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Abstract

Aligning image and text encoders from scratch using con-
trastive learning requires large amounts of paired image-text
data. We alleviate this need by aligning individually pre-
trained language and vision representation models using
a much smaller amount of paired data with a curriculum
learning algorithm to learn fine-grained vision-language
alignments. TOnICS (Training with Ontology-Informed
Contrastive Sampling) initially samples minibatches whose
image-text pairs contain a wide variety of objects to learn
object-level vision-language alignment, and progressively
samples minibatches where all image-text pairs contain the
same object to learn finer-grained contextual alignment.
Aligning pre-trained BERT and VinVL-OD models to each
other using TOnICS outperforms CLIP on downstream zero-
shot image retrieval using < 1% as much training data.

1. Introduction
Aligned representations for language and vision—which

encode texts and images in a common latent space—are nec-
essary to perform effective cross-modal retrieval. CLIP [7]
and ALIGN [4] train individual text and image encoders
from scratch to produce aligned image-text representations.
They demonstrate accurate zero-shot retrieval due to strong
cross-modal alignment. However, these models were trained
on proprietary datasets of 400M and 1B, respectively, image-
text pairs on hundreds of GPUs and TPUs, which is infeasi-
ble for non-industry practitioners.

CLIP and ALIGN align their encoders using the con-
trastive InfoNCE objective [5], which seeks to maximize the
mutual information between image and text representations.
In the InfoNCE objective, the model must correctly identify
the positive image-text pair from among a set of negatives
formed by the other minibatch pairs.

Since samples within a minibatch act as negative sam-
ples for each other in the InfoNCE objective, the minibatch
determines the granularity of alignment that is learned. Mini-
batches constructed by random sampling contain a large
variety of objects in the images and texts. To correctly match
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Figure 1. TOnICS is a contrastive, curriculum learning algorithm
for aligning language and vision encoders.

a dog-related caption to its image, it is sufficient to iden-
tify that the retrieved image must contain a dog, since most
randomly sampled negative images will not contain a dog.
Random minibatch sampling reduces the contrastive task to
just object-matching.

When minibatches are sampled such that the images con-
tain the same objects, object-level alignments no longer
suffice (Figure 1). The contrastive task can no longer be
solved by identifying that the retrieved image must contain a
dog, since all the negative images will also have a dog. The
model must produce language and vision representations
that encode shared context-level information, resulting in a
finer-grained alignment.

In this work, we leverage rich single-modality pre-trained
models—BERT [2] for language, VinVL-OD [11]1 for
vision—and align them using the InfoNCE contrastive objec-
tive. We propose TOnICS, a curriculum learning algorithm
which initiates training by sampling minibatches randomly

1We use VinVL-OD to refer to the pre-trained VinVL object detector,
not the pre-trained vision-language model.
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and progressively makes the contrastive task harder by con-
structing minibatches containing the same object class in the
image and text inputs. We show that our learned represen-
tations have strong cross-modal alignment—outperforming
CLIP on zero-shot Flickr30K image retrieval—while using
less than 1% as much paired image-text training data.

2. Contrastive Vision-Language Alignment

We align language representations from BERT [2] and
visual representations from a VinVL object detector [11].
Our BERT-VinVL Aligner model is similar to the phrase
grounding model from [3].

During training, the input to the model is a minibatch
of NB triplets, where each triplet Xi = {ti, vi, w} repre-
sents an image-text pair. Image caption ti is encoded using
BERT and contains a noun w with word representation hi.
A set of region features vi are extracted from VinVL-OD,
a frozen pre-trained object detector.2 We add a learnable
linear projection atop these region features.

In the cross-modal interaction, we employ a single Trans-
former [9] layer that uses i-th noun representation hi as the
query and j-th image features vj as the keys and values (Fig-
ure 2). This layer outputs a visual representation vatt(i, j),
which is an attended representation of the j-th image, con-
ditioned on the noun from the i-th caption. We compute an
image-text score s(i, j) = ϕ(hi, vatt(i, j)) as the dot prod-
uct between the i-th noun representation hi and the attended
representation of j-th image vatt(i, j).

To align the noun representation hi to its image vi, we
use the InfoNCE loss [5] to maximize the lower bound of
the mutual information between hi and vatt(i, i). InfoNCE
minimizes the cross-entropy of correctly retrieving an image
vi from the set of all minibatch images given the query noun
representation hi. We refer to the objective in this setup as
the image retrieval loss, LIR:

LIR(i) = − log
exp(s(i, i))∑NB

j=1 exp(s(i, j))

The training loss LIR is the mean loss LIR(i) over all mini-
batch instances i = {1...NB}. We define a text retrieval loss,
LTR, where the image vi is used to retrieve the correct noun
representation hi:

LTR(i) = − log
exp(s(i, i))∑NB

j=1 exp(s(j, i))

We experiment with training our model using just the
image retrieval loss LIR, as well as the sum of the two
losses LIR + LTR.

