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Abstract

In this paper, we address the problem of wide-baseline
camera pose estimation from a group of 360◦ panora-
mas under upright-camera assumption. Recent work has
demonstrated the merit of deep-learning for end-to-end di-
rect relative pose regression in 360◦ panorama pairs [11].
To exploit the benefits of multi-view logic in a learning-
based framework, we introduce Graph-CoVis, which non-
trivially extends CoVisPose [11] from relative two-view
to global multi-view spherical camera pose estimation.
Graph-CoVis is a novel Graph Neural Network based archi-
tecture that jointly learns the co-visible structure and global
motion in an end-to-end and fully-supervised approach. Us-
ing the ZInD [4] dataset, which features real homes present-
ing wide-baselines, occlusion, and limited visual overlap,
we show that our model performs competitively to state-of-
the-art approaches.

1. Introduction
Camera pose estimation is a fundamental problem in

computer vision and robotics. Whenever appropriate, con-
straints are used to both simplify the solution space and
improve performance. One common constraint is that of
planar camera motion. This is often the case when using
sparsely captured 360◦ panoramas for indoor applications.
In our work, we address the multi-view pose estimation
problem using 360◦ panoramas with wide baselines within
a large indoor space; we see this as a solution for an arbi-
trary number of visually connected panoramas.

CoVisPose [11] is a state-of-the-art end-to-end model for
pairwise relative pose estimation in 360◦ indoor panoramas.
It models the visual overlap and correspondence constraints
that are present between two panoramic views when parts of
an indoor scene are commonly observed by both cameras.
In particular, by exploiting the upright-camera assumption,
co-visibility (visual overlap), correspondence, and layout
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Figure 1. From three panoramas(a), Graph-CoVis(d) returns
higher accuracy poses and visually consistent boundaries com-
pared to two standard baselines based on relative pose estimation
from CoVisPose [11] with greedy spanning tree(b) and pose graph
optimization(c). Ground truth is shown in (e). ARE stands for ab-
solute rotation error, and ATE stands for absolute translation error.

geometry are framed as 1-D quantities estimated over the
image columns. Using this formulation, visualized in Fig-
ure 1, CoVisPose demonstrates that learning such high-level
geometric cues results in effective and robust representation
for end-to-end pose estimation.

While CoVisPose achieves state-of-the-art results on
wide-baseline relative pose estimation for pairs of 360◦

panoramas, it does not provide an end-to-end solution for
more than two panoramas. By comparison, we propose a
more general end-to-end model for estimating the global
poses for two or more panoramas.

Our end-to-end approach, called Graph-CoVis, extends
the strengths of the pair-wise pose estimation model from
CoVisPose [11] to a global multi-view pose estimation
model. By using a Graph Neural Network (GNN) [22],
Graph-CoVis retains the properties of the CoVisPose net-
work that yield accurate pair-wise panorama pose estimates,
while enabling it to generalize across multiple views and
learn to regress consistent global poses.
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Our technical contributions are as follow:

• Graph-CoVis is the first end-to-end architecture for
multi-view panorama global pose estimation.

• Graph-CoVis is the first global pose estimation archi-
tecture that can effectively handle varying numbers of
input panoramas.

• A message passing scheme that enables the GNN to
leverage deep representations of dense visual overlap
and boundary correspondence constraints, to better es-
timate global pose.

• Competitive performance on ZInD for global pose es-
timation in a group of panoramas.

2. Related work
Estimation of the motion between two cameras is com-

monly achieved through detection and matching of key-
points such as SIFT [15] across the two images, estimat-
ing the transformation matrix between the two views, and
finally computing the relative translation and rotation be-
tween the two cameras [10]. Commonly, RANSAC [8] is
used in the transformation estimation due to outliers in the
matching stage.

