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Abstract

Stereo image super-resolution aims to improve the qual-

ity of high-resolution stereo image pairs by exploiting com-

plementary information across views. To attain supe-

rior performance, many methods have prioritized design-

ing complex modules to fuse similar information across

views, yet overlooking the importance of intra-view infor-

mation for high-resolution reconstruction. It also leads to

problems of wrong texture in recovered images. To ad-

dress this issue, we explore the interdependencies between

various hierarchies from intra-view and propose a novel

method, named Cross-View Hierarchy Network for Stereo

Image Super-Resolution (CVHSSR). Specifically, we de-

sign a cross-hierarchy information mining block (CHIMB)

that leverages channel attention and large kernel convo-

lution attention to extract both global and local features

from the intra-view, enabling the efficient restoration of ac-

curate texture details. Additionally, a cross-view interac-

tion module (CVIM) is proposed to fuse similar features

from different views by utilizing cross-view attention mech-

anisms, effectively adapting to the binocular scene. Ex-

tensive experiments demonstrate the effectiveness of our

method. CVHSSR achieves the best stereo image super-

resolution performance than other state-of-the-art meth-

ods while using fewer parameters. The source code and

pre-trained models are available at https://github.

com/AlexZou14/CVHSSR.

1. Introduction

Stereo image technology has made significant strides,

leading to the successful application of stereo images in a

variety of 3D scenarios, such as augmented reality (AR),

virtual reality (VR), and autonomous driving. However,

stereo imaging devices, such as the dual cameras on mo-

bile phones, are subject to certain constraints that can re-

sult in the production of stereo image pairs with low reso-
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Figure 1. Comparision on the trade-off between model parame-

ters and PSNR for 2× stereo SR on Flickr1024 [31] test set. Our

CVHSSR model family achieves state-of-the-art performance with

significantly fewer parameters, indicating its superior efficiency

and effectiveness for stereo super-resolution tasks.

lution (LR). Stereo image super-resolution (SR), which has

attracted much attention in recent years, aims to generate

high-resolution stereo image pairs from their low-resolution

counterparts to significantly enhance their visual percep-

tion. Therefore, this research has great potential to enhance

the user experience in deploying immersive services.

In recent years, numerous deep learning-based algo-

rithms for stereo image SR have been proposed, following

the widespread use of convolution neural network (CNN)

based methods in single image super-resolution (SISR)

[6, 17, 18, 36, 39] tasks. Unlike SISR, which primarily fo-

cuses on finding similar textures within an image, stereo

image SR must consider both intra-view and inter-view in-

formation, both of which play critical roles in stereo image

reconstruction. Existing methods typically develop com-

plex networks and loss functions to effectively fuse infor-

mation from two viewpoints. For example, Jeon et al. [12]

learned the parallax prior in stereo datasets through a two-

stage network to recover high-resolution images. Wang et
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al. [28] introduced a parallax attention mechanism that in-

corporates global receptive fields to further improve net-

work performance. Song et al. [25] proposed a self and par-

allax attention mechanism to reconstruct high-quality stereo

image pairs. Recently, Chu et al. [4] used an efficient non-

linear activation-free block and cross-view attention mod-

ule, achieving the best performance and winning first place

in NTIRE2022 [27].

Although the existing stereo image SR methods have

achieved impressive performance, they have not fully ex-

plored the rich hierarchy features of the intra-view, which

could affect the information transfer between cross-views.

Therefore, an interesting research question remains on how

to effectively utilize both global and local features from

stereo image pairs to further improve the quality of stereo

image SR reconstruction.

In this paper, we propose a novel method to address

the issue of unexplored intra-view hierarchical features in

stereo image SR. The proposed method, named Cross-View

Hierarchical Network for stereo image SR (CVHSSR), aims

to extract rich feature representations from intra-views at

different hierarchies and fuse them to enhance the perfor-

mance of stereo image SR. To achieve this, we introduce

two core modules: the cross-hierarchy information min-

ing block (CHIMB) and the cross-view interaction module

(CVIM), which explore and fuse similar features from dif-

ferent hierarchies across views. Specifically, the CHIMB

module is designed to model and recover intra-view infor-

mation at various hierarchies, utilizing the large kernel con-

volution attention and the channel attention mechanism. On

the other hand, the CVIM module effectively integrates sim-

ilar information from different views by utilizing the cross-

view attention mechanism. By exploiting these modules,

the CVHSSR can incorporate more diversified feature rep-

resentations from different spatial levels of the two views,

resulting in enhanced SR reconstruction quality.

