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Abstract

Language-supervised object detection typically uses de-
scriptive captions from human-annotated datasets. How-
ever, in-the-wild captions take on wider styles of language.
We analyze one particular ubiquitous form of language:
narrative. We study the differences in linguistic structure
and visual-text alignment in narrative and descriptive cap-
tions and find we can classify descriptive and narrative style
captions using linguistic features such as part of speech,
rhetoric structure theory, and multimodal discourse. Then,
we use this to select captions from which to extract image-
level labels as supervision for weakly supervised object de-
tection. We also improve the quality of extracted labels by
filtering based on proximity to verb types for both descrip-
tive and narrative captions.

1. Introduction
Recent progress in self-supervised and weakly-

supervised computer vision has been fueled by data freely
available on the web [18, 21, 26]. For semantic tasks
(e.g. object detection, visual question answering), weak
semantic information has been extracted from multimodal
data, where visual content co-occurs with some metadata.
Such metadata could come from user-generated content,
constructed by users to serve their own purposes, rather
than constructed for pay. When people create content,
whether it is a caption for a photo posted on Instagram
or a voice-over accompanying a documentary, they natu-
rally gravitate towards narratives. Yet many multimodal
semantic tasks have been supported not by such narrative
data, but by crowdsourced, paid-for datasets datasets such
as COCO [19] and Flickr30K [42]. The captions in these
datasets often take on only descriptive styles [17] and also
do not represent the full diversity in which humans write
coherent captions to images [3].

In this paper, we analyze the differences between nar-
rative and descriptive language accompanying images, and
the impact of using these different styles of data for weakly-

Figure 1. In-the-wild multimedia content like documentaries and
visual content uploaded to content sharing platforms are accom-
panied by text metadata such as subtitles or captions. The top two
examples are narrative captions that are written from a first per-
son point-of-view and may refer to events in the past. The bottom
example from VIST [17] provides two types of captions, tradi-
tional descriptive captions (DII) and narrative-like captions (SIS).
We may extract false positive labels due to narrative artifacts, e.g.
“boat” in the SIS caption.

supervised object detection. Specifically, we analyze dif-
ferences in linguistic structure and visual-text alignment of
narrative and descriptive captions contained in the Visual
Storytelling dataset (VIST) [17]. Our goal is to understand
the challenges of using narrative or descriptive captions as
a source of weak labels for object detection.

First, we analyze how narrative and descriptive samples
differ in terms of their linguistic and argumentative struc-
ture, specifically part-of-speech composition and composi-
tion of rhetoric structure theory tags. We also analyze the
extent and type of visual-text alignment between an image
and its corresponding narrative or descriptive caption. We
conduct this analysis through the use of multimodal coher-
ence relations, joint embedding spaces, and pretrained ob-
ject detectors. We refer to this analysis as a global view,
as it focuses on analysing sentences as a whole. We are in-
terested in the extent to which supervision extracted from
them by lexical matching [41] would be useful for weakly
supervised object detection.
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Second, we investigate whether the labels extracted with
lexical matching from these captions are true (TP) or false
positives (FP). Here, we conduct a local analysis: we ex-
plore why a particular type of image-text misalignment oc-
curs (i.e. we sub-categorize the FPs) and study the corre-
lations between TP/FP and characteristics of the words im-
mediately around an object noun in the caption.

Third, we use the findings from our analyses to automat-
ically select which captions should be used to extract labels.
We first show the contribution of different features for infer-
ring whether a caption has a descriptive or narrative style.
We then select captions according to the resulting classi-
fiers, demonstrating that intelligent selection results in a
tangible difference in object detection results. Importantly,
we also show the impact of the ability to choose individ-
ual segments of sentences (regardless of sentence style) that
contain pure labels.

To summarize, our contributions include: (1) developing
a model that distinguishes between descriptive and narrative
captions using linguistic features; (2) evaluating the effect
of extracting image-level labels from descriptive or narra-
tive captions for weakly supervised object detection; (3) an-
alyzing local linguistic features around false positive labels
extracted from captions; and (4) evaluating the effect on de-
tection of extracting labels from windows centered around
the different linguistic features.