Learned models have been proposed for each of the
steps [12, 21,27], combination of steps [7,24], and the end-
to-end pipeline [3, 9, 18, 19]. LIFT [27] is one of the first
systems for a learned feature detector and descriptor, fol-
lowed by more recent works such as SuperPoint [6], Key-
point matching is learned using a GNN architecture in Su-
perglue [21] and a Transformer-based architecture in COTR
[12]. D2-Net [7] is a learned joint detector and descriptor.
Lofter [24] achieves detector-free matching across images
by learning feature descriptors starting from a dense pixel-
wise sampling and refining them for high quality fine-level
matching. Differentiable RANSAC [2] enables robustness
in the end-to-end training of the pipeline.

End-to-end methods regress a pose directly from two
input images. DiffPoseNet [19] learns poses by model-
ing optical flow and pose estimation, replicating these key
principles from geometric methods. Focusing on direction
alone, DirectionNet [3] works even for challenging wide-
baseline images. RegNet [9] learns both the feature repre-
sentations and the Jacobian matrix used in the optimization
of two-view pose. Using a translation and rotation equiv-
ariant convolutional neural network [18] improves the geo-
metric information learned in the feature representations. A
common theme in these recent end-to-end approaches is the
explicit modeling of two-view geometry principles in the
network. Similarly, we leverage the strong geometry priors
that are inherent in panorama images.

GNNs have been used for multi-view pose estimation
in different ways. Similar in spirit to our work, PoGO-
Net [14] models multiple camera poses as nodes and uses
a GNN with message passing scheme as an alternative to
classical pose graph optimization. The method however re-
quires an initialization method for the graph. In contrast,
we do not require any explicit initialization. Our network
densely connects each pose node to every other node and
learns the dependencies between multiple views directly
from the data. [20] is an end-to-end trained GNN model to
learn matches across multiple views, where the GNN mod-
ule is followed by a differentiable pose optimization mod-
ule. In contrast to our model that learns and updates the
underlying features of the pair-wise module, their model is
focused on learning the optimal matching function between
keypoints. Further, their model depends greatly on the ac-
curacy of the pose optimizer to achieve good results.

Originally described for perspective images, some of the
above methods have been applied on panorama images
[17]. The 360-degree view in panoramas creates useful con-
straints and angular correspondences between columns of
two images that have a visual overlap between them. CoV-
isPose [11] leverages these constraints along with geometric
priors in the appearance of structures such as room layout
boundaries to yield a highly accurate two-view pose esti-
mation model. PSMNet [26] is a pose and layout estimator
that predicts the joint layout from two panorama views and
is able to regress the fine pose when initialized to approxi-
mations.

In our domain of multi-view panorama pose estimation
notable recent works include estimating floor plans from ex-
treme wide-baseline views (one panorama image per room)
[23] and SALVe [13], a system for full floor plan recon-
struction in sparsely sampled views. These works attempt
to arrange all possible panoramas in the set, even those with
little or no visual overlap, requiring alignment of semantic
structures such as doors and walls. We address the problem
of multi-view panorama pose estimation when panoramas
have visual overlap between them, which is a key problem
in full floor plan reconstruction.

3. Method
In this section, we describe our Graph-CoVis architec-

ture in detail, as well as our training strategy. The overall
architecture for a group of three panoramas is visualized in
Figure 2. We start with briefly describing CoVisPose.

3.1. CoVisPose

CoVisPose [11] is an end-to-end method for pairwise
pose estimation in wide baseline 360◦ indoor panoramas. It
uses geometric cues such as visible-boundary, co-visibility,
and angular correspondence as auxiliary prediction outputs
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Figure 2. Graph-CoVis Architecture for a sample input of three panoramas. We initialize our graph’s node and edge representations using
visual features as in [11], followed by six message passing layers to produce a Global Pose Graph. Nodes represent global poses and edges
represent inter-frame geometric cues. The message passing process is: 1) the Edge Feature Computation Module (EFM) updates the edge
features, 2) the Message Computation Module (MCM), where the target node’s features attend to the features of the source node and the
adjoining edge, and 3) the Node Feature Computation Module (NFM) aggregates the incoming messages from all source nodes to update
target node features. Finally, each node and edge are used to estimate global poses and pair-wise geometric cues, respectively.

in order to effectively train a pose estimator. With features
resulting from a ResNet backbone and a height compres-
sion module as input to the multi-layer transformer, it esti-
mates the pose and geometric auxiliary outputs in separate
branches.

