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Abstract

Plug-and-play Image Restoration (IR) has been widely
recognized as a flexible and interpretable method for solv-
ing various inverse problems by utilizing any off-the-shelf
denoiser as the implicit image prior. However, most exist-
ing methods focus on discriminative Gaussian denoisers.
Although diffusion models have shown impressive perfor-
mance for high-quality image synthesis, their potential to
serve as a generative denoiser prior to the plug-and-play
IR methods remains to be further explored. While several
other attempts have been made to adopt diffusion mod-
els for image restoration, they either fail to achieve satis-
factory results or typically require an unacceptable num-
ber of Neural Function Evaluations (NFEs) during infer-
ence. This paper proposes DiffPIR, which integrates the tra-
ditional plug-and-play method into the diffusion sampling
framework. Compared to plug-and-play IR methods that
rely on discriminative Gaussian denoisers, DiffPIR is ex-
pected to inherit the generative ability of diffusion models.
Experimental results on three representative IR tasks, in-
cluding super-resolution, image deblurring, and inpainting,
demonstrate that DiffPIR achieves state-of-the-art perfor-
mance on both the FFHQ and ImageNet datasets in terms
of reconstruction faithfulness and perceptual quality with
no more than 100 NFEs. The source code is available at
https://github.com/yuanzhi-zhu/DiffPIR

1. Introduction

Recent studies have demonstrated that plug-and-play
Image Restoration (IR) methods can effectively handle a
variety of low-level vision tasks, such as image denois-
ing [5,58], image Super-Resolution (SR) [16,17,37], image
deblurring [12] and image inpainting [27], with excellent
results [6, 11, 54, 57, 59]. With the help of variable split-
ting algorithms, such as the Alternating Direction Method
of Multipliers (ADMM) [4] and Half-Quadratic-Splitting
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Figure 1. DiffPIR examples of reconstruction. We present
the reconstructed images and corresponding measurements and
ground truth labels for several common image restoration tasks.

(HQS) [22], plug-and-play IR methods integrate Gaussian
denoisers into the iterative process, leading to improved per-
formance and convergence.

The main idea of plug-and-play IR methods is to separate
the data term and prior term of the following optimization
problem

x̂ = argmin
x

1

2σ2
n

∥y −H(x)∥2 + λP(x), (1)

where y is the measurement of ground truth x0 given the
degradation model y = H(x0) + n, H is a known degra-
dation operator, σn denotes the known standard deviation
of i.i.d. Gaussian noise n, and λP(·) is the prior term with
regularization parameter λ. To be specific, the data term
ensures that the solution adheres to the degradation pro-
cess, while the prior term enforces the solution to be close
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proximity to the desired data distribution. In particular, the
prior term can be implicitly addressed by Gaussian denois-
ers [39, 47, 54, 60]. Venkatakrishnan et al. [54] proposed
to solve (1) by forming the augmented Lagrangian func-
tion and using the ADMM technique with various image-
denoising methods. Kamilov et al. [29] used the BM3D de-
noising operator [10] to solve the prior subproblem for non-
linear inverse problems. While the above methods used tra-
ditional denoisers, Zhang et al. [59] made the first attempt to
incorporate deep denoiser priors to solve various IR tasks.
In subsequent research, Zhang et al. [57] further proposed
a more powerful denoiser for plug-and-play IR, which has
since been adopted in numerous recent studies [1,3,21,34].

Unlike those traditional or convolutional neural network
based discriminative Gaussian denoisers, denoisers param-
eterized by deep generative models are expected to bet-
ter handle those ill-defined inverse problems due to their
ability to model complex distributions. Deep generative
models such as Generative Adversarial Networks (GANs)
[23,31], Normalizing Flows (NFs) [15] and Variational Au-
toencoders (VAEs) [33, 44] have been used as denoisers of
plug-and-play IR framework [18, 35, 55]. However, these
generative models are not designed for denoising tasks and
their generative capabilities are hindered when employed as
plug-and-play prior.