The key contributions of this work are summarized as

follows:

• We propose the CHIMB to efficiently extract hierarchy

information from intra-views. In contrast to the NAF-

Block used in NAFNet [1], CHIMB models global and

local information from intra-view by using channel at-

tention and large kernel convolution attention, effec-

tively helping the network to restore the correct texture

features.

• We have designed the CVIM to fuse similar informa-

tion from different views in our method. Unlike the

cross-view attention mechanism used in other meth-

ods, CVIM utilizes depth-wise convolution to capture

similar information from intra-view, then facilitating

cross-view information fusion.

• Based on CHIMB and CVIM, we propose a simple yet

effective method for stereo image SR. Our approach

achieves state-of-the-art performance with fewer pa-

rameters, as shown in Figure 1. Extensive experiments

confirm the validity of our proposed CVHSSR.

2. Related Work

2.1. Single Image SuperResolution

Image super-resolution is a regression problem that maps

a low-resolution image to its corresponding high-resolution

image. Since Dong et al. [8] introduce CNN into the SISR

field with their pioneering work SRCNN, CNN-based meth-

ods have been proven to achieve impressive performance

in SISR tasks. On this basis, Lim et al. [13] further im-

proved network performance by deepening the network and

increasing the dimension of intermediate features. With the

development of deep learning technology, the researchers

use residual and dense connections [14,18,36,40] to control

network information flow, thereby obtaining better image

reconstruction performance. However, these methods did

not consider the importance of different features, leading

to redundant network design. Therefore, RCAN [39] intro-

duced channel attention mechanisms to model the interde-

pendence between feature channels and adaptively rescale

the features of each channel. Subsequently, various atten-

tion mechanisms were proposed to enhance network expres-

sion ability, including spatial attention [7,23], second-order

attention [6], non-local attention [20, 21], and large kernel

convolution attention [30].

Recently, the Transformer has achieved great success in

the field of vision. Therefore, many researchers [16, 17, 19,

33, 38] introduce the Transformer into SISR tasks. With

the powerful learning ability of Transformers, Transformer-

based methods have achieved state-of-the-art performance

in the field of single-image super-resolution. Despite the

consistently improved performance, SISR cannot utilize

complementary information from different views in stereo

image pairs, which limits the performance of stereo image

super-resolution.

2.2. Stereo Image SuperResolution

Instead of SISR method, which only has access to con-

text information from intro, stereo image SR can leverage

the additional information provided by the cross-view infor-

mation to enhance SR performance. However, the presence

of binocular disparity between the left and right views in

a stereo image pair can pose a significant challenge to the

fusion of information across views. Thus, Jeon et al. [12]

proposed the first deep learning-based model for stereo im-

age SR (namely, StereoSR). This approach addresses the

challenge of fusing complementary features of the left and

right views by concatenating the left image and a stack of

right images with predefined shifts. On this basis, Wang et
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Figure 2. The architecture of Cross-View Hierarchy Network for Stereo Image SR (CVHSSR), which incorporates two core modules: (a)

Cross-Hierarchy Information Mining Block (CHIMB), and (b) Cross-View Interaction Module (CVIM).

al. [28, 29] introduced a parallax attention module (PAM)

to model stereo correspondence by effectively capturing

global contextual information along the epipolar line. These

methods outperforms StereoSR and exhibits greater flexi-

bility in accommodating disparity variation. In pursuit of

more refined stereo correspondence, Song et al. [25] ex-

tended the parallax-attention mechanism to propose SPAM,

which aggregates information from both the primary and

cross views to generate stereo-consistent image pairs. Yan

et al. [35] proposed a domain adaptive stereo SR network

(DASSR) to achieve both stereo image SR and stereo im-

age deblurring tasks. Xu et al. [34] introduced the con-

cept of bilateral grid processing within a CNN framework,

thereby proposing a bilateral stereo SR network. Then,

Wang et al. [32] enhanced PASSRNet (ie. iPASSRNet) by

leveraging the symmetry cues present in stereo image pairs.