2. Related Work
Vision-language datasets. Multimodal datasets com-

monly include vision and language data, but differ in the
form each modality is presented; for example, the vision
modality can be presented via static images [21, 26, 29],
images in a sequence [17, 40], or long [7, 24] or short
videos [32]. Similarly, language in multimodal datasets
can also be represented in diverse forms such as procedural
(instructional) language [13,24,40], narrative-like language
[5,7,16,17,33], user-written alternative text [19,26,30,42].
Typically, instructional videos have been used for learning
visual-textual grounding [23, 24]; Hessel et al. [14] stud-
ied the extension to using diverse non-instructional videos
for visual-textual grounding. Instead, our work studies the
effect of extracting labels from descriptive or narrative cap-
tions for weakly supervised object detection.

Weakly-supervised object detection. The vast ocean of
multimedia on the Internet motivates many self-supervised
methods for image or video representation and weakly-
supervised techniques. One particular task, weakly-
supervised object detection (WSOD), has been formulated
as a multiple instance learning problem to train a model to
localize and classify objects from image-level labels, rather
than bounding box annotations [4, 10, 28, 31, 31, 35]. The
first work to leverage unstructured text accompanying an
image for WSOD predicted pseudo image-level labels from

captions [41]. Another approach used a vision-language
dataset during pretraining, and bounding boxes for only
some categories, to generalize detection abilities to novel
classes [43]. These language-supervised object detection
models have only been tried on multimodal datasets like
COCO or Flicker30K (descriptive, crowdsourced) and to
a limited extent Conceptual Captions (descriptive alt-text).
An exception is [7] which uses wildlife documentaries but
relies on track information, which is not available in image
datasets. Recent work [12,44] extends CLIP [26] for detec-
tion. We instead aim to understand the impact of in-the-wild
captions for language-supervised object detection.

Coherence analysis in language and across modalities.
Discourse structure relays syntactic information about how
text is organized. In language, each span is connected in
a meaningful and coherent manner to the next; how it is
connected is known as the discourse or coherence rela-
tion. Discourse relations and structure are a well studied
topic [22, 38, 39]. We use parsers that follow the taxonomy
of discourse relations from rhetorical structure theory [22];
each span serves a function in rhetoric. This concept was
extended to multimodal discourse, specifically images and
captions in instructional [1] and caption generation con-
texts [2], but has not been used for object detection before.

3. Global View: Descriptive vs Narrative
As shown in Fig. 1, narrative or in-the-wild captions can

have lower visual-text alignment due to object mentions that
reference events or external narrative context not depicted
in the image; this can negatively affect language supervised
object detection. In this section, quantitatively analyze the
differences in linguistic structure and visual-text alignment
between descriptive and narrative captions.

3.1. Preprocessing

We do our analysis on the Visual Storytelling (VIST)
dataset [17] with three different styles of captions:
Descriptions of Images in Isolation (DII), Descriptions of
Images in Sequence (DIS), Story for Images in Sequence
(SIS). Each image multiple captions labeled as DII and SIS,
which allows us to observe the impact of descriptive or nar-
rative captions (like in-the-wild captions) while keeping the
image constant.

There may be variables beyond the characteristics of
captions that could affect the analysis and application to
weakly supervised object detection, e.g. class imbalance
or visual differences in object appearances if the set of im-
ages are not constant between DII and SIS. To solve the lat-
ter, we sample images rather than captions. We filter about
20K images that have no corresponding DII captions, and
denote the remaining subset as I , containing about 40K im-
ages. Then, we limit our label space to overlap between
the most frequently occurring lexicon in VIST and PAS-
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CAL VOC 2007 label set [9]; resulting in four categories:
car, boat, dog, person. For each image xi ∈ I , there are
two sets of captions, CSIS

i and CDII
i . To extract image-

level labels, we apply regular expression matching on each
caption cji ,∀j ∈ CSIS

i ∪ CDII
i with the following pattern:

“(car∥boat∥dog∥person)”, and extract labels, elji from each
caption cji . We produce a final set of labels, eli for each
image xi by taking the union el1i ∪ el2i ∪ ... ∪ elJi where
J = ∥CSIS

i ∪ CDII
i ∥ and retain any image xi where eli

contains at least one category from our label set. This sub-
set, I∗ has an advantage; we retain captions without any ex-
tracted labels (preserving possible false negatives), which is
useful for our analysis.