Recently, diffusion models have demonstrated the abil-
ity to generate images with higher quality [14, 41, 43] than
previous generative models such as GANs, VAEs and NFs
even when starting from pure Gaussian noise. Diffusion
models define a forward diffusion process that maps data to
noise by gradually perturbing the input data with Gaussian
noise. While in the reverse process, they generate images by
gradually removing Gaussian noise, with the intuition from
non-equilibrium thermodynamics [50]. The representative
works in this area include Denoising Diffusion Probabilistic
Models (DDPM) [24] and score-based Stochastic Differen-
tial Equation (SDE) [53]. In addition to their unconditional
generative power, diffusion models have also achieved re-
markable success in the field of general inverse problems.
Saharia et al. [49] employed a conditional network, using
low-resolution images as conditional inputs, for the purpose
of single image SR. Lugmayr et al. [38] proposed an im-
proved sampling strategy that resamples iterations for im-
age inpainting. Chung et al. [8] introduced a Diffusion Pos-
terior Sampling (DPS) method with Laplacian approxima-
tion for posterior sampling, which can be applied to noisy
non-linear inverse problems. Choi et al. [7] proposed to
adopt low-frequency information from measurement y to
guide the generation process towards a narrow data mani-
fold. Kawar et al. [32] endorsed a time-efficient approach
named Denoising Diffusion Restoration Models (DDRM)
which performs diffusion sampling to reconstruct the miss-
ing information in y in the spectral space of H with Singu-

lar Value Decomposition (SVD). While the above methods
achieve promising results, these methods either are hand-
designed (e.g., [38]) or suffer from sampling speed to get
favorable performance (e.g., [8, 32]).

There exists another line of work, known as plug-and-
play posterior sampling methods, which leverage the gra-
dient of log posteriors to drive the samples to high-density
regions. In this approach, the posteriors are decomposed
into explicit likelihood functions and plug-and-play priors.
Durmus et al. [19] proposed a Moreau-Yosida regularised
unadjusted Langevin algorithm for Bayesian computation
such as imaging inverse problems. Laumont et al. [36] ex-
tended this idea with Tweedie’s identity [20] and introduced
PnP-unadjusted Langevin algorithm for image inverse prob-
lems. Both Romano et al. [45] and Kadkhodaie et al. [28]
explicitly established the connection between a prior and a
denoiser and used denoisers for stochastic posterior sam-
pling.

Inspired by the ability of plug-and-play IR to utilize any
off-the-shelf denoisers as an implicit image prior, and con-
sidering that diffusion models are essentially generative de-
noisers, we propose denoising diffusion models for plug-
and-play IR, referred to as DiffPIR. Following the plug-
and-play IR method [57], we decouple the data term and
the prior term and solve them iteratively within the diffu-
sion sampling framework. The data term can be solved in-
dependently, allowing DiffPIR to handle a wide range of
degradation models with various degradation operators H.
As for the prior term, it can be solved using an off-the-shelf
unconditional diffusion model as a plug-and-play denoiser
prior [32].

We conduct experiments including SR, image deblurring
and image inpainting on FFHQ [31] and ImageNet [46].
By comparing our method with the other competitive ap-
proaches, we demonstrate that DiffPIR can efficiently re-
store images with superior quality (See Figure 1 for quali-
tative examples).

2. Background
2.1. Score-based Diffusion Models

Diffusion is the process of destructing a signal (image)
by adding Gaussian noise until the signal-to-noise ratio is
negligible. This forward process can be described by an Itô
SDE [53]:

dx = f(x, t)dt+ g(t)dw, (2)

where w is the standard Wiener process, f(·, t) is a vector-
valued function called the drift coefficient, and g(·, t) is a
scalar function known as the diffusion coefficient.

