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Abstract

Video-language transformers for text-to-video retrieval
typically consist of a video encoder, a text encoder, and a
joint encoder. The joint encoder can be categorized into
1) self-attention-based fusion and 2) unidirectional fusion
based on cross-attention. The former approach performs
self-attention on the concatenation of video and text em-
beddings. Although it allows complete interaction between
text and video, the length of the input sequences makes it
computationally intensive. Instead, unidirectional fusion
employs rather efficient cross-attention to fuse video em-
beddings into text embeddings while ignoring text-to-video
interaction. The text-to-video fusion is not well explored be-
cause of the information imbalance between text and video,
which makes it difficult to determine which video patches
can be used as queries in cross-attention. i.e., a text em-
bedding corresponds to one or more patch embeddings,
while a video patch embedding may not correspond to any
text embeddings. In order to address this challenge, we
devise a Bypass cross-attention (Bypass CA) which pre-
vents matching between irrelevant video and text embed-
ding pairs in the cross-attention. Using Bypass CA, we
propose a novel bidirectional interaction approach, Text-
to-Video-to-Text (T2V2T) fusion. The proposed T2V2T uses
two unidirectional fusions with opposite directions, i.e.,
text-to-video fusion followed by video-to-text fusion. As a
result, the proposed T2V2T fusion yields state-of-the-art re-
sults on MSR-VTT, DiDeMo, and ActivityNet Captions.

1. Introduction
Recently, text-to-video retrieval methods have leveraged

video-language pre-training (VLP) [2, 5, 7, 9, 12, 17, 24–26,
33] since VLP has shown superior performance in down-
stream tasks such as text-to-video retrieval [1,11,28], video
question answering [14, 27, 30, 32], and video caption-
ing [11, 28, 34]. Video-language models (VLMs) for VLP
commonly employ a text encoder, a video encoder, and a
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Figure 1. Examples of joint encoder configuration.

joint encoder. Whether or not the joint encoder is employed,
we could categorize VLMs into dual and joint encoder-
based models. Dual encoder-based models [2, 9, 24] em-
ploy text and video encoders to learn shared representation
using contrastive learning [15]. Joint encoder-based mod-
els [5, 7, 12, 17, 26, 33] embed each modality into video and
text embeddings separately and then merge the embeddings
with a joint encoder for downstream tasks. Although dual
encoder-based models are efficient, they performed worse
than joint encoder-based models in a variety of tasks due to
the lack of video-language interaction.

Existing joint encoder-based models for fusing video
and text could be categorized into self-attention-based
fusion (Fig. 1a) and unidirectional fusion based on
cross-attention (Fig. 1b). Since self-attention-based ap-
proaches [7,17,25,33] take concatenated video and text em-
beddings as input, they require a huge computational cost
since the computational cost is proportional to the square
of the input sequence length. In order to reduce the com-
putational cost, unidirectional fusion methods [2, 5, 12, 26]
fuse video embeddings into text embeddings by using cross-
attention followed by self-attention on the fused text em-
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Figure 2. Overall architecture. Text embeddings and video embeddings are given to T2V2T fusion. In T2V2T fusion, video embeddings
are first modulated using both video and text embeddings in Bypass CA. And then, the modulated video embeddings are fused into text
embeddings using cross-attention.

beddings as shown in Fig. 1b. Although applying self-
attention with only text embeddings is efficient, it results
in limited unidirectional interaction, i.e., video-to-text in-
teraction without text-to-video interaction. As a straight-
forward extension of unidirectional fusion, Cheng et al. [5]
explore a bidirectional fusion method (Fig. 1c), where two
cross-attentions transfer each video and text embedding to
each other. However, the bidirectional method shows sim-
ilar performance even with extra text-to-video fusion. We
assume that it is due to the property of cross-attention in
text-to-video fusion, which associates all patch embeddings
as queries with the text embeddings, regardless of the corre-
lation between each patch and the text embedding. For ex-
ample, the number of text tokens is less than 100 in our ex-
periments, while the number of patch tokens is up to 6,272
for 32 frames. Due to the imbalance, a text token can corre-
spond to one or more patch tokens, while a patch token may
not correspond to any text tokens. It could cause improper
modification of patch tokens by using irrelevant text tokens.

