
Appendix

A. Other HQS-based Sampling Methods
A.1. HQS as one diffusion step

For each of the conditional reverse diffusion step t, we
are actually solving the MAP estimation problem on noise
level βt:

x̂t = argmin
xt

1

2σ2
n

∥y −H(xt)∥2 + λP(zt)

s.t. xt = zt =
√
1− βtzt−1 +

√
βtϵ

(16)

With the HQS trick, now we have to solve
x̂t = argmin

xt

∥y −H(xt)∥2 + µσ2
n∥xt − ẑt∥2 (17a)

ẑt = argmin
zt

1

2(
√

λ/µ)2
∥zt − x̂t∥2 + P(zt) (17b)

for each reverse diffusion step. We define σt =
√

λ/µ
where σt is the relative noise level between xt and zt with
σt =

√
βt

1−βt
.

To build the connection between (17b) and a reverse dif-
fusion step (7), we first rewrite (17b) as

ẑt−1 =argmin
zt−1

1

2( βt

1−βt
)
∥
√
1− βtzt−1 +

√
βtϵ− x̂t∥2

+P(
√

1− βtzt−1 +
√
βtϵ).

(18)
Note that we have∇xP(x) = −∇x log p(x) = −sθ(x).

For any ϵ0 sampled from N (0, I), we have√
1− βtẑt−1 +

√
βtϵ0 ≈ x̂t +

βt

1− βt
sθ(x̂t, t) (19)

minimize the RHS of (18) as first-order approximation of
the proximal operator, which is also a standard gradient step
with step length βt

1−βt
. Then ẑt−1 can be solved as:

ẑt−1 =
1√

1− βt
(x̂t + (βt + o(βt))sθ(x̂t, t))

+
√
βt(1 + o(βt))ϵ

′
0

≈ 1
√
αt

(x̂t + βtsθ(x̂t, t)) +
√
βtϵ

′
0

(20)

where ϵ′0 = −ϵ0 is also a sample from N (0, I) and (20) is
the same as reverse process of DDPM (7).

A.2. DPS as a Special Case

For (17a), we can write similarly to Section 3.2:

x̂t ≈ ẑt −
σ2
t

2λσ2
n

∇zt
∥y −H(zt)∥2 (21)

With the Theorem 1 from DPS [8]

∇xt
log pt(y|xt) ≃ ∇xt

log p(y|x̂0) (22)

(21) turned into:

x̂t ≈ ẑt −
σ2
t

2λσ2
n

∇zt
∥y −H(z0)∥2 (23)

By setting ζt =
σ2
t

2λσ2
n
= 1

2ρt
, we are now able to reproduce

the sampling strategy in DPS.
Moreover, we can use the conclusion from [53] that

∇xt log pt(xt | y) ≈ ∇xt log pt(xt)+∇xt log pt(yt | xt),

where yt =
√
ᾱty+

√
1− ᾱtϵ is the measurement y at the

given noise level and yt is assumed to be the measurement
from xt.

As a result, we can write a variant of (23) as

x̂t ≈ ẑt −
σ2
t

2λσ2
n

∇zt
∥yt −H(zt)∥2 (24)

To distinguish them, we call the original DPS as DPSy0 and
the algorithm with (24) as DPSyt. The algorithm of DPSyt
is:

Algorithm 2 Extended Sampling I: DPSyt
Require: sθ , T , y, σn, {σt}Tt=1, λ

1: Initialize xT ∼ N (0, I)
2: for t = T to 1 do
3: ϵt ∼ N (0, I)

4: zt−1 = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
+

√
βtϵt // one step

reverse diffusion sampling
5: xt−1 = zt−1− σ2

t
2λσ2

n
∇zt−1∥yt−1−H(zt−1)∥2 // Solving

data proximal subproblem
6: end for
7: return x0

B. Experimental Details

B.1. Hyperparameters Values

We list the hyperparametrs values for different tasks and
datasets in 3.

NFE=20 σy = 0.05 σy = 0.0

Dataset FFHQ 256x256 ImgaeNet 256x256 FFHQ 256x256

Hyperparameters λ ζ λ ζ λ ζ

Inpaint (box) - - - - 6.0 1.0
Inpaint (random) - - - - 3.0 1.0
Deblur (gauss) 8.0 0.5 12.0 0.9 15.0 0.5
Deblur (motion) 7.0 0.8 7.0 1.0 25.0 1.0
SR (×4) 8.0 0.4 10.0 0.5 9.0 0.2



NFE=100 σy = 0.05 σy = 0.0

Dataset FFHQ 256x256 ImgaeNet 256x256 FFHQ 256x256

Hyperparameters λ ζ λ ζ λ ζ

Inpaint (box) - - - - 6.0 0.5
Inpaint (random) - - - - 7.0 1.0
Deblur (gauss) 7.0 0.3 8.0 0.3 12.0 0.4
Deblur (motion) 7.0 0.4 8.0 0.7 7.0 0.9
SR (×4) 8.0 0.2 9.0 0.5 6.0 0.3

Table 3. Hyperparameters for different tasks.