The Graph-CoVis framework generalizes the pair-wise
pose estimation model to multiple views in order to esti-
mate the global pose instead of the relative pose. In com-
parison to CoVisPose our model is capable of understand-
ing global information inside the graph and using GNNs,
we demonstrate the extension to multiple views by defining
the following representations.

3.2. Problem Representation

Given a group of input panoramas of size N , {Ii}Ni=1 ∈
R3×H×W , without loss of generality we adopt I1 as the ori-
gin panorama, and estimate the remaining poses P2 to Pn

in a shared coordinate system centered at the origin. We
adopt the planar motion pose representation consisting of a
translation vector t ∈ R2 and a rotation matrix R ∈ SO(2),
i.e., the pose Pi ∈ SE(2). We represent the pose by 4 pa-
rameters, directly estimating the scaled translation vector t,
alongside the unit rotation vector r.

3.3. Graph Representation

Defining the input directed graph as G = (V, E), we
represent the set of panoramas with nodes V = {vi}, and
model the inter-image relationships through the edge set
E = {eij | vi, vj ∈ V}.

3.3.1 Node and Edge Feature Initialization

Each node vi in the graph G is associated with the node fea-
tures xl

i, where l refers to the layer number. The input graph
node features, x0

i , are initialized with the visual features
ψi, extracted from panorama Ii. We employ the feature ex-
tractor from [11], which consists of a ResNet50 backbone
and a height compression module, followed by the addi-
tion of fixed positional encodings and six-layer transformer
encoder. These structures are initialized from a pretrained
CoVisPose model. Information about node identity is con-
veyed through learnable node embeddings. The node em-
beddings also indicate to the network which node is the ori-
gin of the global coordinate frame.

The edge features e0ij are initialized with the concate-
nation of ψi and ψj . Prior to concatenation, we addition-
ally add the pretrained segment embeddings to identify the
node identity for later edge feature computations. These
convey image membership to the following transformer en-
coder layer.

3.4. GraphCoVis Network Architecture

3.4.1 Message Passing

Our network’s representations are processed through six
message passing layers to embed rich representations for
pose regression. The message passing scheme is shown in
Figure 3. We compute incoming messages for each node us-
ing the Message Computation Module (MCM). The MCM
first updates the edge features using the Edge Feature Mod-
ule (EFM), and subsequently uses these representations to
construct messages which are aggregated in the Node Fea-
ture Computation Module (NFM), to update the node em-
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Figure 3. Graph-CoVis Message Passing. The Message Computa-
tion Module (MCM) computes incoming messages for each node.
First, the Edge Feature Module (EFM) updates the edge represen-
tations with a single layer transformer. Then, the messages are
computed through a transformer decoder, where the existing node
representation attends to a concatenation of the edge representa-
tion and the adjacent nodes’ embedding.

beddings.

To update the edge features, the EFM consists of a single
transformer encoder layer, the weights of which are initial-
ized by the encoder layer weights from a pretrained CoVis-
Pose model,

elij = θlE(e
l−1
ij ), (1)

where θlE is the single-layer transformer encoder in the lth
message passing layer, el−1

ij and elij are the edge features
for edge eij at the input and output of the EFM, respec-
tively. After the edge features have been updated in Eq.
1, the MCM then computes incoming messages for each
node prior to aggregation using a single-layer transformer
decoder, θlM ,

ml
j→i = θlM (xl−1

i ,xl−1
j ⊕ elij), (2)

where ml
j→i is the message from the source node vj to the

target node vi, and xl−1
j ⊕ elij is the concatenation between

the updated edge features elij and the existing node repre-
sentation for the neighboring node j. In this way, the exist-
ing node representation attends to the inter-image informa-
tion extracted along the edges, as well as the neighboring
panoramas node representation.

