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Abstract

We introduce ODIN (the OmniDirectional INdoor
dataset), the first large-scale multi-modal dataset aimed at
spurring research using top-view omnidirectional cameras
in challenges related to human behaviour understanding.
Recorded in real-life indoor environments with varying lev-
els of occlusion, the dataset contains images of participants
performing various activities of daily living. Along with om-
nidirectional images, additional synchronized modalities of
data are provided. These include (1) RGB, infrared, and
depth images from multiple RGB-D cameras, (2) egocentric
videos, (3) physiological signals and accelerometer read-
ings from a smart bracelet, and (4) 3D scans of the record-
ing environments. To the best of our knowledge, ODIN is
also the first dataset to provide camera-frame 3D human
pose estimates for omnidirectional images, which are ob-
tained using our novel pipeline. The project is open sourced
and available at https://odin-dataset.github.io.

1. Introduction
Challenges relating to the analysis of Activities of Daily

Living (ADL) have become essential topics of research in
computer vision and active and assisted living [3,7,20]. Ex-
amples of these challenges include human pose estimation
and activity recognition. For the rest of the paper, these will
be referred to as human behaviour understanding (HBU)
challenges. Most of the research in these fields is done using
lateral-view RGB(-D) images as inputs. However, record-
ing these images introduces a practical problem: activities
can be easily occluded, such as when the user being moni-
tored faces away from the camera. Additionally, these cam-
eras are obtrusive because they are constantly in the field of
view of the user [5]. On the other hand, ceiling-mounted
omnidirectional cameras with fisheye lenses provide a wor-

thy solution to these problems. These cameras are generally
unobtrusive, have a larger field of view, and can provide
largely unoccluded views of the environments being mon-
itored. However, HBU challenges such as pose estimation
become all the more challenging due to the viewpoint and
due to the heavy distortions introduced by the lens when
compared to wide-angle lenses.

The aim of this work is to introduce a new large-scale
omnidirectional dataset which contains numerous synchro-
nized modalities. This includes images and videos from
cameras of different types recording participants carrying
out various activities of daily living, along with their phys-
iological data. ODIN will support research in areas as var-
ied as human pose estimation, activity recognition, per-
son tracking and monitoring, scene understanding, privacy
preservation, biometric monitoring, novel view synthesis,
generative modelling, 3D scene reconstruction, and image
registration. Through our first release, we aim to promote
research on 3D human pose estimation using omnidirec-
tional cameras. Research in this area is scarce, arguably due
to the difficulty of the problem and the dearth of datasets.
For the omnidirectional camera images, the dataset provides
associated camera-frame 3D pose estimates. We propose a
novel unsupervised pipeline for obtaining these pose esti-
mates in real-life indoor settings while preserving the state
of the environment, and also without the use of expensive
equipment.

The main contributions of this work are as follows:

• This work introduces a large-scale dataset of omnidi-
rectional images capturing a diverse range of activi-
ties of daily living recorded from real-life settings with
varying levels of occlusions. Additionally, synchro-
nized data from various viewpoints and of different
modalities are also provided. These include:

1. Images recorded from multiple calibrated lateral-
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Figure 1. Overview of ODIN, a large-scale omnidirectional dataset for Human Behaviour Understanding – Each sequence is com-
posed of the 3D scan of the recording location and omnidirectional RGB images as well as 5 extra modalities: (1) depth, (2) IR, (3) RGB
images from side views, (4) RGB egocentric images and (5) biometric signals from a wearable device. Four of the five environments —
kitchen, living room, bathroom, and bedroom — are represented in the figure (the activity room can be seen in Fig. 4).

view RGB-D cameras placed in the environment,
each providing high-resolution RGB, infrared,
and depth images, along with the calibration files.

2. Videos from a chest-mounted egocentric camera
worn by the participant.

3. Physiological signal recordings from a smart
bracelet.

4. Scans of the recording environments from a 3D
scanner.

• Additionally, we provide various processed informa-
tion derived from the images, such as camera frame 3D
body pose estimates from all static camera viewpoints.

