion of the
outputs of the five models using the calculated weights. The
significance of this method is that it can avoid the final result
being skewed by special bad points.

Training strategy. During the training phase, an L1 loss
is used for SR, and an MSEloss is used for enhancement.
The training of the aforementioned models is conducted on
8 Nvidia V100 GPUs, using the Adam optimizer and multi-
step learning rate decay method. The initial learning rate
is set to 1×104. In the testing phase, five models are used
for the ensemble, and a series of test-time augmentation ap-
proaches, including RGB channel shuffling and horizontal
and vertical flipping.

4.2. Graphene

Network Architecture. The Graphene team designed an
Image Super-Resolution Transformer with Cross-Scale At-
tention (CSA) and Wavelet Hallucination (WH) to address
the image super-resolution task. The framework is shown
in Fig. 2.

In cross-scale attention, the method adds a 3×3 depth-
wise convolution in the query transformation and adds
multi-scale depth-wise convolutions in the key and value
transformation. Such a depth-wise convolution can extract
the local features and model the relationship between fea-
tures across multiple scales. The cross-scale attention is
used to improve the vanilla and shifted window attention
in SwinIR [30].

For the wavelet hallucination, the method first halluci-
nates four frequency sub-bands using a linear layer, then
perform depth-wise convolution followed by a linear pro-
jection separately for each sub-band. A Haar wavelet recon-
struction function reconstructs the higher-resolution feature
maps. Finally, a 3×3 convolution with stride 2 is applied
to reduce the size of feature maps into the original one. A
higher-resolution hidden feature is predicted by hallucinat-
ing features in different frequency sub-bands. Such hidden
high-resolution features help to extract finer details. The
wavelet hallucination is used to replace the 3×3 convolu-
tion at the end of each Transformer layer in SwinIR.

Training strategy. The model is trained on the combina-
tion of the trainsets of DIV2K, Flickr2K, and LSDIR. The

training process is divided into two stages. In the first stage,
the model is trained on 64×64 randomly cropped images
with The Adam optimizer. The batch size, initial learning
rate, and total iterations are 32, 2×104 and 800K, respec-
tively. The learning rate is halved at 300K, 500K, 650K,
700K, and 750K iterations. In the second stage, the model
is fine-tuned on 128×128 images with 200K iterations.

4.3. IPLAB

Network Architecture. The NEESR team proposed At-
tention Retractable Frequency Transformer (ARFT) for im-
age super-resolution [66]. The overall architecture of the
ARFT is shown in Fig. 3. Following ART [59], ARFT
employs residual in residual structure to construct a deep
feature extraction module. Given a low-resolution image
ILR ∈ RH×D×Cin (H , D, and Cin are the height, width,
and input channels of the input), ARFT firstly applies a 3×3
convolution layer to obtain shallow feature F0 ∈ RH×D×C ,
where C is the dimension size of the new feature em-
bedding. Next, the shallow feature is normalized and fed
into the residual groups, which consist of core Transformer
blocks. The deep feature is extracted and then passes
through another 3×3 convolution layer to get further feature
embeddings F1. Then the element-wise sum is used to ob-
tain the final feature map FR=F0+F1. Finally, ARFT em-
ploys the pixel shuffle layer to generate the high-resolution
image ISR from the feature FR.

As shown in Fig. 3(b), two attention strategies, i.e.,
D-MSA and S-MSA, are applied to design two types of
self-attention blocks named dense attention block (DAB)
and sparse attention block (SAB). In the dense attention
block (DAB), the dense multi-head self-attention module
(D-MSA) allows each token to interact with a smaller num-
ber of tokens from the neighborhood position of a non-
overlapping W×W window. We apply these groups to
compute self-attention for W times. Meanwhile, in sparse
attention block (SAB), the dense multi-head self-attention
module (S-MSA) is proposed to allow each token to inter-
act with a smaller number of tokens from sparse positions
with interval size I . After that, the updates of all tokens are
split into several groups, each with tokens.

As shown in Fig. 3(c), the FEB network architecture is
composed of two primary components: a frequency branch
on the up and a spatial branch on the down. Two distinct do-
mains process the input feature to generate frequency fea-
ture Xfrequencyand spatial feature Xspatial. The outputs of two
branches are concatenated and operated by a convolution
layer to obtain the final result. Specifically, Xfrequency is in-
tended to capture the long-range context in the frequency
domain, and Xspatial is utilized in the spatial domain.

