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Abstract

We introduce a novel dense mapping system that uses
a single monocular fisheye camera as the sole input sen-
sor and incrementally builds a dense surfel representations
of the scene’s 3D geometry. We extend an existing hy-
brid sparse-dense monocular SLAM system, reformulating
the mapping pipeline in terms of the Kannala-Brandt fish-
eye camera model. Each frame is processed in its original
undistorted fisheye form, with no attempt to remove distor-
tion. To estimate depth, we introduce a new version of the
PackNet depth estimation neural network adapted for fish-
eye inputs. We reformulate PackNet’s multi-view stereo self-
supervised loss in terms of the Kannala-Brandt fisheye cam-
era model. To encourage the network to learn metric depth
during training, the pose network is weakly supervised with
the camera’s ground-truth inter-frame velocity. To im-
prove overall performance, we additionally provide sparse
depth supervision from dataset LiDAR and SICK laser scan-
ners. We demonstrate our system’s performance on the real-
world KITTI-360 benchmark dataset. Our experimental re-
sults show that our system is capable of accurate, metric
camera tracking and dense surface reconstruction within
local windows. Our system operates within real-time pro-
cessing rates and in challenging conditions. We direct the
reader to the following video where the system can be seen
in operation: https://youtu.be/Y-9q_wfqocs.

1. Introduction & Background
A robot’s ability to compute a map of its surroundings,

and simultaneously localise itself within that map, is foun-
dational to its ability to act autonomously. Path planning,
obstacle avoidance, environment interaction or any task that
requires an autonomous robot to reason about its location in
the world or the structure of its surroundings ultimately de-
pends on this ability to perform simultaneous localisation
and mapping (SLAM). As a robot moves through an en-
vironment, the robot’s SLAM system integrates local sen-
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Figure 1. Fisheye inputs to our system sequence. Images from
[6]. (a) shows the original uncropped fisheye image (1400×1400).
(b) shows the cropped region used by our system. We crop the
image to remove the car, camera housing and the sky (c) shows
the live depth estimate of (b).

sor measurements into a geometric map and an estimate of
the global trajectory of the robot. Cameras have long been
considered as a particularly useful primary, and, often sole
sensor for robot SLAM. A single monocular camera with
a wide viewing angle offers many potential benefits. Such
sensors are typically small, inexpensive, energy efficient,
can be deployed in a diverse range of environments, such
as in underwater [1] and space applications [2], and pro-
duce rich measurements at high frame rates. Current re-
search on monocular depth estimation and object detection
indicates the potential for cameras to either match or ex-
ceed the performance of LiDAR on these tasks [3,4]. Visual
SLAM systems continue to show improved performance in
scenarios where a LiDAR would typically be used. In par-
ticular, the hybrid sparse-dense monocular SLAM system
of [5] has shown that it is possible to perform metric, dense
visual SLAM in outdoor automotive applications with a sin-
gle monocular camera as the only input sensor.

In this paper, we present a fisheye monocular dense vi-
sual mapping system by extending the framework from [5]
to use large FOV fisheye imagery. Fisheye cameras have
become increasingly popular given their wide field of view
allowing a much larger portion of the scene to remain in
view of the camera at any one time. Surround view sens-
ing is essential in applications where sensory blind spots
are a safety hazard [7]. However, increasing the FOV of an
imaging device while holding all other characteristics fixed
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decreases the angular resolution of a pixel and increases the
level of distortion in the image. When it comes to localisa-
tion and mapping, the loss of angular resolution and degree
of distortion can have an effect on performance [8]. How-
ever, when taking a holistic view of a robot platform, such
as an autonomous car, the benefits of the increased FOV to
downstream safety critical modules may outweigh the neg-
ative impact on SLAM performance. Thus there is a strong
need for a robust dense SLAM system that can cater for
fisheye camera geometries. In this respect, the original hy-
brid system of [5] is fundamentally limited by its use of the
pinhole camera model, which cannot accurately model fish-
eye imagery. In order to induce a large receptive field, and
project all the light within it onto a flat sensor plane, fisheye
lenses introduce distortions which are not well captured by
this model. A plethora of camera models that follow differ-
ent projections and more accurately describe fisheye cam-
eras have been proposed [9]. In this work, we incorporate
the Kannala-Brandt camera model [10] into the system to
allow it to take as input frames from a single fisheye cam-
era and to incrementally build a dense, metric 3D surface
reconstruction.