To summarize, ODIN is a large multi-modal multi-
viewpoint dataset for HBU challenges that makes use of
real-world recording environments. To the best of our
knowledge, our dataset is the first to provide camera-frame
3D pose estimates on omnidirectional images. Fig. 1 illus-
trates some different modalities and environments that can
be seen in ODIN.

2. Related Work
Tab. 1 compares the modalities present in ODIN to some

commonly used omnidirectional datasets along with some

relevant datasets in ADL.
Omnidirectional datasets: The works that are closest

in scope to ODIN are WEPDTOF [31] and the PIROPO
database [10]. WEPDTDOF contains 14 YouTube videos
that capture people from top-view omnidirectional cameras
and contains annotations for people detection and tracking.
PIROPO contains 100k annotated frames of people in var-
ious situations, such as walking or standing. The dataset
focuses on localizing people with a point-based ground
truth located at the centre of their heads. PIROPO is also
recorded in an uncluttered and artificial recording setup.
While this is beneficial for providing unobstructed record-
ings, actual living environments contain more clutter, which
is what ODIN captures.

Another closely related work is the fisheye dataset pro-
posed by Eichenseer and Kaup [12]. The dataset provides
synthetic and real-world video sequences, along with the
camera calibration information, to facilitate the creation of
image and video processing algorithms that fail on typi-
cal omnidirectional cameras. ODIN, on the other hand, is
a multi-modal dataset containing top-view omnidirectional
images which will help spur research in a multitude of ar-
eas, including pose estimation.

Other omnidirectional datasets captured using fisheye
lenses do also exist, with these mostly aimed at challenges
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such as the improvement of autonomous driving systems
[27,32] and robotics [6]. Synthetic omnidirectional datasets
for HBU tasks also exist [22, 26].

ADL datasets: Several datasets, including the ADL
dataset [21], HumanEva dataset [29], the Penn Action
dataset [33], the Human3.6M dataset [16], the NTU
RGB+D dataset [28], the Toyota Smarthome Dataset [8]
and the MPII Human Pose dataset [2], have been created
for research into HBU challenges. The EPIC-KITCHENS
dataset [9] captures multiple modalities (egocentric, RGB,
and depth) and contains a wide range of ADLs. The largest
effort to date that captures a wide range of modalities is the
more recent Ego4D dataset [14]. While primarily being a
dataset of egocentric camera videos of ADL, portions of the
recordings are also accompanied by stereo, audio, environ-
ment meshes from 3D scanners, along with other modali-
ties. These efforts have primarily focused on standard RGB
and egocentric cameras.

Omnidirectional cameras in HBU: Although arguably
a nascent field, there have been a few attempts to use omni-
directional cameras for HBU challenges, although datasets
to facilitate these have never been publicly released to the
best of our knowledge. These are mostly in the field of clas-
sification of poses using omnidirectional cameras. Akama
et al. [1] create a method for the detection of human activ-
ities in an indoor environment by using multiple omnidi-
rectional cameras. The method allows the tracking of the
participant being monitored and the classification of four
typical postures for indoor activities. Georgakopoulos et
al. [13] create a method for classification of poses using sil-
houettes obtained from omnidirectional cameras into 3 dis-
tinct poses, namely falling, sitting, and standing.

ODIN is the first dataset to provide full-body 3D pose es-
timates for top-view omnidirectional images, which allows
for the training of omnidirectional 3D pose estimation mod-
els. The available data is also expected to expand in scope
in the future to directly enable other HBU challenges.

3. The Dataset
Consisting of 55 distinct sequences from 15 participants,

the dataset comprises recordings from 4 locations, in 5 dif-
ferent types of environments (kitchen, bathroom, bedroom,
living room, and activity room). The sequences in the
recording are of varying times, with most lasting under 10
minutes. An overview of the statistics of the dataset can be
seen in Tab. 2, and in Fig. 2.