Progressive Model Training Strategy The team pro-
posed a novel progressive model training strategy to im-
prove SR performance. Specifically, the progressive model

1869



Transformer 
Layer

Transformer 
Layer

× 𝑁2× 𝑁1

⋯ WH

FC
Wavelet 

Reconstruction

Conv (stride=2)

Wavelet Hallucination

W
in

d
o

w
 A

ttn

Sh
ifted

 W
in

d
o

w
 A

ttn

W
in

d
o

w
 A

ttn

Sh
ifted

 W
in

d
o

w
 A

ttn

W
in

d
o

w
 A

ttn

Sh
ifted

 W
in

d
o

w
 A

ttn

W
avelet 

H
allu

cin
atio

n

Q

K

V

D
W

C

FC

M
S-D

W
C

FC
FC

Cross-scale Attention
Transformer Layer

Figure 2. Graphene Team: The pipeline of the proposed method. A Transformer-based architecture is adopted. The cross-scale attention
and wavelet hallucination are proposed to enhance the feature extraction.

C
onv 3x3

L
ayerN

orm

D
A

B

SA
B

FE
B

ILR

ISR

PixelShuffle

. . .

Residual Group 1

× NB

Residual Group N

× NB

FE
B

SA
B

D
A

B

C
onv 3x3

C
onv 3x3

Inv R
eal FFT

2D

R
eal FFT

2D

C
onv +

L
eakR

eL
U

C
onv 1x1

C
onv 1x1

C

C
onv +

L
eakR

eL
U

C
onv 3x3

C
onv +

L
eakR

eL
U

C
onv 3x3

MLP

LN

S-MSA

LN

MLP

LN

D-MSA

LN

DAB SAB
FEB

(a)

(b) (c)

Figure 3. IPLAB Team: (a) The architecture of the proposed ARFT for image SR. (b) The structure of two successive attention blocks,
DAB and SAB, with two attention modules, D-MSA and S-MSA. (c) The structure of frequency enhancement block.

1870



Figure 4. SRC-B Team: The network architecture of the proposed SwinFIR for image super-resolution.

training strategy combines the inference results from vari-
ous models. The model is trained with different patch sizes
of training datasets in multi-progressive stages. Specifi-
cally, three training stages are employed, and the patch size
of each stage is set to 48, 64, and 84, respectively.

Loss Function. Recently, the Fast Fourier Transform
loss (FFTLoss) [16] is proposed to constrain the frequency
information to get better performance in SR tasks. The team
uses L1 loss, L2 loss, and the FFTLoss [16] to optimize
their network for generating promising SR results.

In each training stage, the basic loss function composed
of L1 loss and the FFTLoss are used to obtain the basic SR
performance,
Loss1 = ∥IHR − ISR∥1 + αFFTLoss(IHR, ISR), (1)

where IHR is the corresponding HR image and α is the
penalty factor with a value of 0.1. Then, the L2 loss is
applied to continuously train the model to improve the SR
performance,

Loss2 = ∥IHR − ISR∥2. (2)
Implementation details. The ARFT is trained on a

large combination training dataset, which is composed of
DIV2K, Flicker2K, and LSDIR. Data augmentation is per-
formed on the training data through the horizontal flip and
random rotation of 90◦, 180◦, and 270◦. Besides, the orig-
inal images are cropped into 64×64 patches as the basic

training inputs for image SR. Due to using the progres-
sive model fusion strategy, different batch sizes and patch
sizes are used in each stage. Specifically, in three stages,
the training batch and patch size are (32, 48), (16, 64), and
(8, 84), respectively. The ARFT is optimized by the Adam
optimizer with β1=0.9, β2=0.999, and zero weight decay.
The initial learning rate is set as 2×10−4 and is reduced by
half as the training iteration reaches a certain number. Tak-
ing image SR as an example, the total iterations are 500K,
and the learning rate is halved when training iterations reach
250K, 400K, 450K, and 475K. The ARFT is implemented
on PyTorch with 4 NVIDIA RTX 3090 GPUs.