3.2. Linguistic Differences

The linguistic structure of a caption may correlate with
visual-textual alignment. A caption with a low count of
nouns might not mention the salient objects in objects in
the image. Some prepositions such as “next to” may convey
spatial information that is likely to be visible. Other prepo-
sitions such as “like” may indicate the use of non-literal lan-
guage (figure of speech) and any object that follows will
likely not to be visible. Linguistic structure beyond part of
speech can also play a role in predicting whether the cap-
tion is actually aligned with the image. For example, an
enablement discourse relation, where an action described in
the nucleus (core) span is enabled by information provided
in the satellite (helper), could imply additional contextual
information is being provided; for example, “We used the
gondolas one night [nucleus] to go to a ball [satellite].”
Here, it is highly unlikely that both gondola and the ball
venue would be shown.

We hypothesize the same linguistic features that differ-
entiate between descriptive and narrative captions could
contribute to visual and text alignment. We now describe
the setup and the analysis for each linguistic feature.
Part of Speech (POS). We extract POS tags over all VIST
captions using SpaCy [15] and observe differences in pro-
noun usage and verb tense between descriptive and narra-
tive captions (Table 1a). The increased use of pronouns in
SIS suggests a deviation from an impersonal, objective tone.
For the same image, one SIS caption says “we finally arrive
at the island” with a first person point-of-view compared to
a DII caption which provides both count and details regard-
ing the subject: “a group of four men sitting together”.

Verb tense and aspect also differ between descrip-
tive/narrative captions (Table 1c). Both verb tenses are used
in SIS captions, with more verbs referring to the past than
present. Past and present tense in SIS can occur in the same
sentence: “Afterwards, we take a couple photographs be-
cause we paid the photographer to do so.” An aligned im-
age would show either show the couple posing for a photo
or the transaction. This interaction between past and present

(a) Frequency of POS tags over DII/SIS.
Part of Speech DII SIS

noun 3.85 2.73
preposition 1.75 1.01

adjective 0.98 0.85
personal pronoun 0.18 0.80

verb 1.55 2.00
verb base 0.07 0.37

verb gerund 0.61 0.23
past tense 0.08 0.89

past participle 0.21 0.17
non-3rd person sing pres 0.22 0.16

3rd person sing pres 0.36 0.19

(b) Distribution of RST tags (top 8).
RST Tag DII (%) SIS (%)

Attribution 1.3 4.8
Background 1.3 2.2

Contrast 1.1 1.7
Enablement 0.6 2.3

Joint 4.1 6.0
Temporal 2.2 1.2

Elaboration 21.4 10.9
None 65.1 64.1

(c) Distribution over tense and aspect.
past present progressive perfective

DII 18.5% 81.4% 94.5% 5.4%
SIS 52.8% 47.2% 75.1% 24.9%

Table 1. We observe the difference in part of speech, verb tense
and aspect composition, and rhetoric structure between descriptive
and narrative captions.

occurs over 33% of SIS captions vs 16% in DII.
Aspect is more evenly distributed in narrative than de-

scriptive captions, but both still favor progressive aspect.
Progressive aspect refers to verbs that describe an ongoing
activity such as “The event is starting, there are even some
dancers forming outside” (SIS) while perfective describes
a completed activity, e.g. “The old part has been removed
and now there many loose wires now” (SIS).

We hypothesize part of speech tags can be a strong fea-
ture to discriminate between DII and SIS, and DII provides
more aligned captions since it describes ongoing activities
more likely to be present in the accompanying visual scene.
RST Relations. Rhetorical structure theory (RST) was pro-
posed as a taxonomy on how text is structured while being
coherent [22]. There is an argument or a claim (nucleus)
which is furthered by supporting spans (satellite). In this ex-
ample, nucleus is in blue and satellite in cyan: “Employees
are urged to complete new beneficiary designation forms
for retirement or life insurance benefits whenever there is
a change in marital or family status.” The support relation
between satellite and nucleus is defined by a 16 discourse
relations such as Elaboration (sat. provides additional in-
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Category P R

DII SIS DII SIS
Car 0.64 0.71 0.38 0.35

Person 0.94 0.96 0.17 0.20
Dog 0.76 0.77 0.58 0.57
Boat 0.50 0.51 0.39 0.33

Table 2. Using YOLOv3 [27] to estimate which extracted labels
are present in the image, we calculate precision and recall of the
visual presence of extracted labels over four categories.

formation, e.g. “a fox [nuc.] that is sitting on the grass near
the tree [sat.]”, which is descriptive), Attribution (direct in-
stances of reported speech e.g. “She said [sat.], ‘Hi’ [nuc.]”
and indirect instances “I think [sat.] the dog is sick [nuc.]”,
both of which are narrative), Joint (multinuclear relations
“then we sat down [nuc.] and started drinking beer [nuc.]
and talked for quite a while [nuc.]”, part of a narrative), etc.
We use Wang et al. [37] to segment captions into spans, and
the StageDP discourse parser [36] to predict the RST tags
between spans.