To resolve this limitation, we devise Bypass cross-
attention (Bypass CA), which prevents video patch embed-
dings from being modified by the use of irrelevant text. To
this end, we copy query video embeddings into the key
and value in addition to text features in text-to-video cross-
attention to make video embeddings associate with them-
selves in the key instead of text features if the given sen-
tence and each frame are not relevant to each other. With
Bypass CA, we propose an effective bidirectional fusion
method (Fig. 1d), called Text-to-Video-to-Text (T2V2T)
fusion, by enabling text-to-video interaction. Concretely,
T2V2T fusion first transfers text embeddings to video em-
beddings using Bypass CA and then transfers the modulated
video embeddings back to text embeddings using cross-
attention. For video-to-text fusion, we follow the previous
unidirectional fusion methods [5, 12]. The video-fused text
features are then re-integrated by self-attention. The T2V2T

fusion is performed recursively for iterative interaction.
Our main contributions are summarized as follows. 1)

We investigate the text-to-video interaction, which suf-
fers from the imbalance between the number of video and
text embeddings. 2) We propose a novel fusion method
called T2V2T fusion by introducing Bypass CA. 3) T2V2T
achieves SOTA text-to-video retrieval results on MSR-
VTT [28], DiDeMo [1], and ActivityNet Captions [11].

2. Proposed Method

The proposed text-to-video retrieval follows previous
VLP-based approaches, i.e., pre-training followed by fine-
tuning on text-to-video retrieval. In this section, we de-
scribe our VLM with T2V2T fusion based on Bypass CA,
training objectives and implementation details.
Overall Architecture is shown in Fig. 2. It consists of a
text encoder, a video encoder, and a joint encoder (T2V2T
fusion). The text encoder takes a sentence of length L as in-
put and yields text features FT ∈ RL×D, where D is an em-
bedding dimension. The video encoder takes N frames of a
video as input and returns video features FV ∈ RN×P×D,
where P is the number of patches in a frame. The joint en-
coder (T2V2T fusion) takes FT and FV as input and outputs
video-text features. The video-text features are employed
for text-to-video-retrieval through a fully connected layer.
Text-to-Video-to-Text (T2V2T) Fusion is a bidirectional
fusion encoder that extends the unidirectional encoder em-
ployed in [5,12]. In [5,12], a cross-attention is employed to
fuse video features into text features without regard to text-
to-video interaction. In order to enable text-to-video inter-
action, we introduce Bypass cross-attention (Bypass CA) in
addition to the unidirectional encoder.

Since cross-attention in the text-to-video fusion of bidi-
rectional fusion [5] (Fig. 1c) associates all frames with the
given sentence, video features in each frame are modulated
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Method #PT MSRVTT DiDeMo ActivityNet Captions
R1 R5 R10 Avg. R1 R5 R10 Avg. R1 R5 R10 Avg.

ClipBERT [13] 5.6M 22.0 46.8 59.9 42.9 20.4 48.0 60.8 43.1 21.3 49.0 63.5 44.6
Frozen [2] 5.5M 31.0 59.5 70.5 53.7 31.0 59.8 72.4 54.4 - - - -

ALPRO [15] 5.5M 33.9 60.7 73.2 55.9 35.9 67.5 78.8 60.7 - - - -
BridgeFormer [9] 5.5M 37.6 64.8 75.1 59.2 37.0 62.2 73.9 57.7 - - - -
Singularity [12] 5.5M 39.9 67.3 76.0 61.1 49.2 77.5 85.4 70.7 45.9 73.3 83.8 67.7

VindLU [5] 5.5M 43.8 70.3 79.5 64.5 54.6 81.3 89.0 75.0 51.1 79.2 88.4 72.9
T2V2T (Ours) 5.5M 44.4 70.7 79.5 64.9 56.0 81.9 89.7 75.9 52.1 79.4 88.2 73.2

MMT [8] 136M 25.8 57.2 69.3 50.8 - - - - 28.7 61.4 94.5 61.5
TACo [29] 120M 28.4 57.8 71.2 52.5 - - - - 30.4 61.2 93.4 61.7

SupportSet [22] 120M 30.1 58.5 69.3 52.6 - - - - 29.2 61.6 94.7 61.8
Singularity [12] 17M 42.7 69.5 78.1 63.4 53.1 79.9 88.1 73.7 48.9 77.0 86.3 70.7

VindLU [5] 17M 45.3 69.9 79.6 64.9 59.2 84.1 89.5 77.6 54.4 80.7 89.0 74.7
CLIP4Clip [21] 400M 44.5 71.4 81.6 65.8 43.4 70.2 80.6 64.7 40.5 72.4 98.2 70.4