In addition to synchronized images from RGB-D de-
vices, we provide synchronized physiological data and wrist
motion accelerometer readings from a smart bracelet and
3D meshes of the recording areas from a 3D scanner.
The omnidirectional camera images are accompanied by a
camera frame 3D pose estimate, obtained through a novel
pipeline explained in Sec. 4. Additionally, we provide the
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1Figure 2. Distribution of the duration of sequences in ODIN –
Most sequences last between 6 and 10 minutes in duration, with
the longest ones being around 15 minutes.

intrinsic and extrinsic calibration information, i.e., camera
matrices that allow users to perform perspective projection
between the lateral-view and top-view cameras.

3.1. Collection Methodology

Equipment Used: The recordings are conducted using a
static ceiling-mounted D-Link DCS-6010L omnidirectional
camera with a fisheye lens. It has a 180-degree field of
view when mounted on ceilings and a 2-megapixel sensor
that can capture 1080p videos. Up to 3 Microsoft Kinect
v2 devices monitor the same recording environment syn-
chronously as static lateral-view devices. The Kinect v2
features an array of sensors that enable it to detect and track
users’ movements in three dimensions, including a high-
definition RGB camera, a depth sensor, an infrared emitter,
and a microphone array. The field of view of the device is
70 degrees horizontal and 60 degrees vertical, with a range
of 0.5 to 4.5 meters. The embedded depth sensor uses time-
of-flight technology to calculate the distance between the
sensor and objects in the environment, allowing it to create
a detailed 3D map of the environment. For ODIN, all static
cameras record at a frame rate of 15 fps.

A Xiaomi Mi action camera 4K was used in a chest-
mounted modality as the egocentric camera, recording at
a frame rate of 25fps. This is a compact and lightweight
action camera that can capture high-quality video and pho-
tos. It features a Sony IMX317 sensor, a 145-degree wide-
angle lens, and a built-in 2.4-inch touchscreen display. A
Matterport Pro2 3D scanner was used to scan the recording
environments to obtain 3D meshes. The Matterport Pro2 is
a professional-grade 3D scanner designed for creating high-
quality 3D models of real-world spaces. The scanner has a
range of up to 3 to 4.5 meters and can capture up to 134
megapixels of visual data per scan, resulting in highly de-
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Dataset Omni Ego RGB 3D
scans

Stereo IMU Synced-
cam

Phys.
signals

Pose Activity
labels

Audio

ODIN ✓ ✓ ✓ ✓ ✓ (Partial) ✓ ✓ ✓ (×) ×
PIROPO Database [10] ✓ × × × × × ✓ × × ✓ ×
WEPDTOF [31] ✓ × × × × × × × × × ×
Fisheye dataset [12] ✓ × × × × × × × × × ×
MPII Human Pose [2] × × ✓ × × × × × ✓ × ×
Human3.6M [16] × × ✓ × × × ✓ × ✓ × ×
Toyota Smarthome [8] × × ✓ × ✓ × ✓ × ✓ ✓ ×
NTU RGB+D Dataset [28] × × ✓ × ✓ × ✓ × ✓ ✓ ×
ADL Dataset [21] × × ✓ × × × × × × ✓ ×
EPIC KITCHENS [9] × ✓ × × × × × × × ✓ ×
Ego4D [14] × ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓

Table 1. Comparison of modalities in state-of-the-art datasets related to ODIN – RGB points to static RGB camera images, synced-cam
refers to synchronized multi-camera setups, stereo refers to depth/infrared images, and IMU refers to inertial measurement unit readings.
ODIN only provides wrist-motion accelerometer readings, and hence is marked as partial. Activity labels are planned for a future release

Modality/characteristic Amount

Omnidirectional RGB images 332K

Lateral-view RGB images 1.464M

Lateral-view infrared images 1.464M

Lateral-view depth images 1.453M

Environment meshes 3

Egocentric videos 52

Physiological readings 39

Accelerometer measurements 39

Participants 15

Locations 4

Types of environments 5

Table 2. Dataset statistics – ODIN consists of more than 300K
omnidirectional images, making it the first large-scale dataset for
HBU.