In Table 1b we identify key discourse relations that have
a higher occurrence in DII or SIS captions. The biggest
difference occurs for the “Elaboration” (10.5% more in DII
than SIS), “Attribution” (3.5% more in SIS), “Joint” (1.9%
more in SIS) and “Enablement” (1.7% more in SIS) rela-
tions. While DII contains mainly “Elaboration” and “Tem-
poral” tags, SIS represents a wider range of how spans relate
to one another. We also observe differences in the lexicon
correlated with each discourse relation and whether the cap-
tion is DII or SIS. Both DII and SIS have nearly the same
number of captions flagged as temporally related, however
“before” and “while” frequently occur in the flagged SIS
captions and only “while” frequently occurs in the DII. This
is significant because labels extracted from Temporal-SIS
captions could contain either a future or past reference in
either nucleus or satellite clauses, and therefore, not cur-
rently visible. This can lead to false positive labels when
naively extracting from captions.

3.3. Visual-Text Alignment

Next, we analyze quantitative measures of visual-text
alignment, ranging from the alignment of extracted la-
bels and visual objects to multimodal discourse relations.
Insights regarding visual-text alignment can help identify
sources of noise and determine the suitability of extracting
labels from each source.
Using a pretrained object detection model. Since VIST is
intended for image captioning, not object detection, it does
not come with ground-truth bounding boxes nor image-
level labels. Thus we extract image labels using YOLOv3
[27]. We would expect that both precision and recall of the
extracted labels would be high in DII compared to SIS, and

that the precision would be higher than recall. Surprisingly,
Table 2 shows precision is estimated to be lower for DII,
contrary to our expectations. We investigate this in Sec. 4.
Using CLIP. We also observe the alignment between im-
ages and captions on a semantic embedding level. We
use CLIP [26] to extract image and caption joint embed-
dings, and use cosine similarity to measure their similarity.
DII caption-image embeddings have statistically significant
(p < 0.0001) higher (0.30 ± 0.03) cosine similarity than
SIS (0.26± 0.04). This aligns with our expectation that de-
scriptive captions are more likely to be directly aligned with
its visual content, and contradicts the previous observation
of lower precision of extracted labels from DII captions.
CLUE image-text discourse relations. While descriptive
captions commonly appear to have a redundant relationship
with their corresponding visual information, other forms of
language can convey additional or complementary informa-
tion to a visual aid. Our last linguistic analysis breaks down
image-text alignment into discrete categories through multi-
modal discourse relations. We use the image-text discourse
relations defined by Alikhani et al. [2] such as: Visible (el-
ements in text directly related to the image, akin to descrip-
tive captions), Subjective (text provides unverifiable infor-
mation “the most beautiful horse”), Story (text provides
some narrative context to the image with risk of “context
hallucinations” and extracted labels not present in the cor-
responding image), Action, Meta, and Irrelevant (no visual-
textual grounding). Using a multimodal late-fusion model
trained to predict CLUE discourse labels, [2] we observe
that for about 50% of the SIS captions, there are no CLUE
discourse labels predicted, compared to only about 14% of
DII captions. Ignoring captions with no predictions, DII
captions have slightly more “Visible, Action” (0.5%) and
“Story” (0.3%) tags. There may be image-text relations un-
explored in narrative-like captions due to 50% of captions
having no predicted label; this is plausible given that CLUE
was annotated on a subset of Conceptual Captions [30], a
multimodal dataset with descriptive (alt-text) captions.