VindLU [5] 25M 46.5 71.5 80.4 66.1 61.2 85.8 91.0 79.3 55.0 81.4 89.7 75.4
OmniVL [26] 17M 47.8 74.2 83.8 68.6 52.4 79.5 85.4 72.4 - - - -

Table 1. Comparison to state-of-the-art VLP-based methods on text-to-video retrieval. #PT is the number of images and videos used for
pre-training. R1, R5, and R10 are recall at 1, 5, and 10, respectively. We also report results obtained by pre-training with ≥ 17M data as a
reference, but they are grayed out for a fair comparison.

by text features without regard to the correlation between
the given sentence and each frame. We assume that it is in-
appropriate to associate all frames with the given sentence
since only a subset of the frames is relevant to the given
sentence. For example, self-attention-based fusion Fig. 1a
can discourage the association between irrelevant words and
frames since self-attention is performed using both embed-
dings. As an efficient alternative, we introduce a bypass
mechanism in the cross-attention by including frame fea-
tures in the key and value in addition to text features, so
that frame features (i.e., query) can be associated with them-
selves in the key instead of text features if the given sentence
and each frame are not relevant to each other as follows:

FT2V [i] = X-Attn(FV [i], FT ||FV [i]), (1)

where FV [i] is video features of i-th frame.
X-Attn(Q,KV ) is a cross-attention where Q is a
query, KV is employed as key and value. Note that
Bypass CA is performed in a frame-wise manner to avoid a
significant increase in computational cost.

Then, FT2V is fused into text features as follows:

FT2V 2T = S-Attn(X-Attn(FT , FT2V )), (2)

where S-Attn(·) is a self-attention to further refine the
fused features. Note that we omit a fully connected layer,
GELU [10] activation function, and a layer normalization
layer after Eq. (1) and Eq. (2) for simplicity. T2V2T fusion
is performed M times recursively for iterative interaction.
Objectives In the pre-training phase, we employ three com-
mon objectives; Video-Text Contrastive loss (LV TC) [15]

on text and video embeddings, Video-Text Matching
loss (LV TM ) [15, 16, 20], and Masked Language Modeling
loss (LMLM ) [6]. For finetuning on text-to-video retrieval,
we employ LV TC and LV TM except LMLM .

Implementation details. We follow the setup of [5] to
fairly compare proposed T2V2T fusion encoder with the
state-of-the-art unidirectional encoder [5]. The video en-
coder is based on BEiT [3], and temporal attention inspired
by TimeSformer [4] is inserted before each spatial attention.
The first nine layers of BERT-Base [6] are employed for the
text encoder, and the last three layers are employed to ini-
tialize self-attention in the T2V2T fusion encoder. We ran-
domly initialize the temporal attention layers in the video
encoder and the cross-attention layers in the T2V2T fusion.

3. Experiments

In this section, we first describe experiments setup of
pre-training (Sec. 3.1) and text-to-video retrieval (Sec. 3.2),
then demonstrate experimental results compared to state-of-
the-art VLP-based text-to-retrieval methods [2, 5, 9, 12, 13,
15] in Sec. 3.3. In addition, we show an ablation study to
verify the effectiveness of Bypass CA in Sec. 3.4.

3.1. Pre-training

We pre-trained our model on CC3M [23] and WebVid-
2M [2], which are common for VLP. For a fair comparison,
we followed the training setting in [5] as shown in Tab. 3.
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Method MSR-VTT DiDeMo ActivityNet Captions Total
R1 R5 R10 Avg. R1 R5 R10 Avg. R1 R5 R10 Avg. Avg.

VindLU [5] 43.8 70.3 79.5 64.5 54.6 81.3 89.0 75.0 51.1 79.2 88.4 72.9 70.8
naı̈ve T2V2T 44.3 70.1 79.3 64.6 55.1 80.7 88.0 74.6 51.7 78.8 87.9 72.8 70.7
T2V2T 44.4 70.7 79.5 64.9 56.0 81.9 89.7 75.9 52.1 79.4 88.2 73.2 71.3

Table 2. An ablation study to verify the efficacy of the proposed Bypass CA.

config parameters

optimizer AdamW [19]
(β1 = 0.9, β2 = 0.999, wd=0.02)

learning rate 1e-4→1e-6 (cosine decay [18])
#epochs 10 (warmup = 1)
batch size×#GPUs 64×8
spatial resolution 224 × 224

Augmentation random resize, crop
horizontal flip

#training frames 4

Table 3. Hyper-parameters for pre-training.

config parameters
MSR-VTT DiDeMo Anet Cap.

learning rate 1e-5→1e-6 (cosine decay [18])

#epochs 5 10 10
(warmup = 0.5)

batch size×#GPUs 32×4 32×1 32×1
#training frames 12 12 12
#inference frames 12 12 32

Table 4. Hyper-parameters for text-to-video retrieval. We omit
parameters which are common in the pre-training (Tab. 3).