Several SLAM systems have been presented that lever-
age alternate camera models to allow the use of fisheye and
omnidirectional camera imagery. In [11] the direct whole
image alignment camera tracker and depth map filtering of
LSD-SLAM [12] are reformulated in terms of the unified
omnidirectional camera model of [13]. However, the sys-
tem only estimates a semi-dense map. Similar to [11], [14]
implement an omnidirectional extension to DSO [15], refor-
mulating the underlying optimisation in terms of the unified
camera. [14] is a visual odometry system, not a SLAM sys-
tem, and so it does not perform loop closure detection and
correction. [16] uses motion stereo to predict depth frames
which are then integrated into a truncated signed distance
function. However, the system does not include a loop
closure mechanism which is vital for large-scale long-term
mapping and tracking. [17] uses a multiple-view sweeping
planes-based algorithm to estimate a dense depth map for
a reference camera in a multi-camera rig. Dynamic objects
are detected and removed to prevent trailing artefacts from
being integrated into the map. Only a local volume of space
around the car is held in the map at any one point in time
and no loop closure mechanism is included. [18] presents an
omnidirectional dense SLAM system where a sensor plat-
from consisting of four 220◦ FOV cameras is used. The
system uses a light weight omnidirectional MVS depth es-
timation neural network, based on [19], to estimate a 360◦

depth map for each frame. Each frame is then tracked us-
ing ROVO [20]. Platform poses and depth maps are then
fused into a dense TSDF map. Loop closures are identified
using a feature-based vocabulary tree where a geometric
consistency check verifies proposed matches. Once identi-

(a) (b)

(c)

Figure 2. Trajectory and dense reconstruction of a sequence
from [6]. (a) shows the final surfel model produced by our sys-
tem. The model contains approximately 7.5m surfels. (b) shows
the estimated trajectory (projected onto the xy plane) alongside the
ground truth trajectory. (c) shows an up-close view of the recon-
struction as the vehicle passes through an intersection contained
in (a). Inset in (c), from top to bottom: the current live image, the
corresponding estimated depth map from the network, the model
predicted RGB image and the model predicted depth map. Note
that these results were captured using an accurate high resolution
version of our network that allows our SLAM system to operate at
approximately 2hz. We trained a slim version of the network that
allows the system to operate at 5hz.

fied, loops are closed via pose-graph optimisation. In ORB-
SLAM3 [21], the authors present a sparse visual SLAM
framework that supports operation with fisheye cameras.
The feature-based approach of ORB-SLAM3 lends itself to
robust camera tracking during fast camera motion and in
challenging conditions, such as variable lighting. We use
ORB-SLAM3’s feature-based camera tracking capabilities
to estimate the frame-to-frame motion of the camera in our
system. We also use ORB-SLAM3’s loop closure mecha-
nism to bootstrap a deformation-graph-based correction of
the dense surfel map during loop closure. However, as we
are interested in building dense maps in real-time we go be-
yond ORB-SLAM3 and its low resolution reconstruction of
the scene’s geometry.

In contrast to these works, we focus on monocular dense
mapping with loop closures. Our system uses a single fish-
eye camera where the incoming camera frames are inte-
grated into a dense global surfel map. We avoid undis-
torting the incoming imagery and instead operate directly
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on the distorted fisheye images. One of the main benefits
of fisheye images is their increased FOV which inevitably
gets diminished during undistortion procedures. For every
frame, our system detects and, if necessary, closes, loops
in the vehicle’s trajectory. To summarise, our contributions
include:

• Fisheye PackNet: Reformulated PackNet training
procedure for Fisheye images. Including velocity su-
pervision, sparse LiDAR supervision, and Kannala-
Brandt fisheye model for multi-view stereo loss func-
tion.