4.4. SRC-B

Network Architecture. Inspired by SwinIR [30] and
HAT [5], the SRC-B team proposed SwinFIR [58] using
Swin Transformer [36] and fast fourier convolution [8], as
shown in Fig. 4. HAT proposed the Residual Hybrid At-
tention Group (RHAG) to activate more pixels in the im-
age super-resolution transformer to improve performance.
RHAG contains N hybrid attention blocks (HAB), an over-
lapping cross-attention block (OCAB), and a 3×3 convo-
lutional layer. SwinFIR replaces the convolution (3×3)
with Fast Fourier Convolution and a residual module to fuse
global and local features, Spatial-frequency Block (SFB), to
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Figure 5. LDCC Team: The flow chart of the proposed method

improve the representation ability of the model.
Training strategy. The high-resolution images are

cropped to sub-images (384×384). The Adam [21] op-
timizer with default parameters and the Charbonnier L1

loss [24] are used to train the model. The initial learning
rate is 2×10−4, and the MultiStepLR learning rate sched-
uler with about 800K iterations and milestones is [600K,
650K, 700K, 750K]. The batch size is 4, and the patch
size is 64. The model is implemented by PyTorch 1.8.1
and trained on NVIDIA A6000 GPU with CUDA 11.1.
The horizontal flip, vertical flip, rotation, RGB perm, and
mixup [55] are used for data augmentation. Inspired by
previous works [46,52], the self-ensemble and multi-model
ensemble is applied to improve the performance.

4.5. LDCC

Network Architecture. The LDCC team proposed the
latent discriminative cosine criterion (LDCC) to select train
data, which helps improve performance by computing the
cosine similarity with test data. For this, the latent features
are extracted by using the pre-trained VIT [14] model as an
encoder and measure the cosine similarity [44] between the
train image and the test image as follows:

cos(Θ) =
1

H ×W

∑
i∈(H,W )

Itrain(i) · Itest(i)
||Itrain(i)||2||Itest(i)||2

, (3)

where Itrain and Itest denote low-resolution images in train
and test datasets, respectively. H and W are the height and
width of the low-resolution image. i means the pixel po-
sition of Itrain. (·) indicates the inner product. After that,
the top 200 samples are chosen as training data according
to the similarity values for each test image. By doing so,
about 18K image samples are obtained from DIV2K [45],
Flickr2K [31], LSDIR [27], OST [49], and AI-HUB [1]
datasets.

Training strategy. The training process contains two
stages according to competition phases, i.e., development
and testing. At the development phase, the SR model is
pre-trained on DIV2K, Flickr2K, and LSDIR datasets with
initial model parameters, which are publicly available from
HAT [5]. After that, the latent discriminative cosine crite-
rion (LDCC) is applied to DIV2K, FLickr2K, LSDIR, OST,
and the additional dataset obtained from AI-HUB in the
testing phase. Finally, the SR model is fine-tuned on se-
lected samples.

To train the SR model, the random rotation, horizontal
flip, and random crop (i.e., 64×64 patches) are used as data
augmentation and mean absolute error loss. The Adam [21]
optimizer is used with a batch size of 4 per GPU, where the
power and momentum are set to 0.9 and 0.99, respectively.
The initial learning rate was initialized as 1×10−5 in the
development phase and 6.25×10−6 in the testing phase and
reduced by half at 100K, 200K, 225K, and 240K iterations.
The model is implemented with 8 NVIDIA V100 GPUs.

4.6. NTU607-SR

Training strategy. The approach of the NTU607-SR is
based on ART [59] and involves a 3-stage training process
for fine-tuning the model.

The model is trained on DIV2K and LSDIR datasets. In
the entire training process, the batch size is set to 8, and the
Adam optimizer with β1=0.9, β2=0.99, weight decay=0 is
used. The train iterations are 250K in each stage. All train-
ing images are cropped to a size of 256×256. Different
loss functions are used for the three stages of the training,
including L1 loss, MSE loss, and PSNR loss, respectively.
The PSNR loss is calculated only on the Y channel, and for
the learning rate, a lower rate is used when optimizing the
model later. Regarding data augmentation, more augmen-
tation tricks are applied in the early stages of the training,
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Figure 6. Swin2SR Team: The diagram of Swin2SR [9].

which allows the model to converge quickly and steadily.
As the training progresses, the usage of augmentation is re-
duced.

Specifically, in the first stage, the L1 loss is used with
the learning rate of 1×10−4. Data augmentation includes
the horizontal flip, the vertical flip, and the rotation with 90
degrees. In the second stage, the MSE loss with a learning
rate of 5×10−5 is applied. Finally, the PSNR loss on the Y
channel is adopted, and the learning rate is set to 1×10−5.

Testing description. The test time augmented images
are used to compute the predictions and ensembled the re-
sults to obtain the final prediction. Specifically, the average
of the predictions made on the original image and its three
flips (horizontal, vertical, and both) are taken to generate
the final prediction. This ensemble approach [46] helped
reduce the impact of the noise in individual predictions and
improved the overall accuracy of the model.

