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Abstract

Temporal moment localization (TML) aims to retrieve
the best moment in a video that matches a given sentence
query. This task is challenging as it requires understand-
ing the relationship between a video and a sentence, as
well as the semantic meaning of both. TML methods us-
ing 2D temporal maps, which represent proposal features
or scores on all moment proposals with the boundary of
start and end times on the m and n axes, have shown per-
formance improvements by modeling moment proposals in
relation to each other. The methods, however, are limited
by the coarsely pre-defined fixed boundaries of target mo-
ments, which depend on the length of training videos and
the amount of memory available. To overcome this limita-
tion, we propose a boundary matching and refinement net-
work (BMRN) that generates 2D boundary matching and
refinement maps along with a proposal feature map to ob-
tain the final proposal score map. Our BMRN adjusts the
fixed boundaries of moment proposals with predicted center
and length offsets from boundary refinement maps. In ad-
dition, we introduce a length-aware proposal feature map
that combines a cross-modal feature map and a similarity
map between the predicted duration of the target moment
and moment proposals. Our approach leads to improved
TML performance on Charades-STA and ActivityNet Cap-
tions datasets, outperforming state-of-the-art methods by a
large margin.

1. Introduction
Temporal moment localization with natural language

(TML) methods has become increasingly important in re-
cent years due to the growing demand for efficient and
user-friendly methods to access specific moments in videos.
TML aims to retrieve the temporal interval of a target mo-
ment that best matches a given sentence query within an
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Figure 1. Example of temporal moment localization with an
untrimmed input video and a sentence query. TML methods re-
quire considering both local and global information in a query dis-
tributed across both one target moment (i.e. the combined m3 and
m4) and the other moments(i.e. m1, m2, m3, m4, or the combina-
tion of them, respectively.)

input video. TML is one of the most challenging tasks,
as it requires a comprehensive understanding of both ev-
ery moment (i.e. local understanding) and the relationship
between moments (i.e. global understanding). To attain
the local understanding of a moment, TML methods must
be capable of comprehending how every semantic infor-
mation in a query sentence is visually expressed, as well
as how each visual information in a video is linguistically
expressed within the sentence through cross-modal interac-
tion. Furthermore, TML methods must be able to grasp both
a target moment and other moments if the sentence encom-
passes both local and global information, as shown in Fig. 1.

Depending on how the boundaries of a target moment
are obtained, existing TML methods are largely divided into
proposal-free [5, 11, 12, 15, 18–21, 23, 24, 28] and proposal-
based methods [2, 4, 6, 13, 22, 25–27]. The proposal-free
methods directly regress the start and end times of the tar-
get moment by using the cross-modal features for the entire
input video. Alternatively, the proposal-free methods ob-
tain the confidence score sequences for start and end times
within the video duration and obtain the boundary of the
target moment by choosing the start and end times with the
highest confidence scores. In contrast, the proposal-based
methods generate multiple moment proposals without prior
information on the boundary of moment proposals. Using
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(a) Existing methods providing fixed boundary proposals (b) Our BMRN providing variable boundary proposals

Figure 2. Comparison of the existing methods and our proposed BMRN. (a) Existing methods using 2D proposal maps, which are based
on 2D-TAN [26], and (b) our BMRN providing variable boundary proposals through boundary refinement

the extracted proposal features through cross-modal inter-
action between a video and a sentence, the proposal-based
methods rank the generated proposals and then choose top-
K proposals with the highest proposal scores. The initial
proposal-based methods [2, 4, 22, 27] rank the individual
proposals independently without taking into account the
inter-relationship between them. To overcome this limi-
tation, Zhang et al. [26] introduced 2D temporal proposal
maps for proposal features and scores, as shown in Fig. 2a.
These maps incorporate two dimensions, one indicating the
start time and the other indicating the end time, to better rep-
resent temporally adjacent moments together in a map. Us-
ing the 2D proposal feature map, the proposal-based meth-
ods densely predict the 2D proposal score map by consid-
ering the relationship between different proposals. How-
ever, the proposal-based methods using the 2D proposal
maps [6, 13, 25, 26] originally have a weakness in that the
retrieved moments have fixed boundaries with coarsely pre-
defined start and end times. The intervals between the pre-
defined start and end times are determined by the duration
of the training videos and the available amount of GPU
memory.

