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Abstract

Rendering night photography pictures is a challenging
task that requires advanced processing techniques. Al-
though deep learning-based Image Signal Processing (ISP)
pipelines have shown promising results, current limitations
are set by the lack of proper nighttime image datasets, their
high computational requirements, and low explainability.
In this paper, we propose a traditional ISP pipeline for
rendering visually pleasing photographs of night scenes.
Our pipeline is comprised of various algorithms address-
ing the different challenges presented by night images, and
it is characterized by a shallow structure, explainable steps,
and a low parameter count, resulting in computationally ef-
ficient processing. Moreover, it does not require training
data. Experiments show that our pipeline can produce more
pleasing results compared to other deep learning-based ISP
pipelines, as it won first place in people’s choice track and
third place in photographer’s choice track in the NTIRE
2023 Night Photography Rendering Challenge.

1. Introduction

Night photography is a non-trivial task, due to the tech-
nical challenges associated with low-light imaging condi-
tions. Longer shutter speeds and higher ISO settings are
required to capture the image when compared to daytime
imaging, which may introduce noise and blur artifacts. The
light sources at night are usually artificial, and their inten-
sity and direction can vary unpredictably, making it diffi-
cult to control the color balance of the image. In addition,
the dynamic range of a night scene can be very high, with
bright light sources such as streetlights and deep shadows
in the surrounding environment, which can make it difficult
to capture a well-exposed image that accurately renders the
scene contents.

An Image Signal Processing pipeline (ISP) pipeline is

(b) RGB output image rendered by our ISP pipeline

Figure 1. Rendering results of the proposed ISP pipeline.

a combination of processing steps that are applied to the
RAW image data captured by a digital sensor to generate
a high-quality, visually appealing image [9]. It is a critical
component of a digital camera system and plays a key role
in determining the image quality of the captured images. A
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traditional ISP pipeline usually consists of various process-
ing modules, including demosaicing, noise reduction, con-
trast enhancement, sharpening and white balancing, each of
which is responsible for a specific aspect of image process-
ing [19,32].

Due to the success of deep learning in many computer
vision fields, deep learning-based ISP pipelines have been
proposed with the aim of replacing the algorithms from a
traditional pipeline with neural networks [17,23,27,36,41].
Compared to traditional pipelines, they typically require a
large amount of paired RAW-RGB data to learn how to map
the RAW input image into the final rendered RGB image.
However, most of the existing datasets for ISP are collected
during daytime, limiting their applicability for nighttime ap-
plications because of the significant differences in illumina-
tion between day and night [22]. The lack of datasets of
nighttime images, along with their high computational re-
quirements and low explainability represent serious limita-
tions.

In this paper, we present a traditional ISP pipeline for
rendering visually pleasing photographs of night scenes.
Our pipeline is composed of several algorithms, address-
ing denoising, color and contrast enhancement, sharpen-
ing and white balancing, to deal with the challenges pre-
sented by images captured at night, and it is characterized
by a shallow structure and by a low parameter count. Our
pipeline does not require training data, which is a signifi-
cant aspect to address the problem of the lack of nighttime
image datasets. Figure 1 shows an example of images ren-
dered by our pipeline. The main modules are designed on
the basis of our knowledge of the mechanisms of human
vision and the main limitations of traditional imaging de-
vices. The few required parameters are heuristically set by
our personal preferences, without any reference to existing
enhancement datasets corrected by human experts or auto-
matic approaches. This means that our pipeline is flexible,
as it can be easily tuned to match individual users’ prefer-
ences.

Our main contributions can be summarized as follows:

* We present a traditional ISP pipeline for rendering vi-
sually pleasant photographs of night scenes by apply-
ing various adjustments to the image, including de-
noising, contrast and color enhancement, sharpening
and white balancing. The pipeline is characterized by
a shallow structure, a low parameter count, and does
not require training data.

* We show that the proposed pipeline can produce better
results than existing deep learning-based ISP methods,
as also confirmed by the ranking of our solution in the
NTIRE 2023 Night Photography Rendering Challenge
[37], where we won first place in people’s choice track
and third place in photographer’s choice track.