• Generic Camera Model: Redesigned ElasticFusion’s
mapping pipeline to be generic (in the software en-
gineering sense of the word) with respect to camera
model. Within this genericized framework, we imple-
mented the Kannala-Brandt camera model, allowing
fusion of fisheye depth maps.

• A Hybrid Sparse-Dense Fisheye SLAM system:
Combining ORB-SLAM3 feature-based tracking with
ElasticFusion dense mapping with fisheye cameras.

• Kitti-360 Analysis: We provide quantitative analy-
sis of our system’s depth estimation and local surface
reconstruction accuracy, using the KITTI-360 bench-
mark dataset. Additionally, we provide qualitative re-
sults that demonstrate the overall performance of our
proposed fisheye SLAM system.

An overview of our system’s inputs and outputs can be
seen in Figure 1 and Figure 2, respectively. In this work
we emphasise local map accuracy over global consistency.
Though they are not mutually exclusive, we argue that local
surface reconstruction accuracy is, in many robotics appli-
cations, just as important as achieving global consistency,
one of the main objectives of SLAM. Dense monocular
mapping with a fisheye camera is a challenging problem,
however, as our experimental results show locally accurate
reconstructions are possible.

2. Dense Monocular Fisheye SLAM
The hybrid system of [5] consists of 6 main elements: (i)

Neural network-based metric depth prediction; (ii) Sparse
feature-based tracking with ORBSLAM-3 providing esti-
mates of the initial camera pose; (iii) Refinement of the ini-
tial sparse pose estimate through direct whole image align-
ment against the dense map ; (iv) Loop closure detec-
tions from ORB-SLAM’s pipeline to bootstrap a deforma-
tion graph which is applied to reflect the loop closure in
the dense map; (v) Local, model-to-model loop closures
in the dense map reactivate inactive surfels used for data-
association and camera tracking; (vi) Fusion of the cur-
rent live camera frame and depth prediction into the dense

model. At the foundation of this SLAM system is the pin-
hole camera model limited to narrow FOV cameras. In this
paper, we go beyond this initial system, developing a novel
system that takes advantage of large FOV fisheye imagery.
The architecture of the proposed system is summarised as
follows:

1. PackNet [22] is trained to predict metrically-scaled
depth maps for fisheye cameras. Metric scaling is
achieved by training the network with a weak veloc-
ity supervision on the camera pose. At inference time
the velocity is not required. The network is used to in-
fer metric scale depth maps using only the current live
RGB image as input.

2. ORB-SLAM3 is used to provide the camera pose in
each frame where we use the live RGB for monocu-
lar camera tracking. Internally ORB-SLAM uses the
Kannala-Brandt fisheye model to process fisheye im-
ages without undistorting them.

3. The ORB-SLAM3 estimated camera pose is used to
fuse the current RGB and depth information into a
dense surfel-based map, similar to the map represen-
tation of [23]. Our fusion operation incorporates the
Kannala-Brandt fisheye camera model.

4. Global and local loop closure correction allow the sys-
tem to correct for accumulated drift and reuse old parts
of the map.

Our full pipeline is visualised in Figure 3

2.1. Kannala-Brandt Camera Model

We use the 8-parameter Kannala-Brandt camera similar
to OpenCV’s implementation and the implementation used
in ORB-SLAM3. The first 4 parameters of the model are
the focal lengths in the x and y direction fx and fy and the
principal point (cx, cy). The final 4 parameters are the coef-
ficients of a 5th degree polynomial for correcting the point
of projection as a function of angle of incidence (κ0, ..., κ3).
In particular, the projection function is given by,

p = π (Pw) =

[
fx · r · cos(ψ) + cx
fy · r · sin(ψ) + cy

]
(1)

where,

θ = atan2
(√

X2 + Y 2, Z
)