tailed and realistic models.
An Empatica E4 smart bracelet was employed for

recording the physiological measurements. The Empat-
ica E4 is a Class IIa medical device that measures ac-
celerometer data, in additional to the physiological read-
ings relating to blood volume pulse, heart rate variabil-
ity, inter-beat interval, skin temperature, and electrodermal
activity. The device’s accelerometer sensor measures the
continuous gravitational force along the three spatial di-
rections (x, y, and z axes) with a sampling frequency of
32 Hz and a range of ±2g. The conversion factor be-
tween raw acceleration samples and true values is g/64
(where g = 9.81m/s2). Additionally, electrodermal activ-
ity (EDA), i.e. changes in conductivity, are sampled at 4 Hz

(range is [0.01, 100] µSiemens); blood volume pulse (BVP)
is sampled at 64 Hz (range [−500, 500]), the inter-beat in-
terval (IBI) and heart rate (HR) are derived from it (HR at
1 Hz). Finally, the skin temperature (not representative of
core body temperature), is sampled at 4 Hz. The device cal-
ibrates automatically during the initial 15 seconds of each
session. The device was used in recording mode, in which
it stores data directly on the device’s internal memory.

The settings for the equipment used during recordings
can be found in Tab. 3.

Participants: 15 adult participants have taken part in
the creation of the dataset, and they have been requested to
participate through word-of-mouth. Recordings have been
captured in 4 real-life indoor environments in the south-
east of Spain. The participants are told to carry through,
in no particular order, a set of single-person activities that
can naturally be performed in the corresponding indoor en-
vironment. As a large amount of emphasis is placed on
the realism of the recordings, the participants are requested
to act naturally as they would have if the recording equip-
ment were not present. They are also told to stop the ses-
sion when they feel they have exhausted the set of activities
they are comfortable performing during the session. A non-
exhaustive list of activities carried out by the participants
per type of environment can be seen in Tab. 4.

Environment Layout: Before recording each partici-
pant, the environment is analysed to understand where to
mount the cameras for recording, while also preserving the
original layout. An illustration of the placement of the
recording devices in a typical environment can be seen in
Fig. 3.

3.2. Recordings

A variety of indoor environments have been chosen
for the recordings, including living rooms, bathrooms,
kitchens, and activity rooms. A set of activities relevant to
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Device Type Specification Brand

Omnidirectional
camera

15fps, 1200×900px D-Link
DCS-6010L

RGB-D cameras 15fps, 512×424px
(depth/IR)

Microsoft
Kinect v2

1280×720px
(RGB)

Egocentric cam-
era

25fps,
3840×2160px

Xiaomi
Mi Action
camera 4K

Smart bracelet Accel.: 32 Hz,
0.015 g resolution

Empatica E4

EDA: 4 Hz,
[0.01, 100] µS
Temperature: 4 Hz
BVP: 64 Hz,
[−500, 500]
HR & IBI: 1 Hz

Environment
scanner

134.2 MP, Ex-
port images-
8092×4552px

Matterport
Pro2

Table 3. Devices used and their specifications while record-
ing ODIN – 5 different types of devices were used to record the
dataset, resulting in a plethora of modalities being collected.

Omnidirectional  
camera

RGB-D device

Smart braceletEgocentric camera

Figure 3. Illustration of a typical environment layout – The
RGB-D devices are positioned so that their viewpoints capture
nearly all possible angles of the room, while the ceiling mounted
omnidirectional camera is placed towards the centre of the room.

each environment is determined and communicated to the
participants. All recordings are done non-scripted, and the
participant is free to choose which activities to perform and
to interact freely with the environment during the recording.