To obtain a more precise boundary of a target moment
using 2D proposal maps, we propose an end-to-end bound-
ary matching and refinement network (BMRN). Our BMRN
adjusts the fixed boundaries of moment proposals with the
predicted center and length offsets, as shown in Fig. 2b. To
this end, we first create a length-aware proposal feature map
by combining an intermediate feature map, which is gener-
ated by cross-modal interaction between a video and a sen-
tence, with a similarity map between the proposal length
and the duration of the target moment, which is predicted
from the intermediate feature sequences. In our BMRN, we
consider the length similarity between a proposal and the

target moment as an auxiliary proposal confidence score,
inspired by [6]. Next, we use the length-aware proposal
feature map as input to obtain the boundary matching map
and boundary refinement maps for center and length off-
sets. We predict the final proposal score map using the pro-
posal feature map, boundary matching map, and boundary
refinement maps. Our BMRN adjusts the fixed boundaries
of all moment proposals with center and length offsets from
the boundary refinement maps. Finally, our BMRN gener-
ates a selection of top-K moment proposals with variable
boundaries based on the best proposal scores from the fi-
nal proposal score map. Figure 2 provides a comparison of
our proposed BMRN with existing 2D proposal map-based
methods [6, 13, 25, 26].

Our key contributions can be summarized as follows:

• We propose a novel boundary matching and refine-
ment mechanism that adjusts the temporal boundaries
of moment proposals with the highest scores from the
proposal score map. This is the first attempt to ob-
tain variable boundaries from the 2D temporal pro-
posal map.

• We introduce a length-aware proposal feature map ex-
traction method that combines cross-modal proposal
feature maps with the similarity map between the pro-
posal length and the predicted duration of the target
moment before proposal interaction in order to gener-
ate a proposal feature map.

• Our BMRN outperforms state-of-the-art TML meth-
ods by a large margin on the TML benchmark datasets,
including Charades-STA and ActivityNet Captions.
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2. Related Work

The field of action recognition plays a vital role in video
understanding, as it aims to determine the action class of
an action instance in a well-trimmed video. To extract
unit-level video features, popular backbone models, such
as C3D [16] and I3D [1], have been pre-trained on Sports-
1M [16] and Kinetics [1] datasets, respectively. These pre-
trained models are widely used in various video understand-
ing tasks, including video classification, video question and
answering, temporal action localization and detection, and
temporal moment localization.

The objective of temporal action localization (TAL) is to
accurately determine the temporal intervals that represent
action instances within an untrimmed video. TAL methods
need to effectively differentiate between numerous back-
ground frames and significant action instances that may be-
long to multiple action classes. To address this, BSN [10],
proposed by Lin et al., generates action proposals using pre-
dicted score sequences for the start and end times of ac-
tion instances. This method was subsequently extended to
BMN [9], which introduced a 2D temporal proposal map
into the TAL task.

TML, also known as temporal sentence grounding in
videos, can be broadly categorized into proposal-free and
proposal-based methods based on how the boundaries of a
target moment are obtained. Using the cross-modal feature,
the proposal-free methods [5, 11, 12, 15, 18–21, 23, 24, 28]
obtain a single proposal of the target moment by directly
regressing the start and end times or by selecting the start
and end times with the highest scores from the predicted
start and end score sequences. In contrast, the proposal-
based methods [2,4,6,22,25–27] generate multiple moment
proposals without any prior cues on the proposal boundar,
rank the proposals, and then obtain the best proposals from
the predicted proposal scores. 2D temporal maps were in-
troduced to the TML task by Zhang et al. [26] for dense
prediction of proposal features and scores between tempo-
rally adjacent proposals, and subsequently, several meth-
ods [6, 13, 25] have been proposed that utilize 2D tempo-
ral maps. Although existing methods achieved performance
gains through dense prediction based on 2D proposal maps,
they have inherent shortcomings in that retrieved moments
have fixed boundaries with coarsely pre-defined start and
end times.