We subsequently update the node embeddings by taking
the mean over all incoming messages in the Node Feature
Computation Module (NFM),

xl
i =

1

deg(i)

∑
j∈N (i)

ml
j→i, (3)

where j ∈ N (i) represents the graph neighborhood of node
vi, and deg(i) is the number of edges incident to node vi.

3.4.2 Co-Visibility, Angular Correspondence, and
Floor-Wall Boundary

We estimate dense column-wise representations of co-
visibility, correspondence, and layout geometry similar to
CoVisPose. Specifically, the edge features at the output
of the final message passing layer are mapped to the dense
column-wise outputs through a single fully connected layer,
θDC ,

[ϕij ,αij ,pij ] = θDC(e
L
ij), (4)

where ϕij ,αij ,pij are the column-wise vertical floor-wall
boundary angle, angular correspondence, and co-visibility
probability, respectively, and eLij are the edge features at
the output of the last layer, L. Again, we initialize θDC

with weights from a pre-trained CoVisPose model. Learn-
ing these quantities along the edges encourages the edge
features to embed information important for relative pose
regression, which the node embeddings may then attend to
in order to retain information relevant to global pose regres-
sion within the group of panoramas.

3.4.3 Pose Decoder

To decode the node embeddings into the 4-parameter pose
estimates, we apply three fully connected layers (θP ,), with
Mish activation functions [16] between the first two layers.

[ri, ti] = θP (x
L
i ). (5)

3.5. Training

We train and evaluate our model on ZInD [4], which is
a large-scale dataset of real homes, containing multiple co-
localized panoramas, with layout annotations necessary to
support our layout-based correspondence and co-visibility
representation. To create our dataset, we aggregate all
spaces from ZInD containing three or more co-localized
panoramas. For the purpose of training and due to mem-
ory limitations, we set the maximum number of panoramas
in a cluster to be five.

During training, as large open spaces often contain much
more than five panoramas, we randomly sample clusters of
three, four, and five panoramas from these larger groups.
For a set with N panoramas, the model predicts N global
poses. Note that a single model is trained for all N and
the number of outputs from the model is determined by the
number of input panoramas. We further apply random ro-
tation augmentation, shifting the panoramas horizontally.
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Further, node ordering is permutated to yield a randomly
selected origin node each time. Both types of augmentation
result in altered coordinate systems and poses, presenting
the network with varying pose targets during training. We
use the publicly released train/test/validation split and train
for 200 epochs, selecting the best model by validation error.

3.6. Loss Functions

The loss function is composed of two main components,
the node loss and the edge loss. The node loss, Ln itself con-
sists of two terms global node loss Lng and relative node loss
Lnr. We first directly minimize the pose error in a global co-
ordinate system centered at the origin panorama through the
global node loss,

Lng =

N∑
i=2

(∥ri − r̂i∥22 + ∥ti − t̂i∥22), (6)

where N represents the number of nodes in the graph.

Additionally, the relative node loss is designed to encour-
age global consistency, we formulate this Lnr between all
node estimates, r̂ij , t̂ij and minimize the error against the
ground truth relative poses. This adds extra constraints be-
tween nodes other than the origin node. The relative pose
node loss is

Lnr =

N∑
i

N∑
j ̸=i

(∥rij − r̂ij∥22 + ∥tij − t̂ij∥22). (7)

The combined node loss is

Ln = Lng + βr · Lnr, (8)

where βr is a constant controlling the relative influence of
the global vs. relative pose losses, which we set to 0.1.