Ma et al. proposed a perception-oriented StereoSR frame-

work, which aims to restore stereo images with improved

subjective quality. More recently, Chu et al. [4] developed

the NAFSSR network by utilizing nonlinear activation-free

blocks [1] for intra-view feature extraction and PAM for

cross-view feature interaction, which achieves the cham-

pion in the NTIRE 2022 Stereo Image SR Challenge [27].

Although existing methods have achieved superior per-

formance in stereo image SR, they typically focus on mod-

eling cross-view information while neglecting the hierar-

chical similarity relationships from intra-view. To address

this limitation, we propose to leverage both local and global

hierarchical feature representations to further improve the

performance of state-of-the-art stereo image SR methods.

3. Cross-View Hierarchy Network

3.1. Overall Framwork

To avoid complex network designs that require a large

number of parameters and computational effort, we adopt a

simple weight-sharing two-branch network structure to re-

cover the left and right view images, as illustrated in Figure

2. Our CVHSSR mainly consists of four components: the

shallow feature extraction, the cross-hierarchy information

mining block (CHIMB), the cross-view interaction modules

(CVIM), and stereo image reconstruction. Specifically, the

CHIMB is designed to extract similar features both locally

and globally from the intra-view image, effectively restor-

ing accurate texture details. The CVIM is mainly used to

fuse features from two viewpoints. More details of CHIMB

and CVIM are described in Sections 3.2 and 3.3.

Firstly, given an input stereo low-resolution images

ILLR, I
R
LR ∈ RH×W×3, CVHSSR first applies a con-

volution to obtain two-views shallow feature FL
0 , FR

0 ∈
RH×W×C , where H × W denotes the spatial dimension

and C is the number of channels. It can be formulated as:

FL,R
0 = Hconv(I

L
LR, I

R
LR), (1)

where Hconv denotes 3× 3 convolution operation.

Next, we integrate CHIMB and CVIM into a cross-view

hierarchy (CVH) block, which not only extracts deep intra-

view features but also fuses information from different view

images. Therefore, we stack N CVH blocks to obtain out-

put features that incorporate information from multiple per-

spectives. It can be expressed as:

FL,R
out = HN

CVH(Hn−1
CVH(· · ·H1

CVH(FL,R
0 )) · · · ),

FL,R
i+1 = HCVH(FL,R

i ) = Hi
CV (H

i
CH(FL,R

i )),
(2)

where HCVH , HCV , and HCH denote CVH block, CVIM,

and CHIMB, respectively. FL,R
out , FL,R

i denote the output of

the N -th CVH Block and i-th CVHBlock, respectively.

Finally, we upsample the output features to the HR size

using the pixel-shuffle operation. Additionally, we incorpo-

rate a global residual path to leverage the input stereo image
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Figure 3. The architecture of our proposed cross-hierarchy infor-

mation mining block (CHIMB). PConv, DWConv and DWDConv

in the figure represent point-wise convolution, depth-wise convo-

lution, and depth-wise dilation convolution, respectively.

information to further improve the super-resolution perfor-

mance. It can be expressed as:

ILSR = Hup(F
L
out) +Hup(I

L
LR) = HL

CVHSSR(I
L
LR),

IRSR = Hup(F
R
out) +Hup(I

R
LR) = HR

CVHSSR(I
R
LR),

(3)

where Hup denotes the upsampling operation. HCVHSSR

denotes the proposed CVHSSR network. ILSR, I
R
SR denote

the final restored left-view and right-view images, respec-

tively.

3.2. CrossHierarchy Information Mining Block

Many existing methods for stereo image SR focus

mainly on modeling cross-view information and do not ad-

equately exploit the hierarchy information from the intra-

view image. This leads to difficulties in recovering clear

texture details. To address this issue, we have proposed the

CHIMB as depicted in Figure 3, which is capable of ef-

fectively extracting different hierarchy information features

from images.