B.2. Closed-form Solutions

In this section, we will introduce the specific degrada-
tion models and fast solutions of (12b) for image restoration
tasks including SR, deblurring and inpainting.

Image Inpainting. In this work, we only consider the
noiseless inpainting. The degradation model of masked im-
age for inpainting can be expressed as

y = M⊙ x, (25)

where M is any user-defined mask and is a matrix with
boolean elements, and ⊙ denotes element-wise multiplica-
tion. The image inpainting task is to recover the missing
pixels from the known pixels as y. The closed-from solu-
tion of (12b) is given by [57]

x0 =
M⊙ y + ρtz0

M+ ρt
, (26)

and the division here is also element-wise.

Image Deblurring. The linear degradation model for im-
age deblurring with Gaussian noise is generally expressed
as

y = x⊗ k+ n, (27)

where ⊗ is two-dimensional convolution operator applied
on all image channels. By assuming⊗ is also a circular con-
volution operator, the analytical solution of (12b) is given
by [57]

x0 = F−1

(
F(k)F(y) + ρtF(z0)
F(k)F(k) + ρt

)
, (28)

where the F(·) and F−1(·) denote Fast Fourier Transform
(FFT) and its inverse.

Single Image Super-Resolution (SISR). In this work, we
consider bicubic SR, which has the following degradation
model

y = x ↓bicubicsf +n, (29)

where ↓bicubicsf denotes bicubic downsamling with down-
scaling factor sf .

We can then solve (12b) with the following iterative
back-projection (IBP) solution

x0 = z0 − γ(y − z0 ↓bicubicsf ) ↑bicubicsf , (30)
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Figure 9. Reverse diffusion process in DiffPIR

where ↑bicubicsf denotes bicubic interpolation with upscaling
factor sf , γ is the step size. Through experiment, we found
that it’s better to use γt = γ

1+ρt
which will decrease with

time. To get the solution accurately, we IBP for more than
one iteration for each timestep t.

For bicubic SR, we can also solve (12b) in closed-form
with an approximated bicubic kernels k [57]

x0 = F−1

(
1

ρt

(
d−F(k)⊙s

(F(k)d) ⇓s
(F(k)F(k)) ⇓s +ρt

))
,

(31)
where d = F(k)F(y ↑sf ) + ρtF(z0) and ↑sf denotes
the standard s-fold upsampler, and where ⊙s denotes dis-
tinct block processing operator with element-wise multipli-
cation, ⇓s denotes distinct block downsampler, i.e., averag-
ing the s × s distinct blocks. In general, the closed-form
solution (31) should outperform iterative solutions (30) in
quantitative metrics, since the former contains fewer hyper-
parameters.

C. Additional Ablation Study
In this section, we illustrate the reverse diffusion process

by showing the intermediate results in Figure 9. We ob-
served that in the beginning, the analytical solution offers
no help and motivate us to skip this phase. As mentioned in
Section 4.4, we found by experiment tstart the end timestep
for this phase.

D. Additional Visual Results
In this section, we provide additional visual examples

for FFHQ and ImageNet datasets to show the ability of
our method. In Figure 10 we demonstrate that DPSyt and
DPSy0 both work well on IR tasks like deblurring and SR.
In Figure 11, we show the diversity of SR reconstructions
with diffusion model as generative prior. In Figure 12 and
13, we show that our proposed DiffPIR is capable to handle
various blur kernels (both motion and Gaussian) and masks,
respectively.
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Figure 10. Qualitative results of DPSyt and DPSy0 (both 1000 NFEs) for Gaussian deblurring (left) and 4× SR (right) with σn = 0.05
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Figure 11. Qualitative results of DiffPIR (100 NFEs) for 8× and 16× SR with σn = 0.0 and σn = 0.05.
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Figure 12. Qualitative results of DiffPIR (100 NFEs) for motion deblurring (left) and Gaussian deblurring (right) with σn = 0.05
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Figure 13. Qualitative results of DiffPIR (100 NFEs) for inpainting with different masks (σn = 0.0)
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