4.7. Swin2SR

Network Architecture. The solution of Swin2SR team
studies Swin2SR [9] and HAT [5]. The Swin2SR is illus-
trated in Fig. 6. Note that Swin2SR is a previously pub-
lished work by the team. They aim to test these methods
on the novel LSDIR dataset.

In Swin2SR, the novel Swin Transformer V2 is explored
as a possible update and improvement of SwinIR [30] for
image super-resolution. Through this method, the major is-
sues in training transformer vision models, such as training
instability, resolution gaps between pre-training and fine-
tuning, and hunger for data, can be tackled. Swin2SR
is also tested on: JPEG compression artifacts removal,

real-world image super-resolution, and compressed image
super-resolution [9]. Experimental results also demonstrate
that Swin2SR can improve the training convergence and
performance of SwinIR [30].

Compare HAT [5] and Swin2SR [9]: (1) HAT has
40.84M parameters, 1998 GFLOPs, while Swin2SR has
12.23M parameters, 515 GFLOPs, and max memory allo-
cation of 2677M. Swin2SR, therefore, is more efficient than
HAT (3× fewer params and GFLOPs) and achieves similar
results.

Training strategy. Training and testing description can
be consulted in Swin2SR [9]. The model is trained with
the Adam optimizer, L1 loss, flips, and rotation augmenta-
tions. The datasets: DIV2K, Flickr2K, OST, WED, FFHQ,
Manga109, and LSDIR are used. The training iterations
are 500K, and the progressive lr decay is the same as
SwinIR [30].

4.8. TUK-IKLAB

Network Architecture. The proposed method of team
TUK-IKLAB is named Dense Residual Swin Transform-
ers (DRSTNet) for image super-resolution. The proposed
method comprises four modules, i.e., Hierarchical Feature
Extraction, Dense Residual Feature Enhancement, Fusion,
and HR Reconstruction modules, as shown in Fig. 7.

Existing studies have revealed that using a hierarchi-
cal feature extraction module allows the network to extract
meaningful representations from images at different scales
in a divide-and-conquer manner [6, 39]. Furthermore, it
helps the network deal with complex and severe degradation
in an efficient manner. The term hierarchical is used for this
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Figure 1. Architecture for the proposed dense residual swin transformer network (DRSTNet) for Image Super Resolution

Figure 2. Sample Results on Competition testing images using DRSTNet

References
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convolutional neural networks with octave convolution. In
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Figure 7. TUK-IKLAB Team: Architecture for the proposed dense residual Swin Transformer network (DRSTNet) for Image Super
Resolution.

module as it extracts the representation from low-resolution
(LR) images with three step architecture that applies convo-
lution operation with varying strides and kernels using three
different scales. For the implementation of hierarchical fea-
ture extraction modules, DRSTNet refers to the work [39].
The first step comprises padding, stride, number of chan-
nels, and kernel size, which are set to be 3, 1, 60, and 7, re-
spectively. For the second step in this hierarchy, DRSTNet
follows the same convention for feature extraction but with
the values 2, 2, 60, and 5, followed by the third step that
takes the values 1, 2, 60, and 3, respectively. Existing works
for image restoration and super-resolution consider convo-
lutional neural networks as feature enhancers [26, 39, 60].

Recently, some of the studies considered Swin Trans-
former block to enhance the features as well as model
long-range dependencies [25, 30]. Shifted Windows (Swin)
transformers have proven to be effective for such degrada-
tion tasks, including image restoration and super-resolution,
while yielding less number of parameters. Different from
the study [25, 30], the team proposes a dense residual fea-
ture enhancement (DRFE) block. As shown in Fig. 7, the
DRFE block combines the Swin Transformer layers with
dense residual convolutional blocks. Four layers are used
for DRFE. The residual convolutional and Swin Trans-

former blocks are then connected in a dense scheme. This
dense connection scheme was inspired by DenseNet, which
helps to deal with such a complex degradation task of im-
age super-resolution. The Swin Transformer block is fur-
ther divided into Swin Transformer layers, multi-head self-
attention, and layer normalization, accordingly.

The feature fusion module undertakes the enhanced fea-
tures from DRFE and performs the feature level fusion with
the ascending hierarchical step module. Such a fusion strat-
egy leverages contextual information while fusing features
extracted and enhanced from middle and lower branches.
The features are upscaled and concatenated within the fu-
sion module with the middle branch features. Similarly, the
features from the middle branch are extracted and enhanced
using DRFE, followed by the upscaling and concatenation
with the feature maps from the first branch, respectively.
The upsampling operation is performed using convolutional
layers and pixel shuffle layer [42].