2. Related work

An ISP pipeline applies a combination of algorithms to
the RAW image signal captured by a digital sensor, with the
goal of improving the image quality and producing a visu-
ally pleasing rendering. The common modules of a tradi-
tional ISP pipeline include demosaicing, denoising, white
balancing, sharpening and contrast enhancement [9, 32].
Demosaicing is the process used to convert a single-channel
RAW image into a full-color RGB image by interpolating
the RAW color filter array image with repetitive mosaic pat-
tern [21,40]. Denoising aims to remove acquisition noise
from the image while preserving details to improve its qual-
ity, using techniques such as spatial filtering, frequency do-
main filtering, and wavelet-based methods [2, 6, 8]. White
balancing is used to adjust the colors in the image to ac-
curately represent the true colors of the scene being cap-
tured, by removing any unwanted color casts caused by the
lighting conditions [1, 20, 31]. Image sharpening is a pro-
cessing technique that enhances the edges and details in an
image, making it appear clearer and more defined by in-
creasing the contrast of edges to make them more promi-
nent [9,24,29]. Contrast enhancement increases the visual
difference between light and dark areas in an image, and it
is often achieved using image processing techniques such
as histogram equalization [7, 15] or local contrast correc-
tion [5, 28, 35].

Recently, deep learning-based ISP pipelines have been
proposed [17,23,27,36,41]. These solutions set the goal
of replacing the different algorithms in a traditional ISP
pipeline with a single neural network. Using paired datasets
[4, 17] for RAW-RGB images, they learn to process the
RAW input images to produce the final rendered RGB im-
age. However, these datasets mainly contain scenes cap-
tured during daytime, which are very different from night-
time images due to different lighting conditions. Punnap-
purath et al. [30] proposed a method to synthesize night-
time images starting from daytime ones, in order to cope
with this problem. Nevertheless, the authors did not con-
sider extreme low-light scenarios, which are likely to occur
in scenes captured at night.

In the context of night photography, both traditional and
deep learning-based ISP pipelines have been recently pro-
posed [12,22,26,37,42]. Zini et al. [42] developed a tra-
ditional pipeline that cascades a sequence of algorithms to
process the RAW input images. Liu et al. [26] proposed a
three-stage framework applying denoising [33], white bal-
ancing [14] and conversion from RAW to sRGB [16, 25].
Li et al. [22] created a dataset annotated by experts to cope
with the lack of paired data for night scene enhancement.
Using this dataset, they developed a framework consisting
of a neural network to estimate illumination colors and, af-
ter a color correction step, a neural network for brightness
adjustment based on histogram matching.
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Figure 2. Overview of the proposed ISP pipeline for night photography rendering.

Although deep learning-based ISP pipelines have shown
promising results, they also present major limitations. First,
they require large training datasets to learn specific process-
ing tasks. Second, they can be computationally expensive
and may require significant computational resources. Fi-
nally, their limited explainability makes it hard to under-
stand why they produce a specific output image, and how to
control specific image aspects. Compared to deep learning-
based ISP pipelines, our solution is computationally effi-
cient, it is explainable, and does not require any training
procedure, thus removing the requirement for large training
datasets.

3. Proposed method

In this paper, we propose a traditional ISP pipeline for
the rendering of visually pleasing photographs of night
scenes, illustrated in Figure 2. There are five main steps,
each of which addresses a specific aspect of the image.
After a sequence of corrections to the RAW input image,
the pipeline applies image denoising to remove acquisi-
tion noise, contrast enhancement to improve image dynamic
range and color appearance, followed by edge sharpening
and white balancing to remove unwanted color casts. In the
following, we describe these steps in detail.

RAW Processing. The RAW processing step is used to
apply a sequence of corrections to the image in the RAW
domain. In this stage, image metadata provided by the cam-
era are used to normalize the image based on its nominal
black and white levels. According to the color filter array
of the image, demosaicing is used to convert the single-
channel RAW image into a full-color image. Here, the Gray
World algorithm [3] is applied to perform white balancing,
which provides an initial approximate correction of the im-
age cast. The resulting image is then converted from the
camera-specific color space to the XYZ color space (using

the inverse of color matrix provided in the image metadata),
and finally to the SRGB color space using a standard trans-
formation that uses D65 as reference white.

Denoising. The second step of our pipeline is image de-
noising. In particular, we use the Non-local means algo-
rithm [2] due to its proven excellent trade-off between de-
noising performance and efficiency: despite high process-
ing speed not being a requisite for the challenge, we set an
internal goal to produce a computationally lightweight so-
lution. The intensity of the denoising operation varies de-
pending on the noise in the image, and it is here measured
using the wavelet-based estimator of Gaussian noise stan-
dard deviation proposed in [ | 0]. In our pipeline, we decom-
pose the image into its luminance and chroma components
(in the YCbCr color space), and we apply stronger denois-
ing to chroma channels in order to effectively remove color
noise while preserving image details and edges.