ψ = atan2(Y,X)

r(θ) = θ + κ0θ
3 + κ1θ

5 + κ2θ
7 + κ3θ

9
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Figure 3. Overview of system architecture. PackNet is used to estimate a depth map for the current live camera image. ORB-SLAM then
tracks the motion of the camera. ORB-SLAM continues to extract keyframes and pass them to its local and global mapping threads. The
sparse feature map on the right is used internally by ORB-SLAM. Assuming no local or global loop closures have occurred in this timestep,
the live RGB image and predicted depth are fused into the surfel model. If ORB-SLAM has detected a global loop closure, then a global
deformation is attempted. Surface-surface constraints for optimization of the deformation graph are generated from the pre-corrected and
corrected (post loop closure) pose of the camera P t

kf and P̂ t
kf respectively. If deformation graph optimization fails or no global loop is

detected by ORB-SLAM a local loop closure is attempted as per the original EF algorithm.

Here, Pw = (X,Y, Z) ∈ R3 denotes a 3D point in camera
coordinates, with the corresponding image point given by
p ∈ R2 ⊂ Ω where Ω is the image domain. To re-project
an image point to world coordinates, the function π can be
inverted. The inverse of the mapping from Cartesian coor-
dinates to pixel coordinates (i.e the application of fx, fy ,
cx, cy in Equation (1) above) and from ray view direction
to Cartesian coordinates ((cos(ψ), sin(ψ)) in Equation (1)
above) is straightforward to compute. The radial distortion
component can be inverted by solving for the roots of r(θ)
using Newton’s method. See [10] for more details.

2.2. Scale-Aware Fisheye Depth Estimation

For depth estimation, we propose a variant of PackNet
[22]. The network is composed of two sub networks; a
depth estimation network Fd : I → 1

d(I ) (that is, the net-
work outputs inverse depth) and pose estimation network
FP : (It, IN ) → Pt→n that predicts the pose of each frame
In in the frame of reference of It. We use a lightweight
version of the depth network more suited to real-time oper-
ation. Both networks are trained simultaneously in a self-
supervised manner by establishing a structure-from-motion
loss function over a small temporal window around the cur-
rent training frame. To do so, the pixels of each context
frame In ∈ N (It) are warped into the target frame It, pro-
ducing a set of warped frames În. The basis of the self-
supervised loss function is the photometric error induced
between the target frame and each of the warped frames.
We reformulate the multi-view warping function of Pack-

Net to employ the Kannala-Brandt camera model, allowing
the network to estimate dense depth maps for fisheye cam-
era imagery. The function to warp an image point xn in a
context frame to its corresponding location xt in the target
frame is given by

xt = π
(
Pt

n ·
[

1
d−1
n

· π−1
(
xn

)])
(2)

where, π is the Kannala-Brandt projection model from Sec-
tion 2.1, Pt

n is the rigid body pose from context frame In
to target frame It and d−1

n is the inverse depth estimate for
image point n. Note that for simplicity we have left out ho-
mogenisation and de-homogenisation operations. We take
additional measures to enforce metric scale-aware depth es-
timates and to improve overall training and inference per-
formance. Firstly, we apply weak velocity supervision loss
on the pose network. Secondly, we perform sparse Li-
DAR supervision. For example, when using the KITTI-360
dataset, we render the LiDAR and SICK laser scanner point
clouds into each fisheye frame using the ground-truth cam-
era poses. This produces a set of sparse ground-truth depth
maps which we use to supervise the training. The full loss
function is

L = Lp + λ1Lreg + λ2Lvel + λ3Ldepth (3)

where, Lp, Lreg and Lvel are, respectively, the photometric
loss, depth smoothness loss and velocity supervision loss
as per the original PackNet paper [22]. Ldepth is an L1 loss
over groundtruth and predicted depth estimates (see [24] for
more details).
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2.3. Hybrid Sparse-Dense Mapping With Kannala-
Brandt Camera Model

To compute a dense model of the environment, we ex-
tend the hybrid sparse-dense SLAM system of [5]. ORB-
SLAM3 is used for camera tracking and global loop closure
detection [21]. To achieve dense mapping, [5] combines
ORB-SLAM3 with ElasticFusion [23]. As in ElasticFusion,
the dense map is represented as an unordered list of surfels
M where each surfel consists of a position p ∈ R3, a nor-
mal n ∈ R3, a radius r ∈ R, a confidence c ∈ R and a
color. At each point in time, the map is divided into two
non-overlapping subsets of surfels; an active map Ma rep-
resenting surfels that have been fused with live data within
the last δt iterations and; an inactive map Mi representing
surfels that have not been fused with live camera data within
the last δt iterations. For each live frame It our system runs
a number of steps detailed below.