3. Proposed Method

The proposed BMRN network largely consists of uni-
modal and multi-modal feature encoding, proposal feature
map extraction, boundary matching and refinement map ex-
traction, and proposal score map prediction, as shown in
Figure 3.

Figure 3. Overall architecture of the proposed BMRN

3.1. Problem Formulation

Given an untrimmed video V and a sentence query S, the
goal of temporal moment localization is to localize the tem-
poral boundaries (τstart, τend) of the target moment, which
is described by the sentence query within the video.

3.2. Uni-modal and Multi-modal Feature Encoding

1) Uni-modal Feature Encoding: To encode video fea-
tures, we first divide a long untrimmed video into Tv non-
overlapping segments of fixed length, and extract video unit
features using pre-trained CNN models such as C3D [16]
and I3D [1]. We then feed the video unit features into a
fully connected layer for dimensionality reduction, result-
ing in video features Fv ∈ RTv×d.

For sentence encoding, we use the pre-trained BERT [3]
model. First, sentences are tokenized using the BERT tok-
enizer, which adds the special tokens [CLS] at the beginning
and [SEP] at the end. Each token is then mapped to learned
embeddings and summed with learned positional encod-
ings. The input vectors are passed through transformer en-
coder blocks that include multi-head self-attentions. Fi-
nally, we feed the last hidden BERT features into a fully
connected layer to obtain the sentence features Fs ∈ RTs×d,
where Ts is the length of input tokens.

2) Multi-modal Feature Encoding: To capture long-
range dependencies among video features and interaction
between video and sentence unit features, we use a multi-
head self-attention module(MHSA) of Transformer [17]. For
this, the video features Fv added 1D sinusoidal position em-
beddings (PE) and sentence features Fs are concatenated
and then fed into a MHSA module. We then get the trans-
formed video features Ftv ∈ RTv×d and the transformed
sentence features Fts ∈ RTs×d from the encoder output.
This can be expressed as:

[Ftv, Fts] = MHSA([Fv + PE,Fs]), (1)
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where [ ] denotes concatenation.
In addition, we use a multi-head cross-attention mod-

ule [17] by feeding the video segment features Fv as queries
and the sentence features Fs as keys and values. This en-
ables us to extract guided sentence features Fgs ∈ RTv×d.
This can be expressed as:

Fgs = MHCA(Fv, Fs, Fs), (2)

where MHCA(Q,K, V ) is a multi-head cross-attention mod-
ule having query Q, key K, and value V .

3.3. Cross-modal Proposal Feature Map Extraction

Using the encoded video and sentence features, we ex-
tract the cross-modal proposal feature map. To this end, we
first partition transformed video features Ftv ∈ RTv×d into
N non-overlapping clips, each of which consists of Tv/N
transformed video features. To extract statistical informa-
tion from each clip, we apply to mean pooling and stan-
dard deviation pooling to some of the transformed video
features Ftv that fall within each clip. And we feed the con-
catenated pooled mean and standard deviation of features
into a linear layer, to get the transformed video clip features
Ftvc ∈ RN×d.

And then, to generate each (m,n)-th proposal feature in
the N × N proposal feature map, we sample a segment of
the transformed video clip features Ftvc from m-th clip to
n-th clip, where 0 ≤ m ≤ n ≤ N − 1. Since the lengths
of the sampled proposal features may differ, we propose a
scale-aware feature extraction approach that considers the
common properties shared by features within the same scale
of proposal length.