The CHIMB consists of two parts: (1) The cross-

hierarchy information extractor (CHIE); (2) The informa-

tion refinement feedforward network (IRFFN). The CHIMB

incorporates both channel attention and large kernel convo-

lution attention to capture both global and local similarity

relationships. The channel attention calculates global statis-

tics of the feature map to enhance the focus on important

features. Meanwhile, the large kernel convolution attention

utilizes larger kernel convolution to capture long-range de-

pendencies in the intra-view image, thereby enhancing the

attention to local information. These two attention mecha-

nisms in combination enable the CHIE to effectively model

the hierarchy information contained in the input images and

accurately recover texture details.

Given an input tensor Fin ∈ RH×W×C , the CHIE is

formulated is:

FCHIE = W 0
p (H(δSG(W

1
d3W

1
p (LN(Fin))))) + Fin, (4)

where W
(·)
p is the 1 × 1 point-wise convolution and W

(·)
d3

is the 3× 3 depth-wise convolution. FCHIE denotes the out-

put feature of CHIE. The LN(·) denotes layer normaliza-

tion. We use the notation δSG(·) and H(·) to represent the

SimpleGate function and the hybrid attention operation, re-

spectively. Specifically, the SimpleGate first split the input

into two features X1,X2 ∈ RH×W×C/2 along channel di-

mension. Then, it computes the output with the linear gate

as δSG(X) = X1⊙X2, where ⊙ denotes element-wise mul-

tiplication. The hybrid attention H(·) consists of two com-

ponents: channel attention and large kernel convolution at-

tention. It can be described as follows:

H(X) = LKA(X) + CA(X),

CA(X) = X ⊙ (WpHAvg(X)),

LKA(X) = X ⊙ (WpWdd7Wd5(X)),

(5)

where LKA(·), CA(·) and HAvg denote the large kernel

convolution attention, the channel attention, and the aver-

age pooling operation, respectively. ⊙ denotes element-

wise multiplication. The Wd5 and Wdd7 represent the 5× 5
depth-wise convolution and the 7 × 7 depth-wise dilation

convolution.

The IRFFN in our pipeline utilizes a non-linear gate

mechanism to control the flow of information, allowing

each channel to focus on fine details complementary to the

other levels. The IRFFN process is formulated as:

Fout = W 3
p (δNG(W

2
d3W

2
p (LN(FCVIE)))) + FCVIE (6)

where δNG(·) is the function of non-linear gate mechanism.

Similar to SimpleGate, the non-linear gate mechanism di-

vides the input along the channel dimension into two fea-

tures X1,X2 ∈ RH×W×C/2. The output is then calculated

by non-linear gating as δNG(X) = GELU(X1)⊙X2, where

GELU(·) denotes the activation function. The Fout denote

the output of CHIMB.

3.3. CrossView Interaction Module

The details of the proposed CVIM as shown in Figure

4. This method employs Scaled DotProduct Attention [26],

which involves calculating the dot product between the

query and keys, followed by the application of a softmax

function to generate weights assigned to the corresponding

values:

Attention(Q,K,V) = Softmax(QKT /
√
C)V, (7)

where Q ∈ RH×W×C is query matrix projected by source

intra-view feature (e.g. left-view), and K,V ∈ RH×W×C

are key, value matrices projected by target intra-view fea-

ture (e.g. right-view). Here, H,W,C represents the height,

width, and number of channels of the feature map.

The CVIM adopts a novel cross-view attention mech-

anism that integrates information from both left and right
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Figure 4. The architecture of our proposed cross-view interac-

tion modules (CVIM). PConv and DWConv in the figure represent

point-wise convolution, and depth-wise convolution, respectively.

view images to generate cross-view attention maps. This

approach allows for the exploitation of the distinctive in-

formation present in each view, leading to more effective

feature fusion and better restoration results. In detail, given

the input stereo intra-view features F i
L, F

i
R ∈ RH×W×C ,

we can get the cross-view fusion features FL→R as follows:

QL = WQL

d WQL

p (LN(F i
L)), (8)

KR = WKR

d WKR

p (LN(F i
R)), (9)

VR = WVR

d WVR

p F i
R, (10)

FL→R = WR
p AttentionL→R(QL,KR,VR), (11)

where W
(·)
p is the 1× 1 point-wise convolution. W

(·)
d is the

3 × 3 depth-wise convolution. It offers feature refinement

from both channel and spatial perspectives.