4. Local View: Exploring False Positives La-
bels Extracted from Descriptive/Narrative
Captions

As noted in Sec. 3.3, we expected high precision of la-
bels extracted from DII, since annotators were tasked with
describing exactly the image contents and the selected cate-
gories (dog, car, etc) are highly visible categories. To deter-
mine if the reported low precision was a result of an imper-
fect classifier or if the labels were indeed visually absent, we
gathered a set of extracted labels from 100 captions which
were flagged as containing a false positive (i.e. the extracted
label did not appear in the YOLOv3 predictions for that im-
age). These extracted labels were annotated as either a vi-
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Figure 2. The distribution of the type of VAEL. VAEL from SIS
are mainly comprised of narrative artifacts (53%) compared to DII
(14%).

sually present extracted label (VPEL) or a visually absent
extracted label (VAEL). For those annotated as VAEL, we
also annotated the type of VAEL using the scheme in Table
3. The agreement was high, κ = 0.697 over the annotated
set and two annotators (authors). For Fig. 2, we used the
subset for which there was agreement between the anno-
tators. We conclude that the amount of VAELs is actually
lower in DII (50%) compared to SIS (60%), therefore the
lower precision of extracted labels from DII is due to missed
predictions from YOLOv3, not because of the quality of ex-
tracted labels from DII.

We found there may be specific linguistic structural cues
indicative of the presence of a VAEL and its type. For exam-
ple, lexical cues (italicized) associated with atypicality may
indicate a Atypical Instance VAEL (bolded): “She looked
very happy with some of the gifts she got. Her favorite was
a dog toy.” In cases like narrative artifact, there may be an
interaction between multiple spans and the use of past tense
that may indicate a VAEL: “Earlier that day, my dog peed
on a flower.” Other examples of narrative artifact in SIS in-
clude the use of present tense verbs and prepositions: “What
better feeling that walking on grass after a long car ride”,
“As [female] was walking her dog, she met a stranger.” Rec-
ognizing when and where visually absent contextual infor-
mation appears can still allow for label extraction by ex-
tracting outside of the contextual sequence. This can in-
crease the quality of labels extracted from noisier, narra-
tive captions instead of using only descriptive captions as a
proxy for clean labels. We investigate linguistic cues (verb
type and tense, nucleus/satellite, object/subject) and their
effect on extracted labels for WSOD in Sec. 6.

5. Methods
The analysis in Secs. 3 and 4 indicates descriptive cap-

tions may contain labels that are more aligned with the cor-
responding image compared to narrative captions. This mo-
tivates learning to predict whether a caption is of descriptive

style or narrative style. We train a DII/SIS classifier using
captions and their split metadata (DII or SIS) from Visual
Storytelling Dataset (VIST) [17]. The goal of this DII/SIS
classifier (Sec. 5.1) is to attribute descriptiveness scores to
all captions corresponding to an image. Then, the scores
will be used to select one entire caption (global view) from
which labels will be extracted. These labels will be used to
train a WSOD model (Sec. 5.2).

Following the local view analysis in Sec. 4, we also cre-
ate a rule-based module to observe the impact of extract-
ing labels based on proximity to some linguistic feature:
verb type, nucleus/satellite, and subject/object. This mod-
ule limits extracting labels from windows centered around
a linguistic feature in all captions for the image as opposed
selecting a single caption.

5.1. Extracting Labels

DII/SIS Classifier In our prior analysis, we observed lin-
guistic features like part of speech and discourse relations
like RST [22] and CLUE [3] are distinctive between de-
scriptive and narrative captions. We train a logistic regres-
sion classifier to predict the descriptiveness of the caption.
Rule Based Classifier The global view method, described
above, filters out entire captions. The local view method,
on the other hand, chooses to extract labels based a lexi-
cal match between the selected categories and a five-word
window of a particular linguistic feature in a caption. We il-
lustrate this in Fig. 3. For nucleus/satellite local view classi-
fiers, lexical match is directly applied to the span associated
with nucleus or satellite, rather than a 5-word window.

5.2. Weakly Supervised Object Detection

We follow prior literature [4, 41] to train a network
to predict the labels identified in Sec. 5.1. A convolu-
tional neural network base encoder h(xi) is used to ex-
tract a feature map for an image, xi. We use VGG-16 [20]
with the fully connected layers removed as our base en-
coder, initialized with pre-trained ImageNet [8] weights.
Region of interest (ROI) pooling [11] is then applied to
the feature map and the regions of interest Ri ∈ R4×M

to generate a feature embedding ϕ(xi)m for each region:
ϕ(xi) = ROIPool(h(xi), Ri). We initialize two parallel
fully-connected layers fc and fd whose outputs will be nor-
malized to give a classification score, the probability that an
object c is present in that region, and detection score, the
probability that Ri,m contributes to the image-level class
prediction, respectively.