The edge loss, Le, is applied to the dense co-visibility,
correspondence, and layout geometry estimates as in [11],

Le = βacLac + βbLb + βcvLcv. (9)

The losses related to the other predicted outputs are,

Lb =

N∑
i=1

N∑
j=1

∥ϕij − ϕ̂ij∥1, j ̸= i (10)

Lac =

N∑
i=1

N∑
j=1

∥αij − α̂ij∥1, j ̸= i (11)

Lcv =

N∑
i=1

N∑
j=1

BCE(pij , p̂ij), j ̸= i, (12)

where Lb,Lac,Lcv, are the layout boundary, angular corre-
spondence, and co-visibility losses, respectively and BCE
is the binary cross entropy loss.

3.7. Global origin selection

During the training phase, the first panorama in the input
list is considered the origin. At inference time, we run the
model N times, with each panorama at the origin, retaining
the result where the origin node has the highest mean co-
visibility score to the neighboring panoramas.

4. Experiments
We compared our model against standard ways of ex-

tending the pair-wise pose estimates to multiple views with
experiments on the ZInD data set.

4.1. Baseline

We compare our model to two baseline methods based
on the most recent and accurate pose estimation model for
panorama images. CovisPose [11] has been demonstrated
to be significantly better than alternatives for the domain of
upright panorama images, under planar camera motion.

Taking a graph view of the problem with global poses
representing nodes and relative pair-wise poses represent-
ing edges, we use two standard methods to extend pair-wise
relative pose estimates from the CoVisPose model.

Greedy spanning tree. We sort the pair-wise poses
by their predicted covisibility and add them greedily from
highest covisibility to lowest until all panoramas are placed
in the graph. This baseline is called CoVisPose + Greedy.

Pose graph optimization. The most common method
to estimate global poses with multiple relative pair-wise
poses is to use pose graph optimization (PGO) [5]. We use
the graph structure from the greedy spanning tree baseline
along with the edge that was not considered (lowest cov-
isibility relative pose) as the pose graph and perform opti-
mization. We call this baseline CoVisPose + PGO.

4.2. Evaluation Metric

To compute the error between ground truth and predicted
poses for the panoramas, which are in arbitrary coordinate
frames, we compute an alignment transformation between
the two configurations. Using a least squares fit [1, 25]
to align the 2D point-sets (xi and yi locations of each
panorama i in the triplet), we first estimate a transforma-
tion matrix (rotation and translation in 2D space) to best
align the ground truth and predicted poses. The difference
between the positions and orientations of the aligned poses
are reported as absolute translation error (ATE) and abso-
lute rotation error (ARE).

4.3. Quantitative Results

The results for mean, median, and standard deviation of
the ARE and ATE, separated by the number of panoramas
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Group-Size Methods Rotation Translation

Mn(◦ ↓) Med (◦ ↓) Std(◦ ↓) Mn (m. ↓) Med (m. ↓) Std(m. ↓)

Three
CoVisPose + Greedy 2.648 1.028 11.425 0.093 0.052 0.244
CoVisPose + PGO 3.156 0.984 12.272 0.109 0.047 0.354

Graph-CoVis 2.001 0.845 9.146 0.081 0.038 0.292

Four CoVisPose + Greedy 3.908 1.161 16.557 0.142 0.068 0.370
CoVisPose + PGO 6.034 1.310 17.773 0.218 0.067 0.581

Graph-CoVis 3.192 0.941 13.359 0.153 0.061 0.430

Five CoVisPose + Greedy 3.490 1.257 13.928 0.154 0.078 0.344
CoVisPose + PGO 8.281 1.715 18.830 0.282 0.089 0.619

Graph-CoVis 3.294 1.073 12.037 0.172 0.082 0.384

Table 1. Statistics of the rotation and translation error based on ARE and ATE metrics on group of three, four, and five panoramas for
presented baselines and Graph-Covis.