With an analogous argument, we can obtain the cross-

view fusion features FR→L as follows:

QR = WQR

d WQR

p (LN(F i
R)), (12)

KL = WKL

d WKL

p (LN(F i
L)), (13)

VL = WVL

d WVL

p F i
L, (14)

FR→L = WL
p AttentionR→L(QR,KL,VL), (15)

Finally, the interacted cross-view information FL→R,

FR→L and intra-view information F i
L, F i

R are fused by

element-wise addition:

F i+1
L = γLFL→R + F i

L, (16)

F i+1
R = γRFR→L + F i

R, (17)

where γL and γR are trainable channel-wise scales and ini-

tialized with zeros for stabilizing training.

3.4. Loss Function

As image super-resolution tasks are primarily focused on

restoring high-frequency details, we leverage both spatial

and frequency domain losses to jointly guide our network in

effectively recovering clear and sharp high-frequency tex-

tures. Specifically, given an input two view LR image IL,R
LR ,

the proposed model predicts HR stereo image denote IL,R
SR .

We optimize our CVHSSR with the following loss function:

Ltotal = LMSE(I
L,R
SR , IL,R

HR )+λ∗LFC(I
L,R
SR , IL,R

HR ), (18)

where IL,R
HR represents the left-view and right-view HR im-

age, and LMSE is the MSE loss:

LMSE =
1

N

N
∑

i=1

||IL,R
HR − IL,R

SR ||2, (19)

In addition, LFC is the frequency Charbonnier loss, defined

as:

LFC =
1

N

N
∑

i=1

√

||FFT (IL,R
HR )− FFT (IL,R

SR )||2 + ϵ2,

(20)

with constant ϵ emiprically set to 10−3 for all the experi-

ments. FFT (·) denotes a fast Fourier transform. The pa-

rameter λ in Eq. (18) is a hyper-parameter used to control

the composition of the frequency Charbonnier loss function.

The parameter λ is set to 0.01 for all the experiments. More

training details of our method are presented in Section 4.

4. Experiments

4.1. Implementation Details

In this section, we provide a detailed description of the

experimental setting, including the datasets, the evaluation

metrics, and the training configurations.

Dataset. Following the previous methods [4, 32, 38], we

employ the training and validation datasets provided by the

Flickr1024 [31]. To be specific, we employ 800 stereo im-

ages as the training data, and 112 stereo images as the val-

idation data. We augment the training data with random

horizontal, flips, rotations, and RGB channel shuffle. For

testing, we use four benchmark datasets: KITTI 2012 [9],

KITTI 2015 [22], Middlebury [24], and Flickr1024 [31].

Evaluation metrics. We adopted peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM) as quantita-

tive metrics for evaluation, which are calculated in the RGB

color space between a pair of stereo images (i.e.,(Left +
Right)/2).
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Table 1. Quantitative results achieved by different methods on the KITTI2012, KITTI2015, Middlebury, and Flickr1024 datasets. Params

represents the number of parameters of the networks. Here, PSNR/SSIM values achieved on both the left images (i.e., Left) and a pair of

stereo images (i.e., (Left+Right)/2) are reported. The best and second best results are red and blue.

Method Scale Params
Left (Left+Right)/2

KITTI2012 KITTI2015 Middlebury KITTI2012 KITTI2015 Middlebury Flickr1024

VDSR [13] ×2 0.66M 30.17/0.9062 28.99/0.9038 32.66/0.9101 30.30/0.9089 29.78/0.9150 32.77/0.9102 25.60/0.8534

EDSR [18] ×2 38.6M 30.83/0.9199 29.94/0.9231 34.84/0.9489 30.96/0.9228 30.73/0.9335 34.95/0.9492 28.66/0.9087

RDN [40] ×2 22.0M 30.81/0.9197 29.91/0.9224 34.85/0.9488 30.94/0.9227 30.70/0.9330 34.94/0.9491 28.64/0.9084

RCAN [39] ×2 15.3M 30.88/0.9202 29.97/0.9231 34.80/0.9482 31.02/0.9232 30.77/0.9336 34.90/0.9486 28.63/0.9082

StereoSR [12] ×2 1.08M 29.42/0.9040 28.53/0.9038 33.15/0.9343 29.51/0.9073 29.33/0.9168 33.23/0.9348 25.96/0.8599