Calibration and Synchronization: The recordings are
collected using calibrated cameras. This allows us to do
perspective projections of the pose estimates obtained from
using the RGB-D camera images as input. Immediately be-

Environment Activities

Kitchen Wash dishes, drink water, prepare a
snack, eat a snack, take a pill, prepare
a hot beverage, drink beverage, wash
hands, dry hands, use a microwave, Use
the stove top, use a kettle

Bathroom Wash hands, comb hair, wash face,
brush teeth, use the toilet, dry hands,
dry face, use cell phone

Bedroom Make phone calls, use cell phone, lie
on bed, exercise, drink a beverage, take
a pill, take off/put on shoes, take off/put
on jacket, use laptop

Living room Watch TV, lie on the couch, play with
tablet, use cell phone, make phone
calls, drink water, eat a meal, lie on
the floor, take off/put on glasses, take
off/put on shoes, cough

Activity room Dance, do a handstand, exercise, read a
book, use cell phone, drink a beverage,
use laptop, walk around, take off/put on
glasses, take off/put on shoes, sit on the
floor, lie on the floor

Table 4. Non-exhaustive list of activities performed in ODIN
– 5 types of environments were chosen, with a variety of relevant
activities done per environment

fore recording at each location, a checkerboard is placed
at a location in the environment visible through one RGB-
D device and the omnidirectional camera simultaneously.
This is then used to calculate the extrinsic matrix required to
project from the viewpoint of the RGB-D device to the top-
view omnidirectional camera. This procedure is repeated
for each RGB-D device present.

Along with the omnidirectional camera images and the
corresponding top-view pose estimates, we provide, as an
additional modality, synchronized images from multiple
RGB-D devices recording the environment. The recording
files from each static camera are named according to the
UTC timestamp at the time of the recording. As these are
bound to have errors due to the different computers not be-
ing in sync, the network transfer speeds, and the speed of
writing to disk, we also utilized a visual cue to synchronize
the feeds. At the beginning of each recording, the partici-
pant is requested to toggle a light in the environment. The
moments when the light is toggled is used to fine-tune and
label the images that correspond to each other from the dif-
ferent static cameras, and also to mark the timestamp on the
egocentric video.
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Figure 4. Timeline of a multi-activity sequence recorded from the activity room environment – Synchronized RGB visuals from every
static camera are shown in the image. The participant starts with the visual device synchronization procedure using a light toggle, followed
by the wearable device synchronization. They then proceed to do a set of non-scripted activities.

To synchronize the smart bracelet, the device is shown
during its calibration phase to one of the RGB-D cam-
eras. This enables the images to take note of the moment
when the device starts recording. The device represents this
moment through a visual cue, an LED indicator changing
colour.

4. Pose Annotation

To tackle many of the complex HBU challenges in om-
nidirectional computer vision, full-body pose estimates ob-
tained in camera or image frame and the activity labels per
time frame are required. These provide rich information
on the temporal scene and allow training deep-learning-
based methods to solve high-dimensional problems from
large data sets. Automatically annotating images from om-
nidirectional cameras is a hard problem due to the extreme
image distortion in such images and low visibility along
the edges. Motion capture (MoCap) systems can be used
to obtain accurate pose estimates by tracking the positions
of markers on a participant’s body to estimate the location
of their joints. MoCap systems typically use a rig of cam-
eras along with other sensors to track the movement of these
markers in 3D space, and specialized software is then used
to accurately compute the position and orientation of the

joints based on the marker data. This, however, requires the
use of expensive equipment and software. Moreover, Mo-
Cap systems require a clear line of sight to obtain accurate
estimates, which is not always possible while recording in
indoor environments [11].

For ODIN, the problem of obtaining camera-frame 3D
pose estimate annotations for omnidirectional cameras is
approached by obtaining pose estimates using a state-of-
the-art 3D temporal pose estimation model (HuMoR [24])
on the RGB-D camera images. These are then com-
bined, and then projected to the view of the omnidirectional
camera using perspective projection. All this is obtained
through a 4 stage pipeline, starting with the curation, cali-
bration, and synchronization of the images.