Group-Size Connection #Test Methods Rotation Translation

Mn(◦ ↓) Med (◦ ↓) Std(◦ ↓) Mn (m. ↓) Med (m. ↓) Std(m. ↓)

Three

Partially 52 108
CoVisPose + Greedy 7.849 1.991 18.743 0.308 0.095 0.641
CoVisPose + PGO 15.744 7.971 21.691 0.685 0.283 1.218

Graph-CoVis 5.362 1.364 15.923 0.340 0.124 0.993

Fully 1203 2886
CoVisPose + Greedy 2.423 1.007 10.944 0.084 0.051 0.205
CoVisPose + PGO 2.612 0.948 11.386 0.084 0.046 0.228

Graph-CoVis 1.856 0.833 8.706 0.069 0.037 0.208

Four

Partially 108 236
CoVisPose + Greedy 6.776 1.671 21.307 0.267 0.089 0.638
CoVisPose + PGO 16.573 6.070 25.851 0.585 0.215 1.061

Graph-CoVis 9.008 1.403 25.240 0.386 0.137 0.811

Fully 437 1160
CoVisPose + Greedy 3.199 1.069 15.071 0.111 0.064 0.256
CoVisPose + PGO 3.429 1.045 13.949 0.127 0.056 0.319

Graph-CoVis 1.754 0.870 7.397 0.095 0.052 0.226

Five

Partially 133 371
CoVisPose + Greedy 4.996 1.575 16.529 0.210 0.095 0.459
CoVisPose + PGO 16.371 6.528 23.914 0.518 0.229 0.838

Graph-CoVis 4.713 1.320 13.568 0.246 0.126 0.462

Fully 219 609
CoVisPose + Greedy 2.584 1.107 11.986 0.120 0.070 0.244
CoVisPose + PGO 3.368 1.028 12.599 0.139 0.063 0.367

Graph-CoVis 2.433 0.948 10.915 0.128 0.064 0.319

Table 2. Mean rotation and translation error for groups of three, four, and five panoramas divided into Fully and Partially co-visible sub-
sets. The number of training and test examples are shown for each sub-set.

in the set, are shown in Table 1. Graph-CoVis performs bet-
ter than the baselines for group size of three. For group size
of four and five, Graph-CoVis performs better in rotation,
but comparable or slightly worse in translation. While PGO
moderately reduces the median translation error for group
size three and four, PGO performs slightly worse than the
greedy method with respect the other metrics. We hypoth-
esize that this is because we ignore the least co-visibility
relative pose in the greedy method. Low co-visibilty esti-
mates are also more likely to be erroneous outliers. Includ-
ing them affects PGO negatively.

To better understand the relation between the graph
structure and model, we consider two cases of the connec-

tivity between nodes. Considering the visual overlap be-
tween nodes and removing connections between two nodes
if overlap is less than a threshold of 0.1, we have two possi-
ble graph structures: fully and partially connected sets.

Two panoramas are deemed to be connected if there is vi-
sual connectivity between them. A set of panoramas is fully
connected if every pair in that set is visually connected, i.e.,
the ground truth co-visibility [11] between them is greater
than the threshold. It is partially connected if there is at
least one pair that is not visually connected. Table 2 shows
that in general, Graph-Covis performs better than the base-
lines for Fully connected examples. The table also shows
an interesting correlation between accuracy and the number
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Figure 4. Visualization for both baselines and Graph-CoVis model. The red node represents the common origin node for all approaches.
Graph-covis shows improvement in the mean rotation, translation error, and top-down alignment of predicted room boundaries. More
examples are in the supplementary material.

of training examples in each set.

4.4. Qualitative Results

Figure 4 shows a typical example triplet and the pre-
dicted pose and geometry from the baseline methods and
Graph-CoVis. The first column is the panorama, selected
as origin node. Above each image the binary strip indi-
cates the predicted co-visibility to the the origin panorama.
The color strips at the top (and bottom) of each image indi-
cate the matching angular correspondence from the current
panorama to the origin panorama (and origin panorama to
current panorama). Predicted boundaries are shown in col-
ored lines within each image. The top-down view of the
panorama poses (large dots) and the boundary predictions
are shown in the last column. The rows correspond to Co-
VisPose + Greedy, CoVisPose + PGO, Graph-CoVis, and
ground truth. Graph-Covis results in more accurate place-
ment of the panorama poses as well as predicted boundary
points.