The diffusion process described in (2) can be reversed in
time and has the form of [2]:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw, (3)
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where pt(x) is the marginal probability density at timestep
t, and the only unknown part ∇x log pt(x) can be mod-
elled as so-called score function sθ(x, t) with score match-
ing methods [26, 52]. x at t is denoted as xt. We can gen-
erate data samples according to (3) by evaluating the score
function sθ(xt, t) at each intermediate timestep during sam-
pling, even if the initial state is Gaussian noise. The training
objective of time-dependent score function sθ(xt, t) with
denoising score matching can be formulated as:

Et

{
γ(t)Ex0Ext|x0

[
∥sθ(xt, t)−∇xt log p0t(xt|x0)∥22

]}
,

(4)
where γ(t) is a positive weight coefficient, t is uniformly
sampled over [0, T ], (x0,xt) ∼ p0(x)p0t(xt|x0). We can
observe from (4) that a well-trained denoising score func-
tion sθ(xt, t) is also an ideal Gaussian denoiser when the
transition probability p0t(xt|x0) is Gaussian.

2.2. Denoising Diffusion Probabilistic Models

For the specific choice of f(x, t) = − 1
2β(t)x and

g(x, t) =
√
β(t), we have the forward and reverse SDEs

as the continuous version of the diffusion process in DDPM
[24]. One forward step of (discrete) DDPM is

xt =
√
1− βtxt−1 +

√
βtϵt−1, (5)

with ϵt−1 ∼ N (0, I). The sample xt is obtained by adding
i.i.d. Gaussian noise with variance βt and scaling xt−1 with√
1− βt. In this way, the total variance is preserved and

DDPM is also called ”Variance Preserving” (VP) SDE [53].
We can also sample xt at an arbitrary timestep t from x0 in
closed form thanks to the good properties of Gaussian:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (6)

with new variance 1 − ᾱt and scaling factor
√
ᾱt. In this

work, {βt} is the noise schedule and we use the same no-
tation αt = 1 − βt and ᾱt =

∏t
s=1 αs following Ho et

al. [24]. One reverse step of DDPM is

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)
+
√

βtϵt, (7)

where ϵθ(x, t) is the function approximator intended to pre-
dict the total noise ϵ between xt and x0 in (6).

In DDPM, the goal is to learn the noise added to x0;
in score-based SDE, the goal is to learn the score function,
the gradient of log-density of perturbed data; both with a
U-Net. The connection between score function and noise
prediction in DDPM can be formulated approximately as:
sθ(xt, t) ≈ − ϵθ(xt,t)√

1−ᾱt
. From now on, we use both ϵθ(x, t)

and sθ(x, t) to represent diffusion models.
Song et al. proposed Denoising Diffusion Implicit Mod-

els (DDIM) [51], where the diffusion process can be ex-
tended from Markovian to non-Markovian and (7) can be

rewritten as:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σηt

2 · ϵθ(xt, t) + σηtϵt,

(8)

where ϵt is standard Gaussian noise, inside the parenthe-
ses of the first term is the predicted x0 at timestep t, and
the magnitude of σηt

controls how stochastic the forward
process is. One advantage of this non-Markovian diffusion
process is that we can sample with diffusion models more
efficiently [51].

2.3. Conditional Diffusion Models

For conditional generation tasks given the condition y,
we aim to sample from the posterior p(x|y) rather than the
prior. In the work of Song et al. [53], (3) can be rewritten as
follows for conditional generation with the help of Bayes’
theorem

dx = [f(x, t)−g2(t)∇x(log pt(x)+log pt(y|x))]dt+g(t)dw,
(9)

where the posterior is divided into pt(x) and pt(y|x). In
this way, the unconditional pre-trained diffusion models can
be used for conditional generation with an additional clas-
sifier.

Ho et al. [25] introduced the classifier-free diffusion
guidance with sθ(x, t,y) = ∇x log pt(x|y) the image-
conditional diffusion models. With the same idea, Saharia
et al. [48, 49] trained image-conditional diffusion models
for SR and image-to-image translation in concurrent work.
Nichol et al. [40] propose to use text-guided diffusion mod-
els to generate photo-realistic images with classifier-free
guidance. The hyperparameter λ in (1) can be interpreted
as the guidance scale in classifier-free diffusion models.