3.2. Text-to-video retrieval

We evaluated VLP-based text-to-video retrieval methods
on the following three datasets:

• MSR-VTT [28] contains 10K videos with 200K cap-
tions. We trained on 9K videos and evaluated on 1K-A
test set following [2, 5, 31].

• DiDeMo [1] contains 10K videos with 41K captions.
We trained on training set with 8,395 videos and evalu-
ated on test set with 1,004 videos following [5,13,21].

• ActivityNet Captions [11] contains 20K videos with
100K captions. We trained on training set with 10K
videos and evaluated on validation set with 4.9K
videos following [5, 12, 21]

We followed the training setting of [5] as shown in Tab. 4
for a fair comparison.

3.3. Experimental Results

We compared the proposed method with state-of-the-art
VLP-based methods in terms of text-to-video retrieval re-

call as shown in Tab. 1. Since the number of images and
videos used in the pre-training phase affects the perfor-
mance, we also report the number of images and videos.
Our proposed method achieved the best recall under 5.5M
pre-training data. Notably, the proposed method obtained
gains in recall at 1, +0.6 on MSR-VTT, +1.4 on DiDeMo,
and +1.0 on ActivityNet Captions compared to the second
best method, VindLU (5.5M) [5]. In addition, the pro-
posed method achieved better results than the methods pre-
trained on 17-400M data except VindLU (17M/25M) [5] for
DiDeMo and ActivityNet Captions text-to-video retrieval.

3.4. Ablation Study

In order to verify the effectiveness of the proposed
T2V2T and Bypass CA, we compared three methods in
terms of text-to-video retrieval recall on three text-to-video
retrieval datasets; baseline unidirectional fusion [5], naı̈ve
T2V2T ([5] + cross-attention), and our T2V2T ([5] + By-
pass CA). As shown in Tab. 2, naı̈ve T2V2T yielded slightly
worse results than its baseline unidirectional fusion. It is
the same phenomenon as [5] that bidirectional fusion does
not improve over unidirectional fusion. We speculate that
it is due to the property of cross-attention in text-to-video
fusion, which associates irrelevant frames and text. In con-
trast, the proposed Bypass CA improved over unidirectional
fusion by taking advantage of the bypass mechanism.

4. Conclusion

In this paper, we have proposed Bypass cross-attention
to deal with the information imbalance between video and
text. Using Bypass cross-attention, the proposed T2V2T
fusion achieves state-of-the-art results in text-to-video re-
trieval. We will extend this work to a variety of downstream
tasks to verify the generality of Bypass CA and scale up the
pre-training data for further performance gains.

5. Acknowledgement

This work was supported by IITP grant funded by the
Korea government (MSIT) (No. 2020-0-00004, Develop-
ment of Previsional Intelligence based on Long-term Visual
Memory Network (80%), and No. RS-2022-00187238, De-
velopment of Large Korean Language Model Technology
for Efficient Pre-training (20%)).

5616



References
[1] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef

Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with natural language. In Proceedings of
the IEEE international conference on computer vision, pages
5803–5812, 2017. 1, 2, 4

[2] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
1708–1718, 2021. 1, 3, 4

[3] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
Bert pre-training of image transformers. In International
Conference on Learning Representations, 2022. 3

[4] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In ICML, volume 2, page 4, 2021. 3

[5] Feng Cheng, Xizi Wang, Jie Lei, David Crandall, Mo-
hit Bansal, and Gedas Bertasius. Vindlu: A recipe for
effective video-and-language pretraining. arXiv preprint
arXiv:2212.05051, 2022. 1, 2, 3, 4

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics. 3

[7] Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang
Wang, Lijuan Wang, and Zicheng Liu. Violet: End-to-end
video-language transformers with masked visual-token mod-
eling. arXiv preprint arXiv:2111.12681, 2021. 1

[8] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia
Schmid. Multi-modal transformer for video retrieval. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 214–229, 2020. 3