pclsm,c = σ(fc(ϕ(xi)m)), pdetm,c =
exp

(
fd(ϕ(xi)m)

)
∑M

j=1 exp
(
fd(ϕ(xi)j)

)
(1)

The class and detection predictions for each region are
multiplied and summed over M proposals to produce one
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Type of VAEL Definition
Atypical Instance Object is present in an atypical form (e.g. clay model, toy)
Inside/On Top Of Image is taken inside or on top of the object
Occluded Full view of object is limited because object is occluded
Part of Phrase (Rel) Extracted label is part of a related phrase (‘car’ in ‘car show’)
Part of Phrase (Unrel) Extracted label is part of unrelated phrase (‘dog’ in ‘hot dog’)
Missing From Scene
(Narrative Artifact)

Object completely missing from the scene but was mentioned in the
one of the captions to further the story told in the caption, e.g. “She
was returning from the car when she pets the dog”

Missing (Other) Missing from scene for none of the reasons described above

Table 3. Types of visually absent extracted labels.

Figure 3. Global and local view considerations while extracting labels. The local view classifier takes a feature among: gerund, verb base
form, past tense, past participle, non-3rd person singular present, 3rd person singular present, nucleus, satellite, subject, object.

image-level class prediction vector.

p̂c = σ

(
M∑

m=1

pdetm,co
cls
m,c

)
(2)

To train, we apply the multiple instance detection loss
to the extracted image-level label and the predicted image-
level label [4]:

Lmid =
1

C

C∑
c=1

[
yc log p̂c + (1− yc) log(1− p̂c)

]
(3)

6. Experiments
We experiment with different ways of selecting our train-

ing data. We train the object detection model using subsets
of VIST, and evaluate on PASCAL.
Implementation Details We extract labels for each caption
individually and decide to sample or merge depending on
whether the global or local view methods are used. Our
processed VIST subset, I∗, retained images with at least
one mention in at least one of its corresponding captions of
an object from the object category set defined in Sec. 3.1.
We merge over extracted labels from the DII and SIS cap-
tions for each image and use these estimated image-level la-
bels to sample at least 500 instances per category from I∗.

We use this semi-balanced set as our training set. We ex-
tract 2000 bounding box proposals per image using Selec-
tive Search [34] from OpenCV [6]. We use a PyTorch [25]
implementation of WSDDN [4] for our weakly supervised
model. The longest side in the image is randomly resized to
480, 576, 688, 864, or 1200. Horizontal flip is randomly
applied. During evaluation, the longest side is scaled to
576. We use the feature map produced by the final convolu-
tional layer of VGGNet [20] and apply ROI pooling [11] to
extract proposal feature vectors. After proposal scores are
computed, we apply non maximum suppression with an IoU
threshold of 0.4. We sample 500 bounding box proposals at
train time. We use the SGD optimizer with a momentum
of 0.9, weight decay of 0.0005, learning rate of 1e-4, and
multi-step learning rate schedule where the LR is decayed
with gamma 0.1 at two milestones (2nd and 6th epochs).
We train the model for 40,000 iterations or 20 epochs with
a batch size of 1 on 1 GPU (GTX 1080 Ti). The best model
is selected using a validation set (200 samples) from the
PASCAL VOC2007 evaluation set.

6.1. Linguistic features for DII/SIS classifier and
WSOD training

How distinguishable are descriptive and narrative
captions? In our analysis in Sec. 3.2, we see clear lin-
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Linguistic features PREC REC
POS 0.8823 0.8782
RST 0.6281 0.5170

CLUE 0.6813 0.6411
CLIP [26] 0.7215 0.7170
POS+RST 0.8838 0.8787

POS+CLUE 0.8911 0.8879
POS+RST+CLUE 0.8916 0.8884

CLIP+POS 0.8925 0.8893
CLIP+RST 0.7360 0.7312

CLIP+CLUE 0.7523 0.7480
CLIP+POS+RST+CLUE 0.8982 0.8960

BERT 0.9570 0.9560

Table 4. We evaluate precision/recall of DII/SIS classifiers on a
VIST holdout.