While the above methods require additional neural net-
work modules, conditional generation can be done with
merely unconditional pre-trained diffusion models [7, 8, 32,
38]. Given (9), we can first update with one unconditional
reverse diffusion step and then handle the conditional input.

3. Proposed Method
We adapt the HQS algorithm to decouple the data term

and prior term of (1), because we can solve the decoupled
subproblems iteratively and hence leverage the diffusion
sampling framework [57]. By introducing an auxiliary vari-
able z, (1) can be split into the following subproblems and
be solved iteratively,

zk = argmin
z

1

2(
√
λ/µ)2

∥z− xk∥2 + P(z) (10a)

xk−1 = argmin
x

∥y −H(x)∥2 + µσ2
n∥x− zk∥2, (10b)
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… …xT xt x(t)
0 x̂(t)

0 xt-1 x0

Figure 2. Illustration of our sampling method. For every state xt, following the prediction of the estimated x
(t)
0 by the diffusion model,

the measurement y is incorporated by solving the data proximal subproblem (indicated by the red arrow). Subsequently, the next state
xt−1 is derived by adding noise back and thus completing one step of reverse diffusion sampling.

where the parameter µ is introduced as the coefficient for
the data-consistent constraint term. Here the subproblem
(10a) with prior term is a Gaussian denoising problem , and
the subproblem (10b) with the data term is indeed a proxi-
mal operator [42] which usually has a closed-form solution
that depends onH.

Our goal is to solve inverse problems via posterior sam-
pling with generative diffusion models. Just like most plug-
and-play methods, we can decouple the data term and prior
term [57]. The prior term ensures the generated sample
is from the prior data distribution, and the data term nar-
rows down the image manifold with the given measurement
y [7]. We introduce them first in Section 3.1 and Sec-
tion 3.2, then our proposed sampling method in Section 3.3.
In Section 3.4, we highlight the differences between Diff-
PIR and several closely related diffusion-based methods. In
Section 3.5, we show that our sampling can be accelerated
like DDIM.

3.1. Diffusion Models as Generative Denoiser Prior

One important property of diffusion models is that the
models can be understood as a combination of a genera-
tor (for the first few steps) and denoiser (for the rest of the
steps) [13]. Intuitively, we can simply apply diffusion mod-
els as deep prior denoiser in HQS algorithm with a suit-
able initialization for plug-and-play IR [57]. However, one
significant difference between diffusion models and other
deep denoisers is the generative power of diffusion models.
With this generative ability, we will show that our method
is capable of solving especially highly challenging inverse
problems, e.g. image inpainting with large masks.

It would be beneficial to build the connection between
(10a) and the diffusion process. Assume we want to solve

noiseless zk from xt with noise level σ̄t =
√

1−ᾱt

ᾱt
, we can

let
√
λ/µ = σ̄t for convenience. Given the noise sched-

ule {βt} and hyperparameter λ, σ̄t is known. Indeed, (10a)
can be solved as a proximal operator. Note that we have
∇xP(x) = −∇x log p(x) = −sθ(x), we can write imme-
diately:

zk ≈ xk +
1− ᾱt

ᾱt
sθ(xk), (11)

which means zk is the estimated clear image x
(t)
0 in “Vari-

ance Exploding” (VE) SDE form. Since the VP and VE
Diffusion Models are actually equivalent to each other [32],
from now on we limit our discussion within DDPM without
loss of generality, which is a special case of VP SDE diffu-
sion models. To make the discussion more clear, we rewrite
(10) as

x
(t)
0 = argmin

z

1

2σ̄2
t

∥z− xt∥2 + P(z) (12a)

x̂
(t)
0 = argmin

x
∥y −H(x)∥2 + ρt∥x− x

(t)
0 ∥2 (12b)

xt−1 ←− x̂
(t)
0 . (12c)

where ρt = λ(σn/σ̄t)
2. Here (12b) is the data subproblem

to solve and (12c) is a necessary step to finish our sampling
method which we will introduce in 3.3. Additionally, we
show in Appendix A.1 that we can also derive one-step re-
verse diffusion from HQS.