Finally, the last module is the HR reconstruction mod-
ule that undertakes the enhanced features and outputs 4×
higher resolution RGB image. As shown in Fig. 7, the mod-
ule has a two-pixel shuffle, two convolutional layers, and
two sub-pixel convolutional layers. Lastly, a convolutional
layer complies with the existing works to generate the high-
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resolution image [25, 30].
Training strategy. The model is trained on Flickr2K,

and the training dataset available from the competition web-
site. For the testing stage, the DIV2K validation images
and testing images from the competition website are used.
The number of channels, stride, padding, and kernel size for
each hierarchical branch is mentioned in the previous sec-
tion. For the DRFE module, the number of channels is set
to 60 for each hierarchical branch, and the number of STL
layers is 6. The window size is set to 8, and the number of
STBs is 2, 6, and 8 for the third, second, and first steps of
the hierarchy. The number of connections in DRFE is set
to 6. The network is trained using 2 NVIDIA 3060Ti GPUs
with a batch size of 8. The pre-trained network is used and
fine-tuned with the learning rate of 5×10−5 and trained the
network for 15K iterations.

4.9. GarasSjtu

Network Architecture. The GarasSjtu team designed
a simple Transformer-style network for image super-
resolution (STSN) [17], as shown in Fig. 8. The low-level
vision model is developed based on Conv2former [18] that
proposed a simple Transformer-style ConvNet model for
high-level vision. In order to improve the model further, the
local features can be extracted based on 3×3 convolutions
in the main block of the model. In addition, the ESA [33]
block is used to further improve the model.

The model is built based on three stages of shal-
low feature extraction, deep feature extraction, and high-
resolution image reconstruction, as shown in Fig. 8. Shal-
low feature extraction is performed using 3×3 convolu-
tions, which change the domain from image to feature. Af-
ter that, there are five blocks of Conv2FormerGroup in-
cluded in the deep feature extraction modules. In each
Conv2FormerGroup contains 4 Conv2FormerB with 3×3
convolution and ESA [33]. The Conv2FormerB block is
designed based on the Conv2Former block and multi-layer
perception (MLP) using Layernorm before each one and
using residual learning, as shown in Fig. 8. The MLP is
composed of two linear layer intermediate with one point-
wise convolution. The Conv2Former block is further im-
proved by changing 1×1 convolution to 3×3 convolution
for extracting local features. The Conv2Former includes
two branches, the first is only 1×1 convolution, and the sec-
ond is 1×1 convolution followed by depth-wise convolution
with a kernel size of k×k.

The Hadamard product is used to multiply the outputs
of the first and second branches. Then, this Conv2Former
block ends by using 3×3 convolution instead 1×1 in the
original block [18]. At the end of the deep feature extrac-
tion stage, 1×1 convolution and 3×3 convolution are used.
Then, residual learning is used between the input and the
output of this STSN network. The final stage is the im-

age reconstruction made by utilizing one 3×3 convolution.
Then, the pixel shuffle layer is utilized for mapping features
to HR image space.

Training strategy. The STSN model contains five
Conv2FormerGroup blocks containing 4 Conv2FormerB, in
which the number of feature maps is set to 150. Also, the
channel number of the ESA is set to 32, similar to previous
work [18]. DIV2K and LSDIR are used to train the model.
At the starting stage, the model is trained from scratch us-
ing the DIV2K and LSDIR datasets, with a patch size of
192×192. The bach siz is 16 for 70 epochs. Then, the pre-
trained weights are used to train it again for 450 epochs with
the same setting based on using Warm-Start Strategy [22].
The L1 loss function is used with the Adam optimizer. Af-
ter the previous stage, the model is trained starting from the
pre-trained weights using the DIV2K and Flickr2K datasets
with an initial learning rate of 5×10−5 for 200 epochs using
L1 loss.

4.10. LVGroup HFUT

Network Architecture. The LVGroup HFUT team pro-
posed a GlobalSwinIR based on the SwinIR model since ex-
isting representative methods pay less attention to the global
features of images and mainly focus on the local features
of images. The diagram of the GlobalSwinIR is shown
in Fig. 9. Specifically, the GlobalSwinIR follows the ba-
sic architecture of SwinIR [30]. While increasing the depth
of SwinIR to obtain better detail recovery quality, another
global feature branch [53] is introduced to better capture the
global features of the image, thereby guiding image recov-
ery.