PASSRnet [29] ×2 1.37M 30.68/0.9159 29.81/0.9191 34.13/0.9421 30.81/0.9190 30.60/0.9300 34.23/0.9422 28.38/0.9038

IMSSRnet [15] ×2 6.84M 30.90/- 29.97/- 34.66/- 30.92/- 30.66/- 34.67/- -/-

iPASSR [32] ×2 1.37M 30.97/0.9210 30.01/0.9234 34.41/0.9454 31.11/0.9240 30.81/0.9340 34.51/0.9454 28.60/0.9097

SSRDE-FNet [5] ×2 2.10M 31.08/0.9224 30.10/0.9245 35.02/0.9508 31.23/0.9254 30.90/0.9352 35.09/0.9511 28.85/0.9132

PFT-SSR [10] ×2 - 31.15/0.9166 30.16/0.9187 35.08/0.9516 31.29/0.9195 30.96/0.9306 35.21/0.9520 29.05/0.9049

SwinFIR-T [38] ×2 0.89M 31.09/0.9226 30.17/0.9258 35.00/0.9491 31.22/0.9254 30.96/0.9359 35.11/0.9497 29.03/0.9134

NAFSSR-T [4] ×2 0.45M 31.12/0.9224 30.19/0.9253 34.93/0.9495 31.26/0.9254 30.99/0.9355 35.01/0.9495 28.94/0.9128

NAFSSR-S [4] ×2 1.54M 31.23/0.9236 30.28/0.9266 35.23/0.9515 31.38/0.9266 31.08/0.9367 35.30/0.9514 29.19/0.9160

NAFSSR-B [4] ×2 6.77M 31.40/0.9254 30.42/0.9282 35.62/0.9545 31.55/0.9283 31.22/0.9380 35.68/0.9544 29.54/0.9204

CVHSSR-T (Ours) ×2 0.66M 31.31/0.9250 30.33/0.9277 35.41/0.9533 31.46/0.9280 31.13/0.9377 35.47/0.9532 29.26/0.9180

CVHSSR-S (Ours) ×2 2.22M 31.42/0.9262 30.42/0.9287 35.73/0.9551 31.57/0.9291 31.22/0.9385 35.78/0.9550 29.56/0.9216

VDSR [13] ×4 0.66M 25.54/0.7662 24.68/0.7456 27.60/0.7933 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718

EDSR [18] ×4 38.9M 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285

RDN [40] ×4 22.0M 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295

RCAN [39] ×4 15.4M 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286

StereoSR [12] ×4 1.42M 24.49/0.7502 23.67/0.7273 27.70/0.8036 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460

PASSRnet [29] ×4 1.42M 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195

SRRes+SAM [37] ×4 1.73M 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233

IMSSRnet [15] ×4 6.89M 26.44/- 25.59/- 29.02/- 26.43/- 26.20/- 29.02/- -/-

iPASSR [32] ×4 1.42M 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287

SSRDE-FNet [5] ×4 2.24M 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352

PFT-SSR [10] ×4 - 26.64/0.7913 25.76/0.7775 29.58/0.8418 26.77/0.7998 26.54/0.8083 29.74/0.8426 23.89/0.7277

SwinFIR-T [38] ×4 0.89M 26.59/0.8017 25.78/0.7904 29.36/0.8409 26.68/0.8081 26.51/0.8135 29.48/0.8426 23.73/0.7400