This approach is based on the rationale that noise im-
pacts differently the luminance and chroma components.
On the one hand, chroma channels contain less informa-
tion about image details, and chroma noise is considered
more noticeable and distracting than luminance noise be-
cause it creates unnatural color patterns in the image, which
can be particularly noticeable in areas with smooth color
gradients [13]. On the other hand, the luminance channel
contains more information about image details [39], which
should be preserved by the denoising process.

Contrast enhancement. The contrast enhancement step
involves different algorithms to enhance the image contrast
by manipulating the corresponding histogram statistics.

The first operation we apply is the Local Contrast Cor-
rection (LCC) algorithm proposed in [28] (step 1 in the
contrast enhancement block of Figure 2). LCC applies a
pixel-wise gamma correction to the luminance channel Y
of the image so that very dark regions are brightened and
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very bright regions are darkened. In order to obtain spa-
tially varying corrections, the parameters for the pixel-wise
gamma correction are determined using a mask M obtained
by applying a Gaussian filter to the luminance channel of
the image in the YCbCr color space. The resulting Y lumi-
nance channel is computed as

0.5—(1—M)

Y — Y’Y 0.5 (1)

3

where Y is the input luminance channel, 1 — M is the com-
plement of the mask previously described, and -y is the value
of the exponent for gamma correction. Note that  has dif-
ferent values for each pixel, and depends on the values in
M. Following Schettini et al. [35], we compute -y as

In(0.5 —
( — ) ifY >0.5
_ ) In(Y) @)
Y — )
In(Y) .
otherwise
In0.5

where Y is the average value of the luminance channel.
Since 1 — M reverses the mask values, bright regions are
darkened (v > 1) while dark regions are brightened (v <
1).

As noticed by Schettini et al. [35], LCC tends to reduce
the global image contrast and saturation. Therefore, we ap-
ply contrast and saturation fixing operations as described
by the authors. The contrast fixing operation adaptively
stretches the image histogram depending on variations in
the distribution of dark pixels before and after the applica-
tion of LCC. A dark pixel is defined as a pixel whose lu-
minance value and chroma radius are lower than 0.14 and
0.07, respectively. If there is at least one dark pixel in Y and
Y, the lower range is computed as the difference of the bins
corresponding to 30% of dark pixels in the cumulative his-
togram of Y and Y. Otherwise, it is defined as the second
percentile of the pixel values in Y. The upper range for his-
togram stretching always corresponds to the 98th percentile
of pixel values in Y. For both ranges, the maximum number
of bins to clip is 50. Using the determined range, the image
histogram is stretched and the histogram bins that fall out-
side are clipped. Every computed histogram has 256 bins.
For the saturation fixing step, we correct each RGB channel
as suggested in [34]:

e
C=05x o x(C+Y)+C-Y, 3)

where C' corresponds to a RGB channel, C is the corre-
sponding output channel, Y and Y are the output and input
luminance channels used in Equation 1.

We then apply four operations to improve the overall im-
age color appearance. The global mean contrast operation
(step 2 in the contrast enhancement block of Figure 2) ad-
justs the image contrast by stretching the pixel values of

each RGB channel by a factor 3 around their mean u as
follows:

C=p+pBx(C—p), )

where C is a RGB channel, C is the corresponding output
channel, p is the mean pixel value and § is the amplifica-
tion factor. The S-curve correction (step 3 in the contrast
enhancement block of Figure 2) applies to each RGB chan-
nel the S-curve proposed in [ 18], which is defined as

C—a\* .
a+ (1—a)x ifC>a
A l1-«o

C= ®)

A
a—a*(l—c)
«

where C' is a RGB channel, C' is the corresponding out-
put channel, « and \ are two parameters controlling the in-
flection point and the amplitude of the curve, respectively.
The histogram stretching operation (step 4 in the contrast
enhancement block of Figure 2) stretches the image his-
togram, increasing the dynamic range and improving the
overall contrast. Finally, the conditional contrast correction
operation (step 5 in the contrast enhancement block of Fig-
ure 2), consists of an extra contrast correction operation de-
pending on the mean value p of the luminance channel. If
is lower than a lower threshold, then the image is considered
too dark and an additional S-curve correction, described in
Equation 5, is applied. Instead, if u is higher than an up-
per threshold, then the image is considered too bright and a
gamma correction is used to darken it. This operation im-
proves visibility for very dark images and restores the mood
of nighttime scenes when images are too bright.