Calibration, and Synchronization: After the recorded
images are curated, the images are synchronized between
all static cameras using the visual cues mentioned in
Sec. 3.2. The extrinsic matrices required to do a perspec-
tive projection from the camera frame of the RGB-D de-
vices to the camera frame of the omnidirectional camera is
then estimated using Zhang’s algorithm [34] implemented
in OpenCV [4]. For the intrinsics of the omnidirectional
camera images, a modified version of Zhang’s algorithm is
utilized.

A state-of-the-art temporal pose estimation model is
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(a) Lateral-view (b) Top-view

Figure 5. Example of body pose annotation of the same sequence from two views – Fig. 5a shows the pose estimated when using an
image from a synchronized RGB-D device as input. Fig. 5b showcases the same pose estimate reprojected to the omnidirectional camera.

used for the pose estimation. Computing 3D pose estimates
using the model on a large number of images is a computa-
tionally intensive task. So, we first filter out the frames that
have no person in them to decrease the amount of computa-
tion necessary. This also prevents error accumulation in the
temporal pose estimation model. The filtering is done using
a pose estimation model, Densepose [15].

Person Detection: Densepose is a pose estimation
model that provides accurate correspondences between
RGB images and a surface representation of the human
body. The model generates IUV maps, which encode body
part indices (I), and UV coordinates of each visible body
part. Using the generated IUV maps and a segmenta-
tion map derived from it, we create a metric to determine
whether a person is in an image or not. We extract the pix-
els of a body part in the IUV map, and then compute the
intersection of those pixels with the pixels corresponding
to the person’s segmentation mask. We then compute the
weighted visible surface area of the body part ap according

to the function ap =
max(50,

∑
i∈Ip

Ii∩S)∑
j∈S Sj

, where Ii = 1i(Ip)

and Sj = 1j(S). Here Ip is the set of indices of pixels cor-
responding to part p in the IUV map, and Ii is an indicator
variable that is 1 if the pixel i is part of Ip and 0 otherwise.
S is the set of indices of pixels corresponding to the per-
son’s body in the segmentation mask, and Sj is an indicator
variable that is 1 if pixel j is part of S and 0 otherwise.
This is then compared to the computed surface areas with
an ideal distribution, and the KL divergence between the
two distributions is computed. The ideal distribution D is
computed as D = {dp}p∈P with P being the set of 8 body
parts comprising the whole human body. We compute the
distribution of surface areas for each part p that is visible
in the frame as ap ∈ A, with A being the distribution of
visible parts. We then compute the Kullback-Leibler (KL)

divergence [17] between D and the visible distribution A as
div = KL(D ∥ A) =

∑
p∈P dp log

dp

ap
.

We then apply a sigmoid function to the KL divergence
to obtain a diversity metric that ranges from 0 to 1, with
higher values indicating more even body coverage across
different body parts. It is predicted as diversity = 1

1+e−div .
If the diversity of body parts is determined to be more than
a threshold in an image, a person is ascertained to be in the
image.

Pose Estimation: For the images where participants are
in a frame according to the diversity metric, we use HuMoR
[24] to obtain the 3D pose estimates on the lateral-view im-
ages. HuMoR is a state-of-the-art pose estimation model
that predicts full-body temporal poses in camera frame. It
uses a conditional variational autoencoder (CVAE) [30] to
learn the distribution of the transition in pose at each step
of a motion sequence. The model also relies on test-time
optimization during inference to optimize the model’s per-
formance.

In HuMoR the temporal state of a moving person x is es-
timated as a sequence of pose parameters partly represented
with the SMPL+H body model [18, 25]. The probability of
a time sequence of states prθ is modelled, with each state
assumed to be dependent only on the previous one, and
θ being learned parameters. The probability is modelled
through the use of a conditional variational autoencoder,
with a learned conditional prior. The probability model for
the pose transition used by HuMoR can be described as
Prθ(xt|xt−1) =

∫
zt
Prθ(zt|xt−1)Prθ(xt|zt, xt−1), with

zt ∈ R48 being the latent variable described by the condi-
tional prior. Prθ(xt|xt−1) aims at capturing the plausibility
of a state transition. Thus, HuMoR models the most plausi-
ble temporal pose per given sequence.