2Region features provided at https : / / github . com /
pzzhang/VinVL/blob/main/DOWNLOAD.md
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Figure 2. Our BERT-VinVL Aligner model scores every image-text
combination (ti, vj) in the minibatch.

3. TOnICS: Training with Ontology Informed
Contrastive Sampling

Negative samples for the contrastive learning objective
come from other pairs in the minibatch. Therefore, the mini-
batch sampling itself influences the alignment learned by
the model. We hypothesize that sampling minibatches ran-
domly gives object-level alignments, while sampling harder
minibatches containing the same object in the image yields
finer-grained contextual alignments.

We introduce TOnICS, Training with Ontology-
Informed Contrastive Sampling (Figure 3), a curriculum
learning algorithm that samples minibatches according to
nodes sampled from an ontology. TOnICS first performs
object-level alignment via random minibatches, and later
learns fine-grained alignments through harder minibatches.

Ontology Induction We begin by heuristically mapping
object classes from the VinVL detector to nouns in the train-
ing captions, using point-wise mutual information estimates.
This yields a set of object classes Θ, where every object class
o ∈ Θ has a corresponding set of nouns w(o). For instance,
the object class dog’s noun set w(o) = {dog, dogs, puppy}.

Our ontology (Figure 3, left) contains an entity node ηe at
the root, and an object node ηo for every object class o ∈ Θ
as a child node. Every object node ηo has a corresponding
subset of the training data X(ηo), whose instances all con-
tain the same object o in the image, and a noun from the
corresponding noun set w(o) in the caption.

TOnICS Minibatch Sampling At every training step,
TOnICS samples a node η from the ontology according
to a sampling probability distribution PS(η). If the entity
node ηe is sampled, NB instances from the full training
data are sampled at random for the minibatch. If an object
node ηo is sampled, the NB instances are sampled from the
corresponding set X(ηo), ensuring the minibatch comprises
images depicting object o.
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Figure 3. TOnICS selects image-text pairs for the minibatch by first sampling a node η from an ontology, according to a distribution PS(η).
Sampling the root entity node yields easy minibatches containing pairs with a variety of objects, whereas sampling one of its children object
nodes yields harder minibatches containing pairs sharing a common object, such as apple or dog, in a variety of contexts (left). TOnICS
performs curriculum learning by moving node sampling mass away from the entity node to the object nodes as training progresses (right).

TOnICS Curriculum Refresh The curriculum is formed
by varying the nodes’ sampling probability distribution
throughout training. We initialize training by setting
PS(ηe) = 1 and PS(ηo) = 0 for all object nodes. Af-
ter every fixed number of training steps, we evaluate the
model’s image retrieval performance on a set of held-out
instances. If the held-out retrieval accuracy is greater than a
certain threshold, we start introducing harder minibatches in
the training by refreshing the curriculum. The refresh step is
performed by multiplying the entity node’s current sampling
probability PS(ηe) by a factor α;α < 1. The remaining
probability mass (1 − α) × PS(ηe) is distributed among
the object nodes. For each object node ηo, we update its
sampling probability:

PS(ηo) = PS(ηo) + (1− α)PS(ηe)×
|X(ηo)|∑
|X(ηo)|

.

Object classes that are more common in the training data
have more sampling probability mass distributed to their
object node ηo, by weighting mass according to the size
of the node’s instance set, |X(ηo)|. With each curriculum
refresh, sampling mass is pushed down from the entity node
to the object nodes, as long as PS(ηe) does not fall below a
fixed threshold β. Thresholding PS(ηe) ensures the model
still sees random minibatches and does not forget the initially
learned object-level alignments.

4. Experiment Details
We train our BERT-VinVL model on MS-COCO and

Conceptual Captions. We compare our model against CLIP
on downstream retrieval tasks.

4.1. Training Data and Ontology

We train our model on image-text pairs from a combina-
tion of MS-COCO [1] and Conceptual Captions [8]. Our
triplet instances only contain nouns which we wish to explic-
itly align with the visual modality. We select a set of 406

nouns, each noun corresponding to one of the 244 object
categories Θ (more details in Appendix A). Our final train-
ing data consists of 5.8M triplet instances corresponding to
2.84M image-text pairs from 2.4M unique images. The on-
tology for TOnICS is constructed by creating an object node
for each of the 244 object categories, which are children of
the root entity node.