Algorithm 1 DiffPIR

Require: sθ , T , y, σn, {σ̄t}Tt=1, ζ, λ
1: Initialize xT ∼ N (0, I), pre-calculate ρt ≜ λσ2

n/σ̄
2
t .

2: for t = T to 1 do
3: x

(t)
0 = 1√

ᾱt
(xt + (1 − ᾱt)sθ(xt, t)) // Predict ẑ0 with

score model as denoisor
4: x̂

(t)
0 = argminx ∥y−H(x)∥2+ρt∥x−x

(t)
0 ∥2 // Solving

data proximal subproblem
5: ϵ̂ = 1√

1−ᾱt
(xt −

√
ᾱtx̂

(t)
0 ) // Calculate effective ϵ̂(xt,y)

6: ϵt ∼ N (0, I)

7: xt−1 =
√
ᾱt−1x̂

(t)
0 +

√
1− ᾱt−1(

√
1− ζϵ̂ +

√
ζϵt) //

Finish one step reverse diffusion sampling
8: end for
9: return x0

3.2. Analytic Solution to Data Subproblem

For IR tasks like image deblurring, image inpainting and
SR, we have a fast solution of (12b) based on the estimated
z0 on the image manifold [57]. Since the data term and
prior term are decoupled, the degradation model where we
observe the measurement y is only related to (12b).
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FFHQ Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
DiffPIR 100 27.36 59.65 0.236 26.57 65.78 0.255 26.64 65.77 0.260

DPS [8] 1000 25.46 65.57 0.247 23.31 73.31 0.289 25.77 67.01 0.256
DDRM [32] 20 25.93 101.89 0.298 - - - 27.92 89.43 0.265
DPIR [57] >20 27.79 123.99 0.450 26.41 146.44 0.467 28.03 133.39 0.456

ImageNet Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
DiffPIR 100 22.80 93.36 0.355 24.01 124.63 0.366 23.18 106.32 0.371

DPS [8] 1000 19.58 138.80 0.434 17.75 184.45 0.491 22.16 114.93 0.383
DDRM [32] 20 22.33 160.73 0.427 - - - 23.89 118.55 0.358
DPIR [57] >20 23.86 189.92 0.476 23.60 210.31 0.489 23.99 204.83 0.475

Table 1. Noisy quantitative results on FFHQ (top) and ImageNet (bottom). We compute the average PSNR (dB), FID and LPIPS of
different methods on Gaussian deblurring, motion deblurring and 4× SR.

When there is no analytical solution to (12b), we can
still solve it approximately as a first-order proximal opera-
tor. The approximate solution is:

x̂
(t)
0 ≈ x

(t)
0 −

σ̄2
t

2λσ2
n

∇
x
(t)
0
∥y −H(x(t)

0 )∥2. (13)

This is also one gradient descent step and we can calculate
it numerically.

3.3. DiffPIR Sampling

With the discussion in the above two subsections, we can
get an estimation of x̂(t)

0 (y) given its noised version xt after
calculating the analytical solution. However, this estimation
is not accurate, and we can add noise back to noise level
t − 1 as in (12c). This estimation-correction idea was pro-
posed in both [51] and [30]. In the DDIM fashion, we can
first consider the estimation x̂

(t)
0 (y) as a sample from the

conditional distribution p(x|y). Then we can calculate the
effective predicted noise ϵ̂(xt,y) =

1√
1−ᾱt

(xt −
√
ᾱtx̂

(t)
0 )

to get the final one-step sampling expression similar to (8)

xt−1 =
√
ᾱt−1x̂

(t)
0 (y)+

√
1− ᾱt−1 − σ2

ηt
ϵ̂(xt,y)+σηt

ϵt,

(14)
where ϵ̂ is the corrected version of predicted noise and ϵt ∼
N (0, I). In our case, we found that the noise term σηtϵt
may not be strong enough and we can set σηt = 0 in our
case. Instead, we use a hyperparameter ζ to introduce noise
to balance ϵt and ϵ̂ and the explicit form of (12c) becomes

xt−1 =
√
ᾱt−1x̂

(t)
0 +

√
1− ᾱt−1(

√
1− ζϵ̂+

√
ζϵt), (15)

Here the hyperparameter ζ controls the variance of the noise
injected in each step and our sampling strategy becomes de-
terministic when ζ = 0.