For each scale of the proposal lengths in [1, N ], we
first select all proposal features having the same length of
s, F s

tvc ∈ RNs×s×d, where Ns is the number of proposals
for each scale s, which are diagonally distributed in the 2D
proposal feature map. We apply multi-head cross-attention
with a learnable query for each scale s, qs, and the proposal
features at scale s, F s

tvc, as key and value, as expressed in
Eq. (3)

F s
vp′ = MHCA(qs, F s

tvc, F
s
tvc). (3)

In addition, to employ common statistical information in
the same scale, we perform mean pooling and standard de-
viation pooling on the proposal features at scale s, F s

tvc,
followed by concatenation, which is expressed in Eq. (4)

F s
rvp′ = [mean(F s

tvc),std(F
s
tvc)], (4)

where mean and std represent mean pooling and standard
deviation pooling, respectively, and [ ] denotes concatena-
tion. Then, the concatenated features are employed to key
and value in multi-head cross-attention with the learnable
query for each scale s as follows:

F s
rvp = MHCA(qs, F s

rvp′ , F s
rvp′). (5)

Finally, the video proposal features at scale s, F s
vp ∈

RNs×d, are obtained by Eq. (6) and Eq. (7).

F s
vp′′ = F s

vp′ + F s
rvp, (6)

F s
vp = F s

vp′′ + FFN(F s
vp′′), (7)

where FFN represents a sequence of a fully connected layer,
an activation function and a normalization layer. Note
that we obtain the 2D video proposal feature map Fvp ∈
RN×N×d by combining F s

vp for all scales s.
In the same way as above, we obtain the 2D sentence

proposal feature map Fsp ∈ RN×N×d by taking the guided
sentence features Fgs as input instead of Ftv . And then we
stack the feature maps Fvp and Fsp to obtain the proposal
feature map Fp ∈ R2×N×N×d.

Furthermore, we modulate the proposal feature map to
incorporate between the proposal feature map and the sen-
tence features Fs. First, we feed the proposal feature map
Fp as queries and the sentence feature Fs ∈ RTs×d as keys
and values into a multi-head cross-attention layer, as fol-
lows:

Fmod′ = MHCA(Fp, Fs, Fs). (8)

Fmod′′ = Fmod′ + mean(Fs). (9)

Fmod = Fmod′′ + FFN(Fmod′′), (10)

where Fmod ∈ R2×N×N×d.
Finally, we obtain the cross-modal proposal feature

map FCM ∈ R2×N×N×d by using Hadamard product be-
tween the proposal feature map Fp and the modulating fea-
ture map Fmod, as expressed in Eq. (11).

FCM = Fp ⊗ Fmod, (11)

where ⊗ denotes the Hadamard product.

3.4. Proposal Length Similarity Map Extraction

Inspired by [6], we predict the duration of a target mo-
ment ts based on the transformed sentence features Fts, in
order to give a prior information on the duration by using
the given sentence features. To this end, we feed the pooled
transformed sentence features into a fully connected layer
and sigmoid function, as follows:

ts = σ(FC([mean(Fts),std(Fts)])), (12)

where FC is a fully connected layer and σ is sigmoid func-
tion.

In addition, we predict the duration of a target moment
tv based on the transformed video features Ftv , in order to
verify ts. To this end, we define the moment score Mtv ∈
RTv×1 which indicates 1 if each frame falls within the time
interval of a target moment, otherwise 0, as expressed in
Eq. (13)

Mtv = σ(FC(Ftv)). (13)
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The frame-wise moment scores are averaged to predict
video-based time duration tv , as expressed in Eq. (14)

tv = mean(Mtv). (14)

We assume that the duration of target moment ts is reliable
if it is similar to the video-based time duration tv . There-
fore, we obtain the confidence score of the predicted dura-
tion, cst, as expressed in Eq. (15)

cst = 1− |ts − tv|. (15)

Finally, we generate a proposal length similarity map
Sl ∈ RN×N , which is the similarity between the proposal
lengths and the predicted duration of a target moment based
on text tt multiplied by the confidence score of the duration
cst for all the proposals, as in Eq. (16)

Sl(m,n) = k
1−|t(m,n)−ts|
d · cst, (16)

where t(m,n) is a length of (m,n)-th proposal and kd is a
hyper-parameter greater than 1.