Descriptive Classifier DII Random SIS
GT Labels 0.0195 0.0105 0.0050

POS 0.0304 0.0105 0.0047
POS+RST 0.0187 0.0105 0.0046

POS+RST+CLUE 0.0187 0.0105 0.0038
CLIP 0.0173 0.0105 0.0043

Table 5. Effect of descriptive classifiers for filtering on WSOD.
We evaluate mAP performance of WSOD on VOC-07 [9]. The
random classifier (trained once) is independent of descriptiveness
classifiers. Bold indicates best performance in row.

guistic structural differences in the captions of each source.
In addition, we observe descriptive captions have a higher
alignment with their corresponding image. First, we train a
model to predict whether a caption is DII or SIS and then
evaluate on a holdout set and use the performance as an
indicator of the predictive power of combinations of these
features. In Table 4, we see that the linguistic features used
in our analysis earlier are quite competitive given their rep-
resentation size (ranging from 33-55 dimensions). POS is
the best single-feature-type performer (top of table), fol-
lowed by the cosine similarity between the visual and text
CLIP embeddings. Combinations of linguistic features only
achieve a slight boost over POS alone. Finally, using BERT
embeddings (512-dimensional) achieves high precision and
recall; this indicates significant language differences be-
tween DII and SIS, but this memory-intensive classifier is
impractical to use on-the-fly unlike our simpler classifiers.

Now, we ask how good is an object detection model
trained using labels extracted from global-view selected
captions? We choose some of the promising DII/SIS clas-
sifiers (from Table 4). Each assigns descriptiveness scores;
the highest-scoring caption is selected per image if descrip-
tive captions are desired, or the lowest-scoring caption if
we want narrative captions. When using the (ground truth)
caption source directly, we randomly select one caption de-
pending on the type of caption wanted. We extract labels
from the selected captions as pseudo image-level labels to

DII SIS
Linguistic Features VACR VPCR VACR VPCR

past tense 0.000 0.000 0.167 0.172
gerund 0.095 0.304 0.024 0.034

non-3rd person sing pres 0.048 0.000 0.024 0.000
3rd person sing pres 0.143 0.196 0.000 0.052

verb base 0.095 0.000 0.024 0.034
past participle 0.000 0.109 0.024 0.000

subject 0.143 0.261 0.214 0.293
object 0.667 0.457 0.667 0.707

nucleus 0.238 0.217 0.238 0.207
satellite 0.143 0.043 0.238 0.069

Table 6. We evaluate different rule-based classifiers on our small
annotated set.

train the multiple instance detection network and measure
mAP over the selected categories (car, boat, dog, person).

Extracting image-level labels from DII-classified cap-
tions always performs better than SIS-classified captions,
and SIS-classified captions perform worse than a randomly
selected caption (any type). Using a POS-based classi-
fier to select DII-like captions yields a better set of labels
compared to using any other classifier for the same. Note
the POS-based classifier recorded lower precision than the
POS+RST+CLUE one on predicting DII captions in Ta-
ble 4, meaning that several SIS captions get classified as
DII, yet in Table 5, the POS-chosen captions perform best.
A possible explanation is that the POS-based classifier de-
pends on characteristics of descriptive captions that are di-
rectly tied to alignment. More importantly, the high-scoring
captions chosen by the POS classifier perform significantly
better than the ground-truth DII captions, indicating that the
source of a caption alone is not a sufficient indicator of ex-
tracted label quality, rather the characteristics of the cap-
tion are important. Note the low results overall are because
of the very small training sets (in turn due to the size of the
VIST dataset), but this is not a limitation of our approach.

6.2. Rule-based local classifier to filter out false pos-
itives for WSOD

Our second set of experiments extend the local view
analysis in Sec. 4, where we observed through qualitative
examples that certain verbs and lexical or other linguistic
features may be indicative of visually absent extracted la-
bels (VAEL): an object mentioned in a caption, but missing
in the corresponding image. Specifically, we test if extract-
ing labels based on proximity to verbs or other linguistic
features can be predictive of label quality. We first evalu-
ate the ability of local view classifiers to capture VAEL and
then we will evaluate the impact on WSOD of using local
view classifiers to extract labels. We use the VAEL/VPEL
annotated set of extracted labels described in Sec. 4. In con-
trast to the previous subsection, we want to assess if spe-
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Verb D∗ ∪ S∗ (Count) D∗ (Count) S∗ (Count)
baseline 0.0047 (583) 0.0026 (456) 0.0024 (145)

verb base 0.0014 (128) 0.0010 (42) 0.0014 (86)
past tense 0.0031 (461) 0.0015 (83) 0.0033 (403)

gerund 0.0053 (976) 0.0046 (909) 0.0014 (136)
non-3rd person sing pres 0.0013 (94) 0.0012 (77) 0.0011 (18)