Sharpening. The previous step of image denoising oc-
casionally flattens certain image details. Hence, we apply
image sharpening using unsharp masking to boost high fre-
quency content, increasing the perceived contrast between
edges and flat regions. The unsharp masking operation is
applied to each RGB channel as

otherwise

C = C + (C — Gaussian(C, o)), (6)

where C' is an input RGB channel, C is the same channel
processed by the sharpening operation, and Gaussian is
the function that applies a Gaussian filter with a specified o
value.

White balancing. In the RAW processing stage of the
pipeline, white balancing correction is done using a von
Kries-like transform [38]. Illuminant estimation is per-
formed using the Gray World algorithm [3]. This white bal-
ancing step is applied to reduce the image color cast typical
of night scenes. However, in some challenging scenarios
with multiple light sources, it may not be sufficient. To
address this problem we include a second, more sophisti-
cated, white balancing operation, based on the detection of
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Zini et al. [42]

Baseline ISP pipeline [11]

Deep-FlexISP [26]

Figure 3. Visual comparison between rendered results by other ISP pipelines and ours.

achromatic pixels through the computation of Grayness In-
dex [31].

4. Experiments

In this section, we describe the dataset used for our ex-
periments and the results obtained. Then, we substantiate
the importance of each step of our pipeline showing its im-
pact on the final result.

4.1. Dataset

We used the dataset provided in the NTIRE 2023 Night
Photography Rendering Challenge [37], which contains
200 RAW images of night scenes captured using a Canon

EOS 7D device. Each RAW image has a resolution of
3464 x 5202 pixels. Ground truth images are not avail-
able due to the nature of the challenge. According to the
challenge setup, 50 images are provided as training set, 50
as first validation set, 50 as second validation set, and the
remaining 50 as final validation set. Since our solution does
not need a training procedure, we use the training set to
develop our pipeline and to empirically select the few re-
quired parameters, and we use all validation sets to validate
our renderings.
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4.2. Results

We compare the proposed ISP pipeline with other solu-
tions for night image rendering, including a simple base-
line provided by the challenge organizers [! 1], the method
by Zini et al. [42] and Deep-FlexISP [26]. The first two
methods are traditional ISP pipelines, while the last one
is based on deep learning. Note that Zini et al. [42] and
Deep-FlexISP [26] won fifth and first place in people’s
choice track of the NTIRE 2022 Night Photography Ren-
dering Challenge [ | 2], respectively. Some results are shown
in Figure 3. Overall, images rendered with our solution
present better contrast and better brightness distribution,
improving visibility in dark areas with respect to the com-
pared solutions. The simple mechanisms of the baseline
pipeline [1 1] lead to occasional unrealistic results due to ex-
cessive saturation enhancement, as can be observed in the
last two rows. Depending on the scene, untreated visible
noise can be observed in the sky due to a lack of adequate
noise removal, while high-frequency details look overall
blurred. Moreover, illuminated snow and spotlights tend
to be over-exposed, resulting in a loss of details in the sur-
rounding areas. For comparison, image saturation is well
balanced throughout all our images, which are also char-
acterized by a significant reduction of sensor noise. Both
Zini et al. [42] and Deep-FlexISP [26] produce excessively
dark results, with the latter also failing to remove a general
yellow color cast.

4.3. NTIRE 2023 Night Photography Rendering
Challenge

The NTIRE 2023 Night Photography Rendering Chal-
lenge [37] has the goal of developing a solution for creating
realistic and visually pleasing photographs of night scenes.
The competition has two tracks: people’s choice and pho-
tographer’s choice. In the first track, evaluation is done by
people using Mean Opinion Score (MOS) through visual
comparison on the Yandex Toloka platform. In the second
track, a professional photographer is asked to judge the im-
ages and to provide his selection. Table 1 reports the final
leaderboard of the competition for the people’s choice track.
Here our solution won first place, obtaining 2.5% and 4.4%
more votes than the second-ranked and third-ranked solu-
tions, respectively, which are based on deep learning. It also
received considerably more votes than the solution whose
images were manually enhanced by non-professional pho-
tographers. Moreover, it won third place in the photogra-
pher’s choice track, obtaining a better ranking with respect
to other entries of the challenge based on deep learning.