Depth estimation The system computes a depth map
Dt = Fd(It) using the depth estimation network described
in Section 2.2.

Sparse camera tracking It is passed to ORBSLAM-3
which performs feature-based camera tracking as per the
original ORB-SLAM algorithm [21]. Note that we run the
full ORB-SLAM pipeline in the background including cam-
era tracking, local mapping and loop closure detection and
global optimisation. The output of this phase is the pose of
the camera for the current timestep Pt ∈ SE(3).

Global loop closures We close global loops in a two-
stage hybrid process similar to [5]. ORB-SLAM3 ex-
tracts novel and informative frames as keyframes, using
a background thread to search for loop closures between
keyframes. Once a loop closure candidate is found, it is ge-
ometrically verified and a constraint TKj

Ki
∈ SE(3) between

the two triggering keyframes is calculated. ORB-SLAM
corrects its sparse map with a pose-graph optimisation fol-
lowed by a bundle adjustment. To correct the dense map,
our system renders the dense model into two virtual frames
located at the same poses as the two triggering keyframes.
The pose of the newly added keyframe Ki is used to ren-
der the active portion of the model Ma, while the pose of
the matched keyframe Kj , transformed by the loop clos-
ing constraint TKj

Ki
, is used to render the inactive portion

of the model Mi. This ensures that it is the newer, ac-
tive portion of the model that is brought into registration
with the old part of the model during loop correction. From
these two frames, a set of 3D → 3D surface-surface cor-
respondences are calculated. The surface correspondences
are used to optimise a deformation graph which, when ap-
plied to the dense model, corrects its geometry to reflect the
loop closure.

Local loop closures Assuming no global loop closure
has occurred during the current iteration, the system looks

for a local loop closure within the dense model. A local loop
closure seeks to align the active and inactive portions of the
model in view of the current camera pose. Local loop clo-
sures help keep the camera aligned with the dense map dur-
ing locally loopy camera motion. To do so, we render two
views of the scene, one each for the active and inactive map
regions, using Pt. The loop closure constraint is calculated
via a robust ICP non-linear optimisation, as per the original
EF algorithm. The result is a 6-DOF rigid body transform
T i
a aligning the active frame with the inactive frame. Since

local loops are purely model-to-model, instead of using π
to project Ma and Mi into Pt, we render to virtual pinhole
images. This allows us to take advantage of the EF’s RGB-
D alignment. To correct the dense geometry, T i

a is used to
compute a set of 3D → 3D surface-surface point corre-
spondences, in the same way as during a global loop clo-
sure. The loop is then corrected with a deformation graph
in the same manner as a global loop closure.

Fusion Once the camera has been tracked and all loop
closures have been identified, the current live camera frame
It and estimated depth map Dt are fused into the active re-
gion of the map Ma. To do so, data-associations between
Ma and It are found by rendering a high resolution index
map of Ma using Pt and π. Once the current frame has
been associated, fusion proceeds in the same way as in [23].

2.4. Accounting for Scale

The overall scale of a scene is unobservable by a single
monocular camera with no prior information. Therefore, a
monocular mapping system can only estimate the motion
of the camera and the geometry of the scene up to a scale
factor. What’s more, the scale of the reconstruction tends to
drift over time. For long and loopy mapping sessions, scale
consistency can be enforced by observing and correcting
scale drift during loop closures [25]. In our system, before
we can use Pt to fuse the current frame and depth map,
we must recover the scale ratio s ∈ R between the sparse
reconstruction and the dense reconstruction. We estimate
the scale ratio between the metric dense depth estimate at
time tDt and the sparse ORB-SLAM map points MORB in
view of the current pose Pt. First, we render a sparse depth
map DORB from MORB using Pt. The scale difference at
time step t is given by median ratio st = med(Dt)