3.5. Proposal Interactive Feature Map Extraction

To effectively interact between moment proposals, we
design a two-stream architecture with a CNN layer and a
Transformer layer [17]. Specifically, we utilize the CNN
layers and Transformer layers to capture local and global
relationships among proposal features in the proposal fea-
ture map, respectively. First, we concatenate the cross-
modal proposal feature map FCM ∈ R2×N×N×d and pro-
posal length similarity map Sl ∈ R×N×N as input (i.e.,
F ′
PI ∈ R2×N×N×(d+1)). Note that we expand Sl to match

the dimension between Sl and FCM . We then reduce the
dimension from R2×N×N×(d+1) to RN×N×(d/2) through
two different 3D convolution layers. Then, we feed the out-
put into CNN and transformer layers, respectively, and then
combine the output from each layer to obtain the final pro-
posal feature map FPI ∈ RN×N×d.

3.6. Boundary Matching and Refinement

The boundaries of proposals are determined by the unit
length for proposals τ = 1/N . A pair of boundaries for
(m,n)-th proposal is represented by [m · τ, (n + 1) · τ ],
where 0 ≤ m ≤ n ≤ N − 1. As a result, the predicted
boundary based on the proposal is roughly matched to the
target moment if we employ the pre-defined boundaries.
To overcome the constraint, we get the boundary match-
ing score map and two boundary refinement maps for each
proposal as follows. The boundary matching score map
CBM ∈ RN×N provides the boundary score of each pro-
posal, as expressed in Eq. (17).

CBM = σ(FFN(FPI)), (17)

where σ is the sigmoid function. The boundary refinement
maps δc and δl generate each center and length offsets on
each proposal, respectively, as expressed in Eq. (18) and
Eq. (19)

δc = tanh (FFN(FPI)), (18)

δl = tanh (FFN(FPI)). (19)

3.7. Proposal Score Prediction

Finally, we obtain the final confidence scores of all pro-
posals, CPS ∈ RN×N by feeding the proposal features
FPI , boundary matching scores CBM , and boundary refine-
ment offsets for center δc and length offsets δl, through FC
layers and sigmoid, as expressed in Eq. (20)

CPS = σ(FFN([FPI , CBM , δc⊗CBM , δl⊗CBM ])), (20)

where σ is the sigmoid function and ⊗ denotes the
Hadamard product.

3.8. Training of BMRN

Our BMRN is trained by the following four types of
losses.

1) Moment Score Loss: we define the moment score
indicating if each frame falls within the time interval of a
target moment, its score is 1, otherwise is 0, we get Mtv

and Mgs by feeding the transformed video features Ftv and
guided sentence features Fgs into a fully connected layer
and sigmoid function, as input, respectively. The moment
score loss Lm is calculated by two binary cross-entropy
losses from Mtv and Mgs, Lm are expressed as follows:

Lm = Lm v + Lm s, (21)

Lm v =

Tv∑
i=1

ym(i) log(Mtv(i))

+ (1− ym(i)) log(1−Mtv(i)),

(22)

Lm s =

Tv∑
i=1

ym(i) log(Mgs(i))

+ (1− ym(i)) log(1−Mgs(i)),

(23)

where ym(i) is the label of the moment score of i-th frame.
2) Moment Duration Loss: For the moment duration

loss Ld, we adopt a binary cross-entropy loss between the
duration of the target moment yd and the predicted duration
ts, as expressed in Eq. (24)

Ld = yd log(ts) + (1− yd) log(1− ts). (24)