Reprojection: The obtained poses from each of the syn-
chronized cameras are averaged to obtain one singular pose
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Figure 6. Example of incorrect pose annotation – the pose an-
notation is shifted, and the mesh is incorrectly predicted.

estimate. Using the camera extrinsic parameters calculated
through the camera calibration, the pose estimates are then
reprojected to the corresponding omnidirectional camera
using a perspective projection transformation. Thus, full-
body pose estimates are finally obtained for the recorded
omnidirectional camera images. An example of the pose
obtained can be seen in Fig. 5.

5. Possible Sources of Bias / Errors
While the dataset aims to spur research in novel direc-

tions using omnidirectional cameras, we also acknowledge
a few sources of bias and errors in the data. We create pose
estimates using an automated pipeline relying on state-of-
the-art deep learning models. While being accurate, this
does sporadically lead to errors, an example of which can
be seen in Fig. 6. Efforts are ongoing to address this issue.
Furthermore, while the activities and locations are diverse,
the corpus of 15 participants is also some way away from
capturing the whole range of poses and body shapes that
the human body can take.

6. Future Work
ODIN is created to advance research in multiple fields

using omnidirectional cameras. The first version released
is designed for omnidirectional pose estimation research,
and we plan to release a pose estimation benchmark in the
near future. Subsequent versions are aimed at helping re-
searchers to create models related to other challenges in
HBU, including omnidirectional action recognition. For
this purpose, the dataset is to be annotated for understand-
ing the activities happening on screen. The multiple view-
points and synchronized modalities existing in ODIN also
allow research in fields including generative modelling, 3D
scene reconstruction, and image registration. Another dis-
tinct research direction concerns scene understanding. As

the recordings are conducted in real living and working
spaces, the environments contain a multitude of real-life ob-
jects. When annotated, this allows for research in fields as
varied as object pose estimation, object detection, recogni-
tion, and tracking. Overlaying the pose estimates on the im-
ages do provide body privacy, but research can also be done
in the direction of providing environmental privacy [23],
as objects in the environment could be causes for privacy
breaches.

7. Conclusion

In this paper, we present ODIN, a large-scale omnidirec-
tional dataset with numerous synchronized modalities for
promoting research on top-view pose estimation using im-
ages from highly distorted fisheye lenses. The proposed
dataset presented in this paper is unique because it contains
recordings from numerous synchronized cameras of differ-
ent types, recording individuals performing various activi-
ties of daily living in actual living and working scenarios.
We hope that ODIN will spur further research in the field of
ADL understanding using omnidirectional cameras.

Ethics and Privacy: In creating ODIN, ethics and pri-
vacy were paramount to the collection effort. Data was
collected in compliance with applicable laws and regula-
tions, with all participants providing informed consent be-
fore participation. The study protocol was approved by the
Ethics Committee of the University of Alicante (UA-2022-
10-16 2). Homeowners also granted consent for inclusion
of their 3D scanned properties in the dataset.

We acknowledge the ethical concerns surrounding the
analysis of human behaviour using surveillance cameras.
To address these concerns and promote responsible research
practices, we have implemented the following measures.
Firstly, we employed an anonymization pipeline using Me-
diapipe [19] to detect faces in the images, which were then
blurred to protect individuals’ identities. Secondly, we re-
strict access to the dataset to researchers and practitioners
who agree to use the data for academic and research pur-
poses, adhering to the guidelines outlined in our data usage
agreement. We also encourage transparency, open discus-
sion of ethical issues, and best practices to maximize bene-
fits and minimize harm from computer vision technologies.
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