med(Dorb)
. To

ameliorate noise and to account for the fact that scale drifts
over time, we keep a rolling buffer of scale estimates over
the last n frames S. The final scale ratio s ∈ R estimate is
then taken as the average over {si ∈ S|si ∈ [µS ± 2σS]}.
Once the scale ratio s has been recovered we use it to scale
the translational component of the current pose, lifting it
into metric scale and allowing fusion of the current frame
into the metric scale dense model.
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Method Absrel Sqrel RMSE RMSElog

PackNet Fisheye 0.127 0.605 2.422 0.204

Table 1. Evaluation of depth estimation on the proposed
KITTI-360 test split.

3. Experimental Results
To investigate the suitability of our proposed approach

to dense monocular fisheye SLAM, we performed a qual-
itative and quantitative analysis on the KITTI-360 bench-
mark dataset [6]. KITTI-360 is a follow-on to the well
known KITTI benchmark dataset [26]. The dataset consists
of 9 public access sequences of a car driving through a sub-
urban environment where the car is equipped with two lat-
eral facing fisheye cameras pointing in opposite directions.
The sequences also include 3D LiDAR and a 2D SICK
laser scanner. Dataset annotations include groundtruth
poses, per-frame LiDAR and SICK pointclouds, accumu-
lated pointclouds and calibration parameters. Semantic la-
bels, GPS/IMU data, and bounding boxes are also included,
however we do not make use of these additional annotations
in this work.

Note that KITTI-360 provides a different camera model
for the fisheye cameras to the one used in our SLAM sys-
tem. To utilise KITTI-360 with our system we calibrate the
fisheye cameras using the chessboard detector of [27] and
the fisheye calibration optimisation of OpenCV [28].

3.1. Depth Estimation Training Results

We trained Fisheye PackNet described in Section 2.2 on
the fisheye images of the KITTI-360 dataset. Each of the
9 KITTI-360 sequences vary in length, ranging from ∼ 1k
frames to ∼ 20k frames. We use both left and right im-
ages during training but treat them as separate samples. For
training we end up with ∼ 45k training images, ∼ 45k test-
ing images and ∼ 20k validation images. Sparse depth map
training labels are produced in a pre-processing step by ren-
dering the LiDAR point clouds and SICK point clouds into
the ground truth camera frame. We train the network on a
GPU server with 4 Nvidia RTX-3090 cards for 66 epochs.
Each epoch takes approximately 1hrs40mins. In Table 1
we establish a first baseline of depth estimation results on
KITTI-360 fisheye, reporting the accuracy of the trained
depth estimation on the KITTI-360 test split with respect
to the ground truth LiDAR scans.

3.2. Dense Fisheye Mapping Results

In this section, we present the results of experiments that
investigate the effectiveness, at a local level, of our hybrid
approach to dense monocular fisheye SLAM in estimating
de-noised surface reconstructions. We also provide a num-

ber of qualitative examples of the system’s overall perfor-
mance, including side-by-side comparison of estimated and
ground truth trajectories (e.g. Figures 5a and 6). All Map-
ping experiments are run on an i7 CPU using an NVIDIA
1080ti using the test splits outlined in Section 3.1. Within
the testing split of each sequence, we use chunks of con-
tiguous frames for benchmarking our system. In our exper-
iments, we demonstrate that, while global consistency can
be difficult to achieve, our system still consistently achieves
accurate local mapping over windows up to > 300m. In
Figure 5 we report surface reconstruction accuracy results.
In particular, for a given test sequence, we retrieve nearby
ground truth LiDAR scans to construct a local model. We
then align this local model to the model estimated by our
system. We take the mean distance between each point in
our model and its corresponding closest point in the aligned
local model as a measure of the local mapping accuracy of
our system. Figure 5a shows how incrementally increasing
the neighbourhood region from 10 − 300m within which
LiDAR scans are gathered results in local mapping accu-
racy of ∼ 13cm− ∼ 42cm. In Figure 5b we show how
estimating scale is challenging for our system given the
use of monocular ORBSLAM and the scale ratio (see Sec-
tion 2.4). Figure 5b shows the trajectory estimated by our
system (lifted into metric scale during mapping) alongside
the ground truth trajectory. We note that despite the exhib-
ited scale drift, the overall morphology of the trajectory is
captured in the output, and as shown in Figure 5a, the re-
sulting map remains highly accurate over ranges of 150m.
In Figure 7 we report a breakdown of our system’s run-
time performance. The system runs at ∼ 5hz. Note that
as the number of surfels increases, the time taken to fuse
new frames into the dense model also increases. Depth esti-
mation is the main bottleneck in the system. Figure 6 qual-
itatively demonstrates loop closures in our system.