3rd person sing pres 0.0068 (985) 0.0067 (888) 0.0016 (193)
past participle 0.0028 (332) 0.0028 (270) 0.0014 (100)

Table 7. mAP on VOC-07 [9]. Bold signifies mAP higher than baseline (top row).

cific linguistic features are likely to extract more VAEL or
VPEL and if this differs between descriptive and narrative
captions. Each local-view classifier takes in one linguistic
feature from the following list: verb type, dependency tag
of nouns (subject/object), nucleus/satellite.

We define two metrics to assess which linguistic features
are indicative of label quality or lack thereof. VAEL Cap-
ture Rate (VACR) measures the rate of VAELs captured by
the local classifier over the total number of VAELs in the
VAEL/VPEL annotated subset (DII or SIS), and VPEL Cap-
ture Rate (VPCR) rate is calculated similarly, except using
VPEL counts. In Table 6 we see VAELs from DII and SIS
tend to be near non-3rd person present tense verbs, nucleus,
satellite, and objects, while in SIS VAELs tend to be found
also near past participle verbs. DII VAELs tend to be near
base verbs. Similarly, we find that VPELs are more com-
mon near gerunds, subjects, and 3rd person present tense
verbs for both DII and SIS.

Seeing that the local view classifiers pick cleaner or dirt-
ier labels depending on the feature and style of the caption,
we ask if we can leverage these local view classifiers to
improve the quality of extracted labels for WSOD.

Since verbs had the most significant effect, we limit the
next experiment to verb-based local view classifiers. We de-
note all extracted labels for an image from DII and SIS cap-
tions as D∗ and S∗, respectively. Our baseline reflects the
average effect of using any verb-based local view classifier;
we choose a verb tag at random. We include count informa-
tion to determine if the relative gain in performance is due
to simply more samples or clean labels. For DII, gerunds
and 3rd person present tense verbs perform well above the
baseline, however gerunds perform about 50% worse than
3rd person present tense verbs despite having slightly more
samples. Past participle verbs have a slightly higher per-
formance than the baseline, while extracting 40% less la-
bels than the baseline. This means that for DII, 3rd person
present tense verbs and past participle verbs correlate with
better extracted labels which is consistent with Table 6.

For SIS, only past tense verbs perform above the base-
line; this verb tag is frequently present in SIS, so it is not
surprising more labels are extracted. However, although
SIS past tense verbs have less examples (403) than the base-
line for DII (456), SIS past tense verbs perform 0.0007

better than that baseline. When comparing DII+SIS past
tense verbs and SIS past tense verbs, we see adding la-
bels extracted from DII past tense verbs actually deterio-
rates the performance by 0.0020. This could mean past
tense verbs in DII could be tied to more VAELs. From
Table 6 alone, we could not make this conclusion, since
past tense verbs did not appear near any labels in DII cap-
tions within the small annotation set. In SIS, past participle
and gerund verbs perform only 0.0003 better than non-3rd

person present tense verbs despite having 5-7x more labels.
We also evaluated subject/object and nucleus/satellite local
view classifiers and found there was nearly no difference
for subject/object and the difference between nucleus and
satellite (nucleus 3x better) can be attributed to the number
of extracted labels.

We also show that verb forms can be used to construct
windows to extract labels from descriptive or narrative cap-
tions. This is important as it is a first step to enable extrac-
tion of quality labels from narrative captions as well.

7. Conclusion
There are key differences in linguistic structure between

descriptive and narrative captions. We leveraged this to
classify between these styles, and found that using descrip-
tiveness predictions to select captions for WSOD training
performed far better than sampling a caption using ground
truth source information, indicating that some mixture be-
tween descriptive and narrative captions may be beneficial
when extracting labels for WSOD. While it appears more
narrative captions are needed to perform on par with de-
scriptive captions, due to the abundance of in-the-wild im-
age and caption pairs it may be possible to get those pairs.
We also show we can improve the quality of labels extracted
from narrative captions through local view classifiers. We
used VIST due to each image having captions with different
styles, but hope to extend our analysis to other datasets.
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