Training strategy. The GlobalSwinIR is trained a total
of 500K iterations. The patch size(random crop) is 192 for
a high-resolution image. The Adam optimizer is used. The
learning rate is initially set to 2×10−4 and is halved every
100K iterations. Meanwhile, in the first 400K iterations,
L1 loss is used as our loss function, and in the last 100,000
iterations, L2 loss is adopted.

4.11. AhRightRightRight

Network Architecture. Inspired by HNCT [15],
NeWCRFs [56], the AhRightRightRight team proposed the
Hybrid Attention Single Image Super Resolution Network
with Conditional Random Field (HANCRF+). The HAN-
CRF+ combines spatial attention, channel attention, and
self-attention. While retaining the advantage of performing
local feature extraction quickly, it can explore feature cor-
relations along spatial and channel dimensions and activate
more input pixels. Feature fusion using NeW FC-CRFs [56]
uses pixel-to-pixel relations to constrain features and fuse
the different layers of features.

As shown in Fig. 11, HANCRF+ consists of four parts:
shallow feature extraction, deep feature extraction, feature
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Figure 8. GarasSjtu Team: The structure of the proposed STSN.

Figure 1: The structure of our proposed GlobalSwinIR. The Swin Transformer
Layer(STL) is the same as SwinIR[1].

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby:
An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. ICLR 2021

3 Global Method Description
• Total method complexity: all stages

Train stage: (resolution 48x48, channel:3) parameters: 80810742

• Which pre-trained or external methods / models have been used (for any
stage, if any)

• Which additional data has been used in addition to the provided NTIRE
training and validation data (at any stage, if any)

• Training description
We trained totally 500,000 iterations to take the model to convergence.
Our patch size(random crop) is 192 for high resolution image. We choose
adam as our optimizer, and our initial learning rate is set to 2*10−4, and
the learning rate is halved every 100,000 iterations. Meanwhile, in the
first 400,000 iterations, we use L1 loss as our loss function, and in the last
100,000 iterations we use L2 loss. Our other settings are exactly the same
as SwinIR[1]. There are no other tricks.

• Testing description The proposed solution is implemented based on Py-
Torch vision 1.11.0 and on python3.8, Cuda11.3. we use A100-PCIE-40GB
with 40G memory.

4

Figure 9. LVGroup HFUT Team: The structure of the proposed GlobalSwinIR. The Swin Transformer Layer(STL) is the same as
SwinIR [30].

fusion, and up-sampling module. Specifically, a 3×3 con-
volution is used for extracting shallow features f0 from the
input LR image ILR:

f0 = Hs(ILR), (4)
where Hs represents a 3×3 convolutional layer. Subse-
quently, the shallow feature is used for the deep feature ex-
traction by a stack of Enhanced Hybrid Blocks of CNN and
Transformer (EHBCT+). This process can be formulated

as:
fk = Hk

EHBCT+(fk−1), k = 1, ..., 6, (5)

where Hk
EHBCT+ denotes the n-th EHBCT+. The outputs

of all EHBCTs will concatenate together, and the number
of channels is adjusted by a 1×1 convolution to obtain the
residual features fc.

Subsequently, fc and fk will be input to Neural Win-
dow Fully-connected CRFs (NeW FC-CRFs) to aggregate
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Figure 10. AhRightRightRight Team: The architecture of the pro-
posed HANCRF+ for image super-resolution.

the observed information from each module of the feature
extraction section, and the output of each layer can be de-
noted as fm. The outputs of the NeW FC-CRFs are con-
catenated together, and the number of channels is adjusted
by a 1×1 convolution to obtain the features fc′ , followed by
a final adjustment by a 3×3 convolution to obtain ffin.

f ′k = Hk
NeWFC−CRF (fk, f

′
k+1), k = 1, ..., 6, (6)

whereHk
NeWFC−CRF denotes the k-th NeW FC-CRFs. Fi-

nally, the image is reconstructed by using 3×3 convolu-
tional layers and pixel shuffle. The results of the recon-
structed super-resolution image are as follows:

ISR = Hup(Hrec(ffin + f0)). (7)
The L1 pixel loss is minimized to optimize the parame-

ters of HANCRF+.
L1 = ||ISR − IHR||1. (8)

Enhanced hybrid block of C’N’N and transformer As
shown in Fig. 11, the EHBCT+ be composed of two Swin
Transformer Blocks(STB) [30], two Enhanced Spatial At-
tention(ESA) modules [34], Multi-Spectral Channel Atten-
tion Module [40] and one convolutional layer.

Neural Window Fully-connected CRFs CRFs mainly

Figure 11. AhRightRightRight Team: The module of Enhanced
Hybrid Blocks of CNN and Transformer (EHBCT+).