3) Proposal Score Loss: During training, we adopt a
normalized IoU value as the supervision signal for proposal
scores, which are related to boundary matching scores in
Section 3.6 and proposal confidence scores in Section 3.7.
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Note that there is a slight notation abuse for simplicity, i.e.,
(c) represents (m,n). For each moment proposal p(c), we
compute its IoU with the GT moment (τstart, τend), o(c) =
IoU(p(c), (τstart, τend)). Then, we divide the o(c) by the
maximum of all IoUs for all proposals for normalizing it to
a value in [0, 1], as expressed in Eq. (25)

õ(c) = o(c)/omax, (25)

where omax is the maximum of IoUs for all proposals. Sim-
ilar to the IoU score in [26], the IoU score õ(c) is then scaled
with the threshold IoUmin, as expressed in Eq. (26)

ys(c) =


õ(c)− IoUmin
1.0− IoUmin

, if õ(c) > IoUmin

0, otherwise.
(26)

For boundary matching scores CBM , we ramdomly samples
a value of IoUmin from the range of [0.5, 0.9]. Similar
to dropout [14], the sampled IoUmin also alleviate the risk
of overfitting as changing ys(c). For final proposal scores
CPS , we set the value of IoUmin to 0.5, as follows:

Ls = Lbm + Lps, (27)

Lbm =
1

C

C∑
c=1

ys rand(c) log(CBM (c))

+(1− ys rand(c)) log(1− CBM (c)),

(28)

Lps =
1

C

1∑
c=0

ys 0.5(c) log(CPS(c))

+(1− ys 0.5(c)) log(1− CPS(c)).

(29)

where C is the total number of proposals. ys rand obtained
by the uniformly sampled IoUmin and ys 0.5 obtained by
IoUmin = 0.5.

4) Proposal Refinement Loss: The refinement loss Lr

consists of the center offset loss Lco, the length offset loss
Llo, and the refined IoU loss LrIoU .

The center offset label yo c(c) and the length offset label
yo l(c) are calculated between boundary of proposal p(c)
(tstart(c), tend(c)) ∈ [0, 1] from 2D Map Proposals and the
target moment (τstart, τend) ∈ [0, 1], as follows:

yo c(c) =(τend + τstart)/2

− (tend(c) + tstart(c))/2,
(30)

yo l(c) =(τend − τstart)

− (tend(c)− tstart(c)).
(31)

And we calculate the refined boundary of proposal
(t̃start(c), t̃end(c)) as follows:

t̃start(c) = tstart(c) + δc(c)− δl(c)/2, (32)

t̃end(c) = tend(c) + δc(c) + δl(c)/2. (33)

We then, calculate refined IoU(rIoU) between refined
boundary(t̃start(c), t̃end(c)) and target moment (τstart,
τend), as follows:

rIoU(c) =
min(τend, t̃end(c))− max(τend, t̃start(c))

max(τend, t̃end(c))− min(τend, t̃start(c))
.

(34)
In order to refine only proposals with IoU greater than 0.5,
we use the values of ys 0.5. The refinement loss Lr is de-
fined as follows:

Lo c =
1

C

C∑
c=1

|yo c(c)− δc(c)| · ys 0.5(c) (35)

Lo l =
1

C

C∑
c=1

|ylo(c)− δl(c)| · ys 0.5(c), (36)

LrIoU =
1

C

C∑
c=1

−log(rIou(c)) · ys 0.5(c), (37)

Lr = Lo c + Lo l + LrIoU . (38)

The total loss is computed as follows:

L = λ1 · Lm + λ2 · Ld + λ3 · Ls + λ4 · Lr, (39)

where is λi for i=1,2,3, and 4 are balancing parameters for
the total loss.

3.9. Inference of BMRN

To obtain the final boundary of a target moment consist-
ing of start and end times, we calculate the refined start and
end times by using the fixed boundary of proposals from the
proposal score map and the center and length offsets from
the two boundary refinement maps in Eq. (32) and Eq. (33).
We select the top-K moment proposals with the highest pro-
posal scores, which are not highly intersected between them
through NMS.