Based on the above discussion, we summarized the de-
tailed algorithm of our method, namely DiffPIR, in Algo-
rithm 1. Our sampling method is demonstrated in Figure 2.
It is worth to mention that by estimating x̂

(t)
0 (xt, y)and cor-

recting ϵ̂(xt, y) we are implicitly calculating the conditional
score sθ(xt, y).

3.4. Comparison to Related Works

In this section, we distinguish the proposed DiffPIR from
several closely related diffusion-based methods.

DDRM [51]. In DDRM, Kawar et al. introduced variational
distribution of variables in the spectral space of general lin-
ear operatorH. It is worth noting that DDRM is structurally
similar to our method, as both first predict x0 and then add
noise to forward sample xt−1. However, DDRM is severely
limited because it only applies to linearH and its efficiency
is not guaranteed when fast SVD is not feasible. On the
contrary, DiffPIR can handle arbitrary degradation operator
H with (13).

DPS [8]. In DPS, Chung et al. use Laplacian approxima-
tion to circumvent the intractability of posterior sampling
by diffusion models, and their method can solve general
noisy inverse problems. However, DPS suffers from its
sampling speed and its reconstruction is not faithful with
fewer sampling steps. Moreover, while DPS and DiffPIR
have a similar solution for general inverse problems, just
like the other posterior sampling methods with diffusion
models (i.e. [7, 8, 38] and sampling methods in Appendix
A.2), it handles the measurement after each reverse diffu-
sion step. As for DiffPIR, it adds measurement within re-
verse diffusion steps based on DDIM, which supports fast
sampling.
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measurement DPS(1000)DDRM(20) DDRM(100) DMIR(100)DMIR(20) Ground TruthDPS(100)

Measurement DDRM (20) DDRM (100) DPS (100) DPS (1000) DiffPIR (20) DiffPIR (100) Ground Truth

Figure 3. Qualitative results of 4× SR. We compare DiffPIR, DPS and DDRM with σn = 0.05
measurement DPS(1000)DPIR DMIR(100)DMIR(20) Ground TruthDPS(100)

Measurement DPIR (20) DPS (100) DPS (1000) DiffPIR (20) DiffPIR (100) Ground Truth

Figure 4. Qualitative results of motion deblurring. We compare DiffPIR, DPS and DPIR with σn = 0.05

3.5. Accelerated Generation Process

While the generative ability of diffusion models has been
proven to be better than other generative models like GAN
and VAE, their slow inference speed (∼ 1000 Neural Func-
tion Evaluations (NFEs)) impedes them from being applied
in many real-world applications [56]. As suggested in [51],
DDPMs can be generalized to DDIMs with non-Markovian
diffusion processes but the same training objective, because
the denoising objective (4) does not depend on any specific
forward procedure as long as p0t(xt | x0) is fixed. As a
result, our sampling sequence (length T ) can be a subset
of [1, ..., N ] used in training. To be specific, we adapt the
quadratic sequence in DDIM for sampling, which has more
sampling steps at low-noise regions [51].

4. Experiments

4.1. Implementation Details

We performed extensive experiments on the FFHQ
256×256 [31] and ImageNet 256×256 [46] datasets, to
evaluate different methods. For each dataset, we evaluate
100 hold-out validation images. As our method is training-
free, we use pre-trained models from [14] and [7] for sam-
ples from ImageNet and FFHQ, respectively. In all exper-

iments, we use the same linear noise schedule {βt} with
different sampling sequences for each method and all other
settings of the diffusion models keep the same. We also
report NFEs in each experiment for comparison.