Figure 12. AhRightRightRight Team: The architecture of the NeW
FC-CRFs.

consist of unary potentials on individual pixels or image
patches and pairwise potentials on neighboring pixels or
patches. The energy function of the fully connected CRFs
is usually defined as

E(x) =
∑
i

ψu(xi) +
∑
ij

ψp(xi, xj), (9)

where xi is the value of a point in the image, j is the other
points in the image, ψu represents the unary potential of the
pixel, and ψp represents the pairwise potential calculated by
the pixel and its surrounding pixels.

Using neural networks instead of hand-designed poten-
tial functions can discover more potential information while
performing end-to-end training. NeW FC-CRFs [56] unary
potential is obtained directly from the network based on im-
age features.

ψu(xi) = θu(I, xi), (10)

where θ is a parameter of the unary network, I is the input
color image. NeW FC-CRF divides the image into block-
based windows and uses the Swin Transformer strategy [30]
to calculate the pairwise potential energy within the win-
dow.

ψp = SoftMax(qKT + b)X, (11)

In HANCRF+, the New FC-CRFs calculate the unary
potential and pairwise potential through the feature map F
output by EHBCT+ and the feature map X output by the
previous layer network, as shown in Fig. 12. A learnable
weight α is added in front of the unary potential, allowing
the network to learn adaptively from the pixels themselves
and from pairs of pixels.
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Figure 13. chaobaer Team: The proposed method.
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Figure 14. helloooo Team: The network architecture.

Training strategy. The LSDIR dataset is adopted to per-
form pre-training, and the DIV2K dataset is used for fine-
tuning. The patch size is 64×64 for input images, and the
batch size is set to 16. Data augmentation methods, includ-
ing random rotation and horizontal and vertical flipping, are
applied during our training. All models are trained using
the Adam with L1 loss. For pre-training, the learning rate
is initialized to 5××10−4, halved per 50 epochs. The total
number of epochs is 300. For fine-tuning, the learning rate
is initialized to 6.25×10−5, halved per 100 epochs. The
total number of epochs is 300. The model is implemented
by Pytorch 1.11.0 and trained with NVIDIA GeForce RTX
3090 GPUs.

4.12. helloooo

Network Architecture. The helloooo team adopted
SwinIR [30] as the base network model and combined the
advantages of CNN and Transformer to further improve the
model effect. As shown in Fig. 14, the network mainly com-

prises three modules: shallow feature extraction, deep fea-
ture extraction, and high-quality image reconstruction mod-
ule.

The shallow feature extraction module adopts 3×3 con-
volutional layer to extract shallow features. The network
adopts a long-distance connection to directly transmit low-
frequency information to the reconstruction module, which
can help the deep feature extraction module focus on high-
frequency information and stabilize training.

The extraction of deep features is different from that
of shallow features. Deep features focus on recover-
ing lost high-frequency information. The extraction mod-
ule is mainly composed of residual Swin Transformer
blocks(RSTB), and each Transformer block utilizes multi-
ple Swin Transformers for local attention and cross-window
interaction. In addition, a convolution layer is added at the
end of the block for feature enhancement and uses a residual
join to provide a shortcut for feature aggregation.

The reconstruction module integrates shallow layer and
depth features for high-quality image reconstruction. In
the image reconstruction module, pixel shuffle replaces the
convolution operation, and the features are up-sampled to
realize reconstruction and save calculation.

Training strategy. The model is trained on DIV2K, and
data augmentation, including vertical flipping, is used. The
input patch size is set to 48×48. The model is trained by
Adam optimizer, β1=0.9, β2=0.99. The initial learning rate
is set as 0.0002, and the number of iterations is 500K. The
warmup is performed 500 times per iteration. Moreover, the
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Figure 15. Alpha Team: Framework of LRFDN.

Figure 16. Alpha Team: (a) Structure of IRFDN. (b) Structure of
SRB. (c) Structure of EFSA.

training strategy is divided into two stages. In the first stage,
the model is trained from scratch with 255K iterations. In
the second stage, the pre-trained weights of the first stage
are used to accelerate the convergence rate of the model.
The model is implemented using Pytorch 1.13.1 and trained
using two GeForce RTX 2080ti GPUs.