NAFSSR-T [4] ×4 0.46M 26.69/0.8045 25.90/0.7930 29.22/0.8403 26.79/0.8105 26.62/0.8159 29.32/0.8409 23.69/0.7384

NAFSSR-S [4] ×4 1.56M 26.84/0.8086 26.03/0.7978 29.62/0.8482 26.93/0.8145 26.76/0.8203 29.72/0.8490 23.88/0.7468

NAFSSR-B [4] ×4 6.80M 26.99/0.8121 26.17/0.8020 29.94/0.8561 27.08/0.8181 26.91/0.8245 30.04/0.8568 24.07/0.7551

CVHSSR-T (Ours) ×4 0.68M 26.88/0.8105 26.03/0.7991 29.62/0.8496 26.98/0.8165 26.78/0.8218 29.74/0.8505 23.89/0.7484

CVHSSR-S (Ours) ×4 2.24M 27.00/0.8139 26.15/0.8033 29.94/0.8577 27.10/0.8199 26.90/0.8258 30.05/0.8584 24.08/0.7570

Model Setting. The numbers of the CHIMB blocks and

feature channels are flexible and configurable. We con-

struct two CVHSSR networks of varying sizes, which we

named CVHSSR-T (Tiny) and CVHSSR-S (Small) by ad-

justing the number of channels and blocks. Specifically, the

number of channels and blocks for CVHSSR-T are set to 48

and 16 respectively. The number of channels and blocks for

CVHSSR-S are set to 64 and 32 respectively.

Training Settings. Our network was optimized using

the Lion method [2] with β1=0.9, β2=0.999, and a batch

size of 8. Our CVHSSR was implemented in PyTorch on

a PC with four Nvidia RTX 3090 GPUs. The learning

rate was initially set to 5 × 10−4 and decayed the learn-

ing rate with the cosine strategy. We trained this model

for 200,000 iterations. To alleviate the overfitting issue,

we use stochastic depth [11] with 0.1 and 0.2 probability

for CVHSSR-S and CVHSSR-B, respectively. Moreover,

we also use Test-time Local Converter (TLC) [3] to further

improve the model performance. The TLC method mainly

aims to reduce the discrepancy between the distribution of

global information during training and inference by con-

verting global operations into local operations at inference.

4.2. Comparisons with Stateoftheart Methods

In this section, we conduct a comparative analysis be-

tween our CVHSSR (with 2 different variations) and ex-

isting super-resolution (SR) methods. The comparison in-

volved SISR methods such as VDSR [13], EDSR [18],

RDN [40], and RCAN [39], as well as stereo image SR

methods like StereoSR [12], PASSRnet [29], SRRes+SAM

[37], IMSSRnet [15], iPASSR [32], SSRDE-FNet [5],

NAFSSR [4], SwinFIR [38], and PFT-SSR [10]. All these

methods were trained on the same datasets as ours, and their

PSNR and SSIM scores were evaluated and reported by [4].

Quantitative Evaluations. We present a comparative

evaluation of our proposed CVHSSR against existing stereo

SR methods at ×2 and ×4 upscaling factors, as summarized

in Table 1. Notably, even our smallest CVHSSR-T model

outperforms the NAFSSR-S method on all datasets while

utilizing 60% fewer parameters. Moreover, our CVHSSR-S

model achieves better results than the NAFSSR-B method

while requiring 70% fewer parameters. Specifically, our
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Figure 5. Visual results (×4) achieved by different methods on the Flickr1024 [31] dataset.
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Figure 6. Visual results (×4) achieved by different methods on the KITTI 2012 [9] (top) and KITTI 2015 [22] (bottom) dataset. The

images with red and green borders represent the left and right views respectively. (a) Bicubic. (b) SRRes+SAM [37]. (c) RDN [40]. (d)

StereoSR [12]. (e) iPASSR [32]. (f) NAFSSR-B [4]. (g) CVHSSR (Ours). (h) Reference.

CVHSSR-S method is 0.19 dB and 0.48 dB higher than

NAFSSR-S and SRRDE-FNet, respectively, on the ×4
Flickr1024 dataset for the same amount of parameters.

These results demonstrate the effectiveness of our proposed

method and its superiority over existing methods in stereo

image SR tasks.