4.4. Analysis of pipeline steps

As discussed in Section 3, we apply stronger denois-
ing to the chroma component with respect to the luminance
component to remove color noise while preserving image

Rank Team Score Votes
1 IVLTeam 0.67 1843
2 DH_ImageAlgo 0.645 1774
3 MiAlgo 0.626 1722
4 BSSC 0.606 1667
5 DH-AISP 0.583 1603
6 Manual Enhancement 0.491 1350
7 0zUVGL 0.453 1246
8 The Majestic Mavericks 0.444 1221
9 JMUCVLAB 0.439 1207
10 NTU607 0.376 1034
11 Baseline [11] 0.345 949

Table 1. Final leaderboard of people’s choice track in the NTIRE
2023 Night Photography Rendering Challenge [37]. All submis-
sions (50 images) were included in 2750 comparisons using the
Yandex Toloka platform. Our team is highlighted in bold.

Figure 4. Analysis of the denoising operation. Applying denoising
to RGB channels leads to a heavier loss of details (Figure 4b). The
adopted solution applies stronger denoising to chroma channels
than to the luminance channel (Figure 4c).

details. Figure 4 shows the impact of this approach: as we
can see, denoising applied to luminance and chroma chan-
nels separately (Figure 4c) tends to preserve high-frequency
details while effectively removing the sensor noise that is
present in the original signal. Figure 4b shows the result of
the application of the denoising operation to the RGB im-
age, a process that results in a heavier loss of details.

The contrast enhancement stage of our pipeline applies
several manipulations to the image histogram to enhance
image contrast and colors. To better visualize such manip-
ulations, Figure 5 shows the intermediate results of each al-
gorithm within this stage, accompanied by the correspond-
ing image histogram. We can see that the resulting his-
togram after the application of LCC has a limited dynamic
range, even after the application of contrast and satura-
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Figure 5. Analysis of the results obtained after each operation within the contrast enhancement step of our pipeline. Image histograms

show how global contrast changes after each step.

(b) Conditional contrast correction (Ours)

Figure 6. Analysis of the conditional contrast correction operation.
If not used, images may have an unnatural illumination typical of
daytime scenes (Figure 6a). Instead, the conditional contrast cor-
rection operation (Figure 6b) better preserves the nighttime mood.

tion fixing operations. The global mean contrast operation
stretches the histogram around its mean value, however, the
image does not appear contrasted enough because its his-
togram distribution does not cover the entire dynamic range.
The application of an S-curve is needed to move the image
histogram towards the center value of the dynamic range.
At this point, histogram stretching is applied, with the re-
sulting histogram having a small positive skewness while
covering the entire dynamic range. As the resulting image
appears too bright, the conditional contrast correction oper-
ation restores the typical mood of a nighttime scene.

The conditional contrast correction step is another im-
portant operation in our pipeline. We select three differ-
ent sets of parameters in relation to the mean luminance of
the images after the previous step. Specifically, we foresee
three possible scenarios: a brightening operation is needed;
a darkening operation is required; no further corrections are
necessary. The first case occurs when images are very dark
because spotlights are not enough to illuminate the entire

(c) Combination of Gray World and Grayness Index (Ours)

Figure 7. Analysis of the white balancing operations. Rendered
results using Gray Word only (Figure 7a), Grayness Index only
(Figure 7b) and both the algorithms (Figure 7c). The yellow color
cast is better removed when both the algorithms are used, with the
scene appearing more natural.

scene. The second case occurs when images are too bright
due to the strong illumination. The third case covers the
other scenarios. Figure 6 shows the impact of the condi-
tional contrast correction operation, which leads to a final
illumination that keeps the night mood of the scene (Fig-
ure 6b). If this operation is not applied in this case, the re-
sult is an unnatural illumination similar to a daylight scene
(Figure 6a).

Our pipeline involves two white balancing operations.
The first one uses Gray World [3] in the RAW domain,
while the second one applies Grayness Index [31] to RGB
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images. Here we show why these two operations are neces-
sary to properly remove the undesired yellow cast typical of
night photography. Figure 7 shows some results obtained
using Gray World only (Figure 7a), Grayness Index only
(Figure 7b) and both the algorithms (Figure 7c). We can
see that using only one of these two algorithms is not suf-
ficient to properly remove the color cast. Instead, applying
both the algorithms considerably improves the final results,
making the scenes appear more natural.

5. Conclusion

In this paper, we presented a traditional ISP pipeline
for rendering visually pleasing photographs of night scenes.
Our pipeline contains several algorithms, including denois-
ing, color and contrast enhancement, sharpening and white
balancing, to address the challenges presented by images
captured at night. It is characterized by a shallow structure
and a low parameter count, and it does not require training
data, which is a significant aspect to address the problem of
the lack of nighttime image datasets. Experiments show that
our pipeline can produce better results than existing deep
learning-based ISP methods, as also confirmed by the rank-
ing of our solution in the NTIRE 2023 Night Photography
Rendering Challenge.
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