The degradation models are specified as follows: (i) For
inpainting with box-type mask, the mask is 128×128 box re-
gion following [8]; for inpainting with random-type mask,
we mask out half of the total pixels at random; and for in-
painting with prepared mask images, we load the masks
from [38]. (ii) Gaussian blur kernel has a size of 61 × 61
with a standard deviation of 3.0, and motion blur is ran-
domly generated with a size of 61 × 61 and intensity value
of 0.5 followings [8]. To make a fair comparison, we use the
same motion blur kernel for all experiments. (iii) For SR,
bicubic downsampling is performed. For image inpainting,
we only consider the noiseless case. For image deblurring
and SR, we do experiments with both noisy and noiseless
settings. All images are normalized to the range [0, 1]. For
more experimental details like the parameter setting, see
Appendix B.

4.2. Quantitative Experiments

For quantitative experiments, the metrics we used
for comparison are Peak Signal-to-Noise Ratio (PSNR),
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FFHQ Inpaint (box) Inpaint (random) Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
DiffPIR 20 35.72 0.117 34.03 30.81 0.116 30.74 46.64 0.170 37.03 20.11 0.084 29.17 58.02 0.187
DiffPIR 100 25.64 0.107 36.17 13.68 0.066 31.00 39.27 0.152 37.53 11.54 0.064 29.52 47.80 0.174

DPS [8] 1000 43.49 0.145 34.65 33.14 0.105 27.31 51.23 0.192 26.73 58.63 0.222 27.64 59.06 0.209
DDRM [32] 20 37.05 0.119 31.83 56.60 0.164 28.40 67.99 0.238 - - - 30.09 68.59 0.188
DPIR [57] >20 - - - - - 30.52 96.16 0.350 38.39 27.55 0.233 30.41 96.16 0.362

Table 2. Noiseless quantitative results on FFHQ. We compute the average PSNR (dB), FID and LPIPS of different methods on inpainting,
deblurring, and SR.

Measurement Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Ground Truth

Figure 5. Qualitative results of inpainting. We demonstrate the ability of DiffPIR to generate diverse reconstructions for different masks.

Fréchet Inception Distance (FID), and Learned Perceptual
Image Patch Similarity (LPIPS) distance. The FID eval-
uates the visual quality and distance between two image
distributions. LPIPS measures the perceptual similarity
between two images. PSNR measures the faithfulness of
restoration between two images, which is not important but
necessary for IR tasks. We report the results for both FFHQ
256×256 and ImageNet 256×256 datasets.

We compare DiffPIR (with 20 and 100 steps) with
diffusion-based methods including DDRM [32] and DPS
[8], and plug-and-play method DPIR [57]. The sampling
steps for DDRM and DPS are 20 and 1000 according to the
original paper. Since DPIR has different iteration numbers
for different tasks, we indicated the lowest needed number
in the results. We used the same pre-trained score-based
models and blur kernels for all diffusion-based methods and
DPIR to ensure fairness.

For noisy measurement with σn = 0.05, we evaluate all
methods on both datasets for 4× SR, Gaussian deblurring,
and motion deblurring, except DDRM on motion deblurring
as DDRM only supports separable kernel for image deblur-
ring. Table 1 shows that DiffPIR outperforms all the other
comparison methods in FID and LPIPS on both datasets and

scores competitive PSNR. The only exception is the LPIPS
score of SR, and the reason could be that the approximated
bicubic kernels k are not accurate and may cause accumu-
lated error during sampling.

For noiseless measurement with σn = 0.0, we evalu-
ate all methods on FFHQ 256×256 for image inpainting,
deblurring, and SR. We skip DPIR for inpainting because
DPIR does not have initialization for arbitrary masks. The
quantitative results are summarized in Table 2. For noise-
less cases, our method with 100 NFEs outperforms the other
comparison methods significantly in FID and LPIPS. While
DPIR has a larger advantage in PSNR for noiseless tasks,
the generated images fail to present high perceptual quality.
Given 20 NFEs, DiffPIR already has competitive FID and
LPIPS scores, but the visual quality for tasks like inpainting
is not as good as methods like DPS.