Visual Comparison. In Figures 5 and 6, we present

comparative results of ×4 stereo SR obtained by differ-

ent stereo SR methods on the Flickr1024 [31], KITTI2012

[9], and KITTI2015 [22] datasets. The visual compar-

ison of reconstructed images demonstrates that our pro-

posed CVHSSR-S method achieves sharper and more ac-
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Table 2. Ablation studies of different components. We report the

PSNR (dB) values on Flickr 1024 validation datasets (×4).

1 2 3 4 5

Baseline ✔ ✔ ✔ ✔ ✔

LKA ✘ ✔ ✘ ✘ ✘

CHIE ✘ ✘ ✔ ✔ ✔

IRFFN ✘ ✘ ✘ ✔ ✔

CVIM ✘ ✘ ✘ ✘ ✔

PSNR 23.59 23.67 23.69 23.70 23.72

SSIM 0.7345 0.739 0.7399 0.7402 0.7413

∆ PSNR 0 0.08 0.10 0.11 0.13

curate texture details compared to the NAFSSR-B method

which still suffers from over-smoothing fine textures. This

validates the superiority and effectiveness of our proposed

CVHSSR method.

4.3. Ablation Study

In this section, we conduct a set of ablation experiments

to evaluate the performance of each proposed module. The

evaluation is performed on the Flickr1024 [31] validation

dataset.

Effectiveness of Each Operation. To further substanti-

ate the effectiveness of our proposed module, a series of ab-

lation experiments were conducted and the results are pre-

sented in Table 2. Initially, the NAFSSR was used as the

baseline, and subsequently, the corresponding module was

modified continuously to verify the efficacy of the proposed

module. As depicted in the table, LKA provided a perfor-

mance improvement of 0.08 dB to the baseline due to its

larger receptive field. However, merely enlarging the re-

ceptive field of the network does not fully exploit the hi-

erarchical relationship of the intra-view. Hence, our pro-

posed CHIE provided a superior performance improvement

of 0.1 dB to the network. Compared to the simple FFN

in NAFSSR [4], our proposed IRFFN more effectively reg-

ulated the information flow. Additionally, our proposed

CVIM demonstrated a superior ability to fuse similar in-

formation from various perspectives and enhance network

performance, compared to the traditional PAM [32]. These

comparisons unequivocally underscore the effectiveness of

our proposed methods.

Effectiveness of λ in loss function. To evaluate the in-

fluence of different values of λ in the loss function, a se-

ries of experiments are conducted in this section. The hy-

perparameter λ is utilized to balance the trade-off between

the MSE loss function and the frequency Charbonnier loss

function. We conducted a range of empirical experiments

with six different λ values within the range of [0,1], based

on previous experience. The impact of different λ values on

the model performance is illustrated in Figure 7. The results

demonstrate that the network achieves optimal performance

at λ = 0.01.
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Figure 7. Study on the influence of λ in loss function. The PSNR

performance on the Flickr 1024 dataset (×4). When λ = 0.01,

the model achieves the best results.

4.4. NTIRE Stereo Image SR Challenge

We have submitted the results obtained from our pro-

posed approach to the NTIRE 2023 Stereo Image Super-

Resolution Challenge. To enhance the potential perfor-

mance of our method, we have increased the depth and

width of the CVHSSR-Based model. During test-time,

we employed self-ensemble and model ensemble strategies.

The final submission achieves 24.114 dB PSNR on the vali-

dation set and achieves 23.742 dB PSNR on the test set. We

won 8th, 5th, and 4th on track 1 Fidelity & Bicubic, track

2 Perceptual & Bicubic, and tack 3 Fidelity & Realistic, re-

spectively.

5. Conclusion

In this paper, we present an efficient stereo image SR

method named Cross-View Hierarchy Network (CVHSSR).

In particular, we design a cross-hierarchy information min-

ing block that efficiently extracts similar features from intra-

views by leveraging the hierarchical relationships of the

features. Additionally, we introduce a cross-view inter-

action module to effectively convey mutual information

between different views. The integration of these two

modules enables our proposed network to achieve supe-

rior performance with fewer parameters. Comprehensive

experimental evaluations demonstrate that our proposed

CVHSSR method outperforms current state-of-the-art mod-

els in stereo image SR.
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