4.2. Implementation Details

We use pre-trained BERT-base as a text encoder and
frozen VinVL-OD, a pre-trained object detector that returns
pooled CNN features for all regions-of-interest (ROIs), as
an image encoder. We use pre-extracted ROI features, as we
cannot backpropagate through the object detector.

All our models are trained for 500K iterations with a
batch size of NB = 256, yielding 255 negative pairs for ev-
ery positive pair. We select the model checkpoint which has
maximum Recall@1 on the Flickr30K validation set, evalu-
ated after every 5K iterations. After every 5K iterations, we
also evaluate retrieval over a set of 100 held-out instances
and perform a curriculum refresh step if the held-out accu-
racy is at least 90%. When performing a refresh step, we
retain α = 90% of entity’s sampling probability, so long as
the probability does not fall below β = 0.2.

Each model was trained on a single V100 GPU for 6 days,
compared to CLIP which used 256 V100 GPUs for 12 days.

4.3. Baselines and Evaluation

We compare our aligned model against CLIP [7]. CLIP
trains image and text encoders from scratch, using signifi-
cantly more paired image-text data—400M pairs, compared
to our 2.84M pairs. Our model uses the base variant of
BERT, so we compare against CLIP-ViT-B/32.3

To evaluate the utility of our TOnICS algorithm, we also
train our BERT-VinVL Aligner using a Random minibatch

3Our model trains just 116M parameters during alignment, compared to
151M trained parameters for CLIP-ViT-B32.
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Minibatch
Sampling
Method

Zero-Shot Flickr30K MS-COCO
# Image-
Text Pairs

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
Model LTR R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

CLIP-ViT-B/32 400M Random - 58.66 83.38 79.2 95 30.45 56.02 50.12 75.02

BERT-VinVL
Aligner

2.84M Random ✗ 58.18 84.24 22.2 47.9 42.67 74.43 15.5 37.7
2.84M TOnICS ✗ 60.04 84.72 18.8 43.1 47.68 77.14 11.48 27.3
2.84M Random ✓ 58.9 84.6 76.1 93.3 42.74 74.37 59.84 86.46
2.84M TOnICS ✓ 59.68 84.84 77.4 94 47.15 76.85 63.7 88.5

Table 1. Results of our BERT-VinVL Aligner model, trained using either Random or TOnICS minibatch sampling, on image and text
retrieval compared to CLIP. Numbers in bold represent the best results among all models.

sampling baseline, where the minibatch instances are always
randomly sampled throughout the training process.

We directly evaluate our Aligner models and pre-trained
CLIP on image and text retrieval, using the Recall@1 and Re-
call@5 metrics. Specifically, we evaluate zero-shot retrieval
on the Flickr30K [6] test set, which contains 1,000 images.
We also perform retrieval evaluation on the MS-COCO test
set, which contains 5,000 images. This evaluation is not
zero-shot since we train on MS-COCO training images.

5. Results and Discussion

We directly transfer both our trained BERT-VinVL
Aligner model and pre-trained CLIP to the downstream task
of image and text retrieval (Table 1) using the same task
formulation from training time.

The Flickr30K evaluation is zero-shot for both CLIP
and our BERT-VinVL Aligner model since neither model’s
training data contains images from the Flickr30K train set.
We see that even with the Random minibatch sampling
and only the image retrieval loss, LIR, our BERT-VinVL
Aligner achieves approximately the same image retrieval
performance as CLIP. When the Aligner is trained with our
TOnICS curriculum learning algorithm, we get a 1.5% im-
provement on R@1 over CLIP.

However, when trained without the text retrieval loss
LTR, both Aligner-Random and Aligner-TOnICS fail to
do well at the text retrieval task. Adding the LTR loss
to Aligner training leads to substantial improvements in
downstream text retrieval, with Aligner-Random perform-
ing only 3% worse than CLIP. We further see that training
with TOnICS leads to a 1% improvement in Flickr30K text
retrieval. Adding the text retrieval loss to Aligner-TOnICS
slightly hurts image retrieval performance, but still does
better than CLIP by 1%.

Since MS-COCO images are included in the Aligner train-
ing data, it significantly outperforms CLIP on the MS-COCO
retrieval evaluation. Hence, we compare TOnICS to Ran-
dom sampling on MS-COCO retrieval. We see that TOnICS
leads to significant improvements in image retrieval (≈ 5%

over Random). We again observe that text retrieval perfor-
mance is poor without the text retrieval loss during training,
but improves significantly with it. TOnICS training results
in a 4% improvement over Random in text retrieval.