4. Conclusions
We presented a monocular fisheye dense mapping sys-

tem that combines dense depth prediction with sparse fea-
ture tracking and dense surfel fusion techniques. Fisheye
depth prediction is achieved by integrating the Kannala-
Brandt camera model into PackNet. With a combination of
weak velocity supervision and sparse LiDAR-based depth
supervision, we trained PackNet to predict dense depth
maps on the fisheye images of the KITTI-360 dataset. The
proposed SLAM system permits live-dense reconstruction
of outdoor scenes using a fisheye camera in automotive sce-
narios. Sparse tracking provides camera pose estimation ca-
pable of operating robustly at vehicle speeds and in outdoor
environments with variable lighting. Global loop closures
are identified by ORB-SLAM3’s appearance-based place
recognition module with the resultant constraints passed to
the dense fusion algorithm where they are integrated with a
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Figure 4. Qualitative results of Fisheye PackNet on test split of KITTI-360. The top row shows the input RGB fisheye image, the bottom
row shows the estimated depth maps. Left column; note that while the gross geometry of the scene is well estimated, finer grained details,
on the garage door and on the rear of the car, are smoothed out. Middle column; the prominent building corner highlights instabilities in
depth estimation of sharp details in the scene. Right column; foliage represents a particularly challenging input for the network.
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Figure 5. Windowed dense surface reconstruction accuracy
from test splits from [6]. Figure 5a shows the mean surface-
surface error as a function of local window size. For each of the
sequences in Fig. 5a, we average the results across 5 uniformly se-
lected locations from trajectory. Figure 5b shows our system’s es-
timated trajectory alongside the ground truth trajectory for KITTI-
360 sequence 4. The blue curve shows the estimated trajectory
aligned and scaled to the ground truth. Note how, even though
tracking exhibits significant scale drift, within relative large local
areas (∼ 300m) mapping is accurate.

deformation graph-based map correction step.
Our results demonstrate accurate dense, metric visual

mapping with a single fisheye camera over local windows
of up to 300m. The integration of loop closure constraints
within a SLAM based approach permit leveraging of re-
peated passes of regions of the environment withing a glob-
ally consistent framework. Although our system exhibits
accurate mapping over extended scales, globally accurate

mapping remains a challenge. Within the context of KITTI-
360, the lateral, sideways facing positioning of the fisheye
cameras, combined with the fast motion of the vehicle, rep-
resents a difficult input for ORB-SLAM3. Furthermore,
while we have incorporated measures to address scale ambi-
guity inherent in monocular SLAM, it remains a significant
challenge over long sequences where the scale of the sparse
map is bound to drift.

Supporting a wide range of camera models within a sin-
gle mapping system is a challenging problem. Projection
and re-projection functions can vary drastically between
different camera models. Often the Jacobian of the camera
model is required for integrating the model into non-linear
camera tracking and mapping optimisations. Furthermore,
each camera model requires calibration, which itself can in-
volve a complicated procedure that may fail or produce a
poor calibration. This limits a SLAM systems suitability as
a research and consumer grade tool. In future work, we aim
to investigate Neural Ray Surfaces [29] and their ability to
recover a ray surface for a camera without known calibra-
tion parameters, as the basis for a unified approach to dense,
CNN-based mapping.
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