4. Experiments
4.1. Datasets

We use Charades-STA [4] and ActivityNet Captions [8]
as TML benchmark datasets. Charades-STA contains 9,848
videos mainly involving indoor human actions. On average,
a video is 30 second long. Charades-STA contains 12,408
and 3,720 moment annotations in the training and testing
sets, respectively. ActivityNet Captions contains 19,209
untrimmed videos whose length is two minute long, on av-
erage. The whole dataset has 37,417, 17,505, and 17,031
moment annotations for training, validation, and testing, re-
spectively.
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4.2. Evaluation Metric

We evaluate our BMRN by using Rank n@m (n is the
number of top-K proposals and m is the threshold of IoU
with GT moment). Rank n@m is the percentage of queries
with at least one correct moment in the top-n predicted mo-
ments. A predicted moment proposal is considered the cor-
rect proposal if its IoU with the GT moment is larger than
m. On both Charades-STA and ActivityNet Captions, we
report Rank n@m with n ∈ {1, 5} and m ∈ {0.5, 0.7}.

4.3. Implementation Details

We use Adam [7] with learning rate of 1 × 10−4 and
batch size of 32 for optimization. We adopt pre-trained
C3D [16] and I3D [1] models as a video unit feature ex-
tractor and pre-trained BERT model [3] for a sentence unit
feature encoding. The number of video clips N , which
determines the size of proposal maps, is set to 16 and 64
for Charades-STA and ActivityNet Captions, respectively.
The 2D spare map strategy is the same in [26]. The non-
maximum suppression (NMS) threshold is set to 0.5 during
the inference. And we set kd of the proposal length simi-
larity map to 4. The balancing parameters for total loss L
are set to λ1 = 0.5, λ2 = λ3 = λ4 = 1 on Charades-STA,
and λ1 = 0.5, λ2 = 0.5, λ3 = 1, λ4 = 2 on ActivityNet
Captions.

4.4. Performance Comparison

We evaluate our BMRN on ActivityNet Captions and
Charades-STA and compare it with the recent state-of-
the-arts including both proposal-free methods (MCN [5],
ABLR [20], TMLGA [12], LGI [11], DRN [21], CPN [23],
MSA [24], LPNet [18], ACRM [15], DTG [28], and HiSA
[19]) and proposal-based methods (CTRL [4], SAP [2],
MAN [22], CMIN [27], 2D-TAN [26], TACI [13], MS-2D-
TAN [25], and STCM-Net [6]).

Table 1 presents the comparison of moment localiza-
tion performance on Charades-STA, where our BMRN out-
performs the state-of-the-art methods in all performance
measures for both C3D and I3D features. Notably, our
BMRN with I3D features achieves significantly better re-
sults than the state-of-the-art methods, with a large mar-
gin of 1.99%p, 2.76%p, 3.56%p, and 0.74%p in terms of
R1@0.5, R1@0.7, R5@0.5, and R5@0.7, respectively.

Table 2 shows the comparison of moment localiza-
tion performance on ActivityNet Captions, where our
BMRN outperforms the state-of-the-art methods except for
R1@IoU=0.7. Specifically, our method achieves R5 scores
of 81.37% and 64.44% at IoU=0.5 and IoU=0.7, respec-
tively, with a large margin of 2.57%p and 0.98%p.