4.13. chaobaer

Network Architecture. The chaobaer team developed
an improved version of NAFNet to super-resolve the single
image. The network architecture of the proposed method is
shown in Fig. 13. NAFBlk has been proven to be efficient
and easy to train in image super-resolution, so it is used
as the basic stem. Most current DL-based super-resolution
methods aim to learn the residual between LR and HR im-
ages. Since the residuals are mainly concentrated in edge
regions, the boundary maps generated by Sobel are intro-
duced as prior information and combine the features of a
larger receptive field as the input embedding. In addition,
skip connections are used for residual in residual learning.

Training strategy. During the training phase, only the
DVI2K is used as the training dataset. The generated LR
images are cropped into patches of size 128×128, and data
is augmented with random flipping. CosineAnnealingLR is
used to decay the learning rate. The L1 loss to train for 200

epochs and then switched to L2 loss for fine-tuning. The
learning rate for fine-tuning is 5×10−5.

4.14. Alpha

Network Architecture. The Alpha team proposed
a Lightweight Residual Feature Distillation Network
(LRFDN) for efficient image super-resolution, as shown in
Fig. 15. The LRFDN is mainly inspired by RFDN [32]
and MAFFSRN [38]. Following the overall architecture
of RFDN, LRFDN consists of four stages: shallow feature
extraction, deep feature extraction, and reconstruction. To
further reduce the parameters and computational complex-
ity of the original RFDB module, the number of channels
of layered distillation is effectively compressed. These dis-
tillation features are extracted by three shared 1×1 and one
3×3 convolutional filter. The design of the LRFDB block
is shown in Fig. 16(a).

Inspired by the residual block proposed in the
RFANet [33] and MAFFSRN [38], The team proposed an
enhanced fast spatial attention module (EFSA). It aims to
realize spatial attention weighting to make the features more
concentrated in some desired regions to obtain more repre-
sentative features. The design of the EFSA module is shown
in Fig. 16(c). Using the blocks above, the proposed model
can better extract and integrate compact contextual infor-
mation with fewer parameters.

Furthermore, it has been found that channel-wise feature
rescaling is effective for shallow SR models to boost recon-
struction accuracy. Therefore, a channel weighting layer is
involved in each LRFDB for modeling channel-wise rela-
tionships to utilize inter-dependencies among channels with
slightly additional cost. Additionally, the GeLU activation
function is adopted to replace LeakyReLU in RFDN.

Training strategy. The proposed LRFDN has four
LRFDBs, in which the number of feature channels is 64.
During training, DIV2K and Flickr2K datasets are used
for the whole process. The LRFDN model is trained from
scratch with only one stage. HR patches of size 640×640
are randomly cropped from HR images, random horizon-
tal flip, vertical flip, and rotation are introduced as the data
augmentation, and the mini-batch size is set to 64. The
Adam optimizer with β1=0.9, β2=0.999 is used to train
our LRFDN model by minimizing the L1 loss function.
The base learning rate is set to 5× 10−4 equipped with co-
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Figure 17. SVNIT NTNU Team: The architecture of the proposed
model for image super-resolution.

sine learning rate decay and 3000 warm up steps. The total
number of epochs is 1000. An exponential moving average
(EMA) of LRFDN weights is also maintained over training
with a decay of 0.9999, which improves the performance of
the model.

4.15. SVNIT NTNU

Network Architecture. The SVNIT NTNU used the
dense convolutional neural network approach in the pro-
posed method. Figure. 17(a) depicts the proposed architec-
ture for single image SR for scaling factors of ×4. The LR
image is applied as input to the network, and it is passed
to extract the salient features from it. The low-frequency
features are extracted with first layers that employ a convo-
lutional layer, while high-frequency features are extracted
with residual blocks. The architecture uses the Exponential
Linear Unit (ELU) activation function to improve learning
performance at each layer in an efficient manner.

A new and core element of the proposed architecture is
the partially densely connected design of ResBlock that pre-
serves the high-frequency details of the SR image by retain-
ing salient features, which is displayed in Fig. 17(b). The
kernel sizes (i.e., 3×3 ) adopted in ResBlock recover de-
tails distributed at local and global regions. The channel
attention modules are further used in concat block, shown

to perform adaptive re-scaling of features on a per-channel
basis. The pixel shuffle is used to upscale the feature maps
to the desired scaling factor (i.e., ×4) [54]. Additionally,
low-frequency features are upscaled and added to the re-
constructed output to retain more versatile information.

Training strategy. The proposed network is trained us-
ing a weighted combination of L1, SSIM functions with a
learning rate of 1×10−4, which is decayed by 1×104 itera-
tions, and the same is optimized using Adam optimizer. The
model has trained up to 1×105 iterations with a batch size
of 8. The model is implemented using Pytorch.
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