4.3. Qualitative Experiments

DiffPIR is able to produce high-quality reconstructions,
as shown in Figure 1 and Appendix D. In Figure 3, we com-
pare DiffPIR with DPS and DDRM on 4× SR. In Figure 4,
we compare DiffPIR with DPS and DPIR on motion deblur-
ring. We found that unlike DDRM (no matter with 20 or
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100 NFEs) and DPIR which tend to produce blurry images,
DiffPIR is able to reconstruct images with details. More-
over, compared to DPS, DiffPIR needs much fewer NFEs
(100 NFEs is not enough for DPS to reconstruct faithfully).

Moreover, our sampling method can generate diverse re-
constructions like DDPM because all the reverse diffusion
steps are inherently stochastic when hyperparameter ζ > 0.
With examples from image inpainting (see Figure 5) we
show that DiffPIR can generate high-quality reconstruction
with diversity and good semantic alignment even when the
degradation is strong (75% masked).

4.4. Ablation Study

101 102 103
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0.26

0.32
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Figure 6. Effect of sampling steps/NFEs

Effect of sampling steps. To investigate the effect of
sampling steps or equivalently the number of NFEs, we
perform 4× noisy SR (σn=0.05) experiment on 100 im-
ages from ImageNet validation set for sampling steps T ∈
[10, 15, 20, 50, 100, 200, 500, 1000]. Hyperparameters are
fixed as λ=8.0 and ζ=0.3, respectively. We plot the quan-
titative results in Figure 6. From this plot, we observe that
while the PSNR is log-linear to the number of NFEs, the
LPIPS score is lowest for T ∈ [100, 500]. As a result, Diff-
PIR can produce detailed images with less than 100 NFEs
and the default number of NFEs is 100 in this paper.

Effect of tstart. Similar to [9], our methods can also start
the reverse diffusion process from a partial noised image
rather than pure Gaussian noise (tstart = 1000 in our case)
to reduce the NFEs for sampling, especially for tasks like
deblurring and SR. To analyze if skipping the first few dif-
fusion steps will cause a decrease of IR ability, we show
in Figure 7 how PSNR and LPIPS change with the tstart
for noisy Gaussian deblurring task. For each tstart, we also
indicate the actual number of NFEs in the Figure. Hyperpa-
rameters are fixed as λ = 8.0 and ζ = 0.5. We find that our
method performs well for even tstart = 400, which leads
to a great reduction of NFEs without loss of quality (see
Appendix C for further explanation). We further put two
images of tstart = 400 and tstart = 200 for comparison.

Effects of λ and ζ. DiffPIR has two hyperparameters λ
and ζ, which control the strength of the condition guid-
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Figure 7. Effect of tstart
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Figure 8. Effect of hyperparameters ζ and λ

ance and the level of noise injected at each timestep. To
illustrate their effects, we show the reconstructed images of
a motion-blurred sample in Figure 8. From these results,
we observe that (i) when the guidance is too strong (e.g.
λ < 1.0) the noise is amplified and when the guidance is
too weak (e.g. λ > 1000), the generated images are more
unconditional; (ii) the generated images tend to be blurry
when ζ approaches 1.

5. Conclusions
In this paper, we introduce a new diffusion model-based

sampling technique for plug-and-play image restoration,
referred to as DiffPIR. Specifically, DiffPIR employs an
HQS-based diffusion sampling approach that utilizes off-
the-shelf diffusion models as plug-and-play denoising prior
and solves the data subproblem in the clean image manifold.
Extensive experimental results highlight the superior flexi-
bility, efficiency, and generalizability of DiffPIR in compar-
ison to other competitive methods.
Acknowledgements: This work was partly supported by
the ETH Zürich General Fund (OK), the Alexander von
Humboldt Foundation and the Huawei Fund.
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