Figures 5 and 6 show inference examples of having four

and five panoramas in the group.

5. Limitations
The CoVisPose representations of dense co-visibility,

angular correspondence, and layout boundary, required to
train our method, are derived from annotated room layouts,
which are not available for some datasets. This limitation
precludes the application of our method in absence of re-
annotation. Further, these representations, as well as the
planar motion model used by our method, exploit the up-
right camera and fixed camera height assumptions. As a re-
sult, our method is not directly applicable to handheld cap-
tures.

6. Conclusion
We show that Graph-Covis is a generalization of two-

view panorama pose estimation to multi-views. It results in
an end-to-end trainable network that directly predicts global
poses from an input set of images.
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Figure 5. An example result for cluster size four.

Figure 6. An example result for cluster size five.

6466



References
[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares

fitting of two 3-d point sets. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-9(5):698–
700, 1987. 5

[2] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and
year=2017 optpages=5198-5207 Carsten Rother, jour-
nal=2017 IEEE Computer Vision and Pattern Recognition
Workshops (CVPR). Dsac - differentiable ransac for cam-
era localization. 2

[3] Kefan Chen, Noah Snavely, and Ameesh Makadia. Wide-
baseline relative camera pose estimation with directional
learning. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3257–3267, 2021. 2

[4] Steve Dias Da Cruz, Will Hutchcroft, Yuguang Li, Naji
Khosravan, Ivaylo Boyadzhiev, and Sing Bing Kang. Zillow
indoor dataset: Annotated floor plans with 360° panoramas
and 3d room layouts. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2133–
2143, 2021. 1, 4

[5] Frank Dellaert. Factor graphs and GTSAM: A hands-on in-
troduction. Technical report, Georgia Institute of Technol-
ogy, 2012. 5

[6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages
337–33712, 2018. 2

[7] Mihai Dusmanu, Ignacio Rocco, Tomás Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-net:
A trainable cnn for joint description and detection of local
features. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8084–8093, 2019. 2

[8] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381–395, jun 1981. 2

[9] Lei Han, Mengqi Ji, Lu Fang, and Matthias Nießner. Reg-
net: Learning the optimization of direct image-to-image pose
registration. ArXiv, abs/1812.10212, 2018. 2

[10] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press,
New York, NY, USA, 2 edition, 2003. 2

[11] Will Hutchcroft, Yuguang Li, Ivaylo Boyadzhiev, Zhiqiang
Wan, Haiyan Wang, and Sing Bing Kang. Covispose: Co-
visibility pose transformer for wide-baseline relative pose es-
timation in 360◦indoor panoramas. In ECCV, 2022. 1, 2, 3,
5, 6

[12] Wei Jiang, Eduard Trulls, Jan Hendrik Hosang, Andrea
Tagliasacchi, and Kwang Moo Yi. Cotr: Correspondence
transformer for matching across images. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
6187–6197, 2021. 2

[13] John Lambert, Yuguang Li, Ivaylo Boyadzhiev, Lambert E.
Wixson, Manjunath Narayana, Will Hutchcroft, James Hays,

Frank Dellaert, and Sing Bing Kang. Salve: Semantic align-
ment verification for floorplan reconstruction from sparse
panoramas. In ECCV, 2022. 2

[14] Xinyi Li and Haibin Ling. Pogo-net: Pose graph optimiza-
tion with graph neural networks. 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 5875–
5885, 2021. 2

[15] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60:91–110, 2004. 2

[16] Diganta Misra. Mish: A self regularized non-monotonic ac-
tivation function. In BMVC, 2020. 4

[17] Jeffri Murrugarra-Llerena, Thiago Lopes Trugillo da Sil-
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