[9] Yuying Ge, Yixiao Ge, Xihui Liu, Dian Li, Ying Shan, Xi-
aohu Qie, and Ping Luo. Bridging video-text retrieval with
multiple choice questions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 1, 3

[10] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 3

[11] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and
Juan Carlos Niebles. Dense-captioning events in videos. In
Proceedings of the IEEE international conference on com-
puter vision, pages 706–715, 2017. 1, 2, 4

[12] Jie Lei, Tamara L Berg, and Mohit Bansal. Revealing single
frame bias for video-and-language learning. arXiv, 2022. 1,
2, 3, 4

[13] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L. Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
video-and-language learning via sparse sampling. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 3, 4

[14] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg.
Tvqa: Localized, compositional video question answer-
ing. In Empirical Methods in Natural Language Processing,
2018. 1

[15] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles,
and Steven C. H. Hoi. Align and prompt: Video-and-
language pre-training with entity prompts. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4953–4963, 2022. 1, 3

[16] Linjie Li, Yen Chun Chen, Yu Cheng, Zhe Gan, Licheng
Yu, and Jingjing Liu. Hero: Hierarchical encoder for
video+language omni-representation pre-training. In Pro-
ceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2046–2065,
2020. 3

[17] Linjie Li, Zhe Gan, Kevin Lin, Chung-Ching Lin, Zicheng
Liu, Ce Liu, and Lijuan Wang. Lavender: Unifying
video-language understanding as masked language model-
ing. arXiv preprint arXiv:2206.07160, 2022. 1

[18] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations, 2017. 4

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 4

[20] Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan
Duan, Tianrui Li, Jason Li, Taroon Bharti, and Ming Zhou.
Univl: A unified video and language pre-training model for
multimodal understanding and generation. arXiv preprint
arXiv:2002.06353, 2020. 3

[21] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,
Nan Duan, and Tianrui Li. Clip4clip: An empirical study of
clip for end to end video clip retrieval. arXiv, 2021. 3, 4

[22] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian
Metze, Alexander G Hauptmann, Joao F Henriques, and An-
drea Vedaldi. Support-set bottlenecks for video-text repre-
sentation learning. In International Conference on Learning
Representations, 2021. 3

[23] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556–2565, 2018. 3

[24] Fangxun Shu, Biaolong Chen, Yue Liao, Shuwen Xiao,
Wenyu Sun, Xiaobo Li, Yousong Zhu, Jinqiao Wang, and Si
Liu. Masked contrastive pre-training for efficient video-text
retrieval. arXiv preprint arXiv:2212.00986, 2022. 1

[25] Alex Jinpeng Wang, Yixiao Ge, Rui Yan, Yuying Ge,
Xudong Lin, Guanyu Cai, Jianping Wu, Ying Shan, Xi-
aohu Qie, and Mike Zheng Shou. All in one: Explor-
ing unified video-language pre-training. arXiv preprint
arXiv:2203.07303, 2022. 1

[26] Junke Wang, Dongdong Chen, Zuxuan Wu, Chong Luo, Lu-
owei Zhou, Yucheng Zhao, Yujia Xie, Ce Liu, Yu-Gang
Jiang, and Lu Yuan. Omnivl: One foundation model for
image-language and video-language tasks. In Advances in
Neural Information Processing Systems, 2022. 1, 3

5617



[27] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang,
Xiangnan He, and Yueting Zhuang. Video question answer-
ing via gradually refined attention over appearance and mo-
tion. In Proceedings of the 25th ACM international confer-
ence on Multimedia, pages 1645–1653, 2017. 1

[28] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5288–5296, 2016. 1, 2, 4

[29] Jianwei Yang, Yonatan Bisk, and Jianfeng Gao. Taco:
Token-aware cascade contrastive learning for video-text
alignment. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 11562–11572, 2021.
3

[30] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint se-
quence fusion model for video question answering and re-
trieval. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 471–487, 2018. 1

[31] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint se-
quence fusion model for video question answering and re-
trieval. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 471–487, 2018. 4

[32] Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. Activitynet-qa: A dataset for
understanding complex web videos via question answering.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 9127–9134, 2019. 1

[33] Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi. Mer-
lot: Multimodal neural script knowledge models. Advances
in Neural Information Processing Systems, 34:23634–23651,
2021. 1

[34] Luowei Zhou, Chenliang Xu, and Jason Corso. Towards
automatic learning of procedures from web instructional
videos. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018. 1

5618