Minibatch sampling with TOnICS results in large gains
in in-distribution retrieval evaluation (MS-COCO) as well
as small improvements in zero-shot retrieval (Flickr30K).
Training BERT-VinVL Aligner with TOnICS yields better
zero-shot image retrieval performance than CLIP, even with
substantially less training data.

6. Conclusions
We align individually pre-trained language and vision

encoders—BERT and VinVL-OD—using the proposed cur-
riculum learning algorithm, TOnICS. Our aligned model is
able to achieve better downstream zero-shot image retrieval
performance than CLIP, despite being trained with less than
1% as many image-text training pairs. We also show that
our TOnICS algorithm leads to gains in both in-domain and
zero-shot retrieval tasks.

Limitations
We use language models pretrained primarily on English

text, eliding the challenges of multi-lingual language-vision
alignment. Further, our method relies on contrastive learn-
ing, which requires a large number of minibatch samples for
training. As a consequence, we restrict the object classes
in our ontology to only frequently occurring ones, meaning
objects in the long tail of the distribution that do not have suf-
ficient training instances are not aligned using our TOnICS
algorithm. Finally, our induced ontology is domain-specific,
and may need to be re-generated for a new domain.
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Figure 4. TSNE projections of contextual representations of the
word shirt occuring in different color contexts. Each dot corre-
sponds to a contextual representations of the word shirt, where the
color of the dot corresponds to the color of the shirt described in
the caption (grey dots represent representations of white shirts).
We compare the TSNE visualizations of pre-trained BERT and the
Aligned-BERT from our Aligner model.

A. Ontology Induction Details
The nodes in our ontology correspond to object classes

that we wish to explicitly align with the visual modality. We
decide this set of object classes via the following procedure.

Each noun in the training data captions is lemmatized
using NLTK and mapped to the object class with maximum
noun-object PMI, calculated over training pairs with object
detections. These mappings are then adjusted by hand to
correct erroneous mappings—that adjustment process took
less than two hours of author time and resulted in a mapping
of 827 nouns to 653 distinct object classes. Object classes
containing fewer than 5000 instances in the training dataset
are filtered out. This results in a set of 406 nouns, each noun
corresponding to one of the 244 object classes Θ. For every
image-text pair in the original training dataset, we create one
triplet for each noun in the text that belongs in our set of
406 nouns. Finally, we form our ontology for TOnICS by
creating one node corresponding to each of the 244 object
classes Θ.

B. Analysis of Aligned Language Representa-
tions

We hypothesize that by aligning pre-trained BERT to vi-
sual representations from a pre-trained VinVL model, our
aligned BERT’s representations of visually-groundable ob-
jects will contain more visual context information. Similar
to [10], we investigate whether noun representations ex-
tracted from our Aligned-BERT contain information about
their visual attributes that are also described in the caption.
Specifically, we look at representations of the word shirt
in Flickr30K captions where the color of the shirt is also
mentioned. We select 275 such captions where the shirt
is described as being one of ten colors, and extract the

Model Homogeneity Completeness V-Score

BERT 9.79 ± 1.48 9.13 ± 1.39 9.45 ± 1.43
A-BERT 42.64 ± 5.51 40.59 ± 5.24 41.58 ± 5.37
CLIP 98.39 ± 0.00 98.28 ± 0.00 98.33 ± 0.00

Table 2. K-Means Clustering metrics (K=10) for shirt represen-
tations across five different K-Means initializations. We present
mean and standard deviation of all metrics. A-BERT is our Aligned
BERT.

word shirt’s contextual representations from both pre-trained
BERT and our BERT-VinVL Aligner’s text encoder, which
we refer to as Aligned-BERT.

Figure 4 compares the TSNE visualizations of representa-
tions extracted from BERT and Aligned-BERT. We see clear
clusters formed by representations of the same colored shirt
in Aligned-BERT’s visualization, whereas no such clusters
exist in the BERT representations.

We also provide a quantitative analysis of the clustering
in the representations, by performing K-Means clustering
with K = 10. We evaluate the Homogeneity and Complete-
ness of these clusters, which are equivalent to Set-Precision
and Set-Recall respectively, as well as V-Score which is their
harmonic mean. In Table 2, we see that Aligned-BERT’s
clusters are much more homogenous and complete than pre-
trained BERT, but pre-trained CLIP’s clusters are much bet-
ter than both.
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