4.5. Ablation Study

To demonstrate the effectiveness of the boundary match-
ing and refinement maps and the length similarity map, we

Method Rank1@ Rank5@

0.5 0.7 0.5 0.7

C3D video features
CTRL [4] 23.63 8.89 58.92 29.52
ABLR [20] 24.36 9.01 - -
DRN [21] 45.40 26.40 88.01 55.38
LPNet [18] 40.94 21.13 - -
ACRM [15] 40.78 22.28 - -
TACI [13] 36.60 18.33 - -
MS-2D-TAN [25] 41.10 23.25 81.53 48.55
Our BMRN 45.93 28.37 89.12 57.19

I3D video features
TMLGA [12] 33.04 19.26 - -
LGI [11] 59.46 35.48 - -
DRN [21] 53.09 31.75 89.06 60.05
CPN [23] 59.77 36.67 - -
LPNet [18] 54.33 34.03 - -
ACRM [15] 57.53 38.33 - -
DTG [28] 60.19 39.38 87.53 66.91
HiSA [19] 61.10 39.70 - -
TACI [13] 60.27 38.74 - -
MS-2D-TAN [25] 60.08 37.39 89.06 59.17
Our BMRN 63.09 42.46 92.62 67.65

Table 1. Comparisons between our BMRN and the state-of-the-
arts on Charades-STA.

Method Rank1@ Rank5@

0.5 0.7 0.5 0.7

C3D video features
CTRL [4] 29.01 10.34 59.17 37.54
MCN [5] 21.36 6.43 53.23 29.70
ABLR [20] 36.79 - - -
CMIN [27] 43.40 23.88 67.95 50.73
2D-TAN [26] 44.51 26.54 77.13 61.96
LGI [11] 41.51 23.07 - -
DRN [21] 45.45 24.36 77.97 50.30
CPN [23] 45.10 28.10 - -
MSA [24] 48.02 31.78 78.02 63.18
LPNet [18] 45.92 25.39 - -
HiSA [19] 45.36 27.68 - -
TACI [13] 45.50 27.23 - -
MS-2D-TAN [25] 46.16 29.21 78.80 60.85
STCM-Net [6] 46.23 29.04 78.43 63.46
Our BMRN 48.47 31.15 81.37 64.44

Table 2. Comparisons between our BMRN and the state-of-the-
arts on ActivityNet Captions.
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Figure 4. Qualitative evaluation of BMRN on Charade-STA [4] (top) and ActivityNet-Captions [8] (bottom). Each result shows ground-
truth, 2D-TAN, BMRN without refinement, and full BMRN

Method Rank1@ Rank5@

0.5 0.7 0.5 0.7

Full BMRN 63.09 42.46 92.62 67.65

w/o BM and BR maps
60.83 40.54 89.95 67.89
(-2.26) (-1.92) (-2.67) (0.24)

w/o Len Sim map
62.23 42.19 90.54 65.54
(-0.86) (-0.27) (-2.08) (-2.11)

Table 3. Ablation study of the effectiveness of the boundary
matching and refinement maps and the length similarity map.

conducted ablation experiments on Charades-STA by com-
paring the performance of the full BMRN with two vari-
ants: one without the boundary matching and refinement
maps and the other one without the length similarity map,
as shown in Table 3.

4.6. Qualitative Evaluation

In Figure 4, we present qualitative results for two queries
from Charades-STA and ActivityNet Captions datasets,
comparing results obtained by ground-truth, 2D-TAN,
BMRN without refinement, and the full BMRN. The results
clearly demonstrate the significant performance improve-
ment achieved by our proposed BMRN.

5. Conclusion
In this paper, we propose an end-to-end boundary match-

ing and refinement network that adjusts the fixed bound-

aries of proposals from 2D proposal maps using the pre-
dicted center and length offsets from the boundary refine-
ment maps. Our BMRN offers a selection of the top-K mo-
ment proposals with variable boundaries. Additionally, we
introduce a length-aware proposal feature map by combin-
ing the proposal feature map with the similarity map be-
tween the proposal length and the duration of the target
moment. The experimental results show performance im-
provements over the current state-of-the-arts on Charades-
STA and ActivityNet Captions. As an ablation study, we
demonstrate the effectiveness of the boundary matching and
refinement maps and the length similarity map. As our
future work, we plan to investigate the development of a
TML method that can achieves highly accurate localization
performance while using a significantly reduced number of
proposals, which will be adjusted by a novel boundary re-
finement mechanism.
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