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Abstract

This paper raises the new task of Fisheye Semantic
Completion (FSC), where dense texture, structure, and se-
mantics of a fisheye image are inferred even beyond the sen-
sor field-of-view (FoV). Fisheye cameras have larger FoV
than ordinary pinhole cameras, yet its unique special imag-
ing model naturally leads to a blind area at the edge of the
image plane. This is suboptimal for safety-critical appli-
cations since important perception tasks, such as seman-
tic segmentation, become very challenging within the blind
zone. Previous works considered the out-FoV outpainting
and in-FoV segmentation separately. However, we observe
that these two tasks are actually closely coupled. To jointly
estimate the tightly intertwined complete fisheye image and
scene semantics, we introduce the new FishDreamer which
relies on successful ViTs enhanced with a novel Polar-aware
Cross Attention module (PCA) to leverage dense context
and guide semantically-consistent content generation while
considering different polar distributions. In addition to the
contribution of the novel task and architecture, we also de-
rive Cityscapes-BF and KITTI360-BF datasets to facilitate
training and evaluation of this new track. Our experiments
demonstrate that the proposed FishDreamer outperforms
methods solving each task in isolation and surpasses al-
ternative approaches on the Fisheye Semantic Completion.
Code and datasets are publicly available at FishDreamer.

1. Introduction

Benefiting from a larger field-of-view (FoV), fisheye
cameras have been widely used in autonomous driving and
mobile robots [13,22,43,48,72]. However, due to the spe-
cial optical design of the fisheye camera, there are invalid
black areas at the edge of the image plane. Interestingly,
humans have a natural ability to infer complete semantic
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Figure 1. Illustrations of our proposed Fisheye Semantic Comple-
tion. (a) Input single-view fisheye image. (b)(c) Fisheye semantic
completion result: our model jointly predicts texture, structure and
object categories for each pixel beyond the fisheye vision.

information from partial visual observations [31,41] (e.g.,
a partially occluded car) to navigate and interact in the real
world. Similarly, for an ego-view agent, the ability to es-
timate the full field-of-view of a given scene is beneficial
for mid-level tasks such as obstacle avoidance [20], while
perceiving semantic concepts is a prerequisite for com-
plex cognitive tasks such as high-level scene understand-
ing, planning the next step or answering questions about
the space [5, 15].

With this motivation, our goal is to build a model that
can simultaneously complete the missing image areas and
generate predictions for semantic object categories from a
single-shot fisheye image in an end-to-end manner. We re-
fer to this novel task as “Fisheye Semantic Completion”,
with an overview of the proposed problem given in Fig. 1.
Our key idea is grounded by the observation that the distri-
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bution of pixel values of an entity within an image is tightly
coupled to its semantic label. Therefore, the two problems
of outpainting the content outside the fisheye camera’s FoV
and the semantics of objects are strongly conjugated, which
we believe is vital for achieving good performance in both
tasks. In other words, if we know the semantic categories
of an incomplete object, we can predict its pixel pattern on
the image plane even without direct observation (e.g., see-
ing a tree trunk appearing in the FoV and then inferring the
the presence of tree canopy outside). Conversely, having a
complete observation of an object can help us recognize its
semantic class more accurately.

To achieve this goal, we must overcome several key chal-
lenges: First, how to effectively take advantage of the strong
coupling characteristics of these two sub-tasks (i.e. fisheye
outpainting and segmentation) to realize a win-win situa-
tion? Second, since existing fisheye semantic segmentation
datasets cannot provide images and semantic ground truth
outside the FoV, how can we obtain fisheye beyond-FoV
training data with complete annotations?

To address the first challenge, we propose FishDreamer,
which benefits from the successful Visual Transformer
(ViT) structure as the backbone, and integrates a novel
Polar-aware Cross Attention module (PCA) to enhance the
flow of visual cues between two sub-tasks. Specifically,
PCA takes into account the unique polar distribution and
distortion patterns of fisheye cameras, considers the hetero-
geneity of different polar coordinate locations when query-
ing relevant visual features, and leverages the rich seman-
tic context from the semantic head to guide the outpainting
head in hallucinating semantically continuous and plausible
content outside the fisheye FoV. As for the data challenge,
we leverage the popular Cityscapes [7] and KITTI360 [28]
semantic segmentation datasets via pinhole-to-fisheye pro-
jection and derive the new CityScapes-BF and KITTI360-
BF as beyond-FoV benchmark variants, therefore enabling
training and evaluation of fisheye semantic completion.

Extensive experiments demonstrate that the proposed
FishDreamer, which jointly learns semantics and content
outside the fisheye FoV, outperforms approaches that ad-
dress the two sub-tasks in isolation. The proposed PCA
module, which focuses on the natural polarity distribution
of the fisheye image and extracts visual cues from semantic
priors, significantly improves performance. On the derived
CityScapes-BF benchmark, FishDreamer achieves state-of-
the-art performance with a mIoU of 54.54% and a peak-
SNR of 25.05dB, a 0.42d B performance gain from the best
published result (24.63dB). FishDreamer also surpasses
alternative approaches on KITTI360-BF as it hallucinates
more realistic content in the blind area of the fisheye and
gives clearer and sharper segmentation results.

In summary, we deliver the following contributions:
* We raise the new Fisheye Semantic Completion task,

which extends beyond fisheye vision and enables out-
painting and semantic segmentation of the full scene.

e We establish the CityScapes-BF and KITTI360-BF
benchmarks and validate existing models on this new
fisheye semantic completion track.

* We propose FishDreamer, which utilizes a novel Polar-
aware Cross Attention (PCA) module to effectively
guide fisheye outpainting using semantic context.

* Extensive experiments demonstrate that the proposed
FishDreamer outperforms alternative approaches that
address the sub-tasks separately.

2. Related Work

Image outpainting. Image outpainting aims to generate
the surrounding regions of the given visual content. Early
parameter-free methods [49, 56, 76] are data-driven and are
based on very large image databases or require input refer-
ence frames, which retrieve relevant image features to warp
and fill in regions-of-interest. Sabini et al. [45] first present
the learning-based image outpainting via Generative Adver-
sarial Network (GAN) [14] to enable outpainting in the hor-
izontal direction. Subsequently, Wang et al. [58] proposes
generating semantically coherent structures and textures us-
ing a context prediction network and a carefully designed
loss function. The framework of Teterwak et al. [53], lever-
ages semantic information extracted from a pretrained deep
network to modulate the discriminator’s behavior for im-
age extension. Yao ef al. [69] implemented a sequence-to-
sequence outpainting approach that relies on a transformer-
based backbone, where the outpainting proportion and the
network structure are bound. FlowLens [50] introduces a
temporal clip propagation mechanism to expand the FoV
of the pinhole camera outwards and the spherical camera
inwards, respectively. RecRecNet [27] rectangles rectified
wide-angle via curriculum learning with increasing degree
of freedom. The work most closely related to ours is pre-
sumably FisheyeEX [25], which leverages an outpainting
method specifically for elimination of fisheye blind areas.
Different from prior works, we focus on fisheye semantic
completion, that seeks to generate semantically coherent vi-
sual content beyond the fisheye FoV by jointly learning the
scene semantics and pixel patterns and considering the fish-
eye polar distributions. To the best of our knowledge, this
is the first work that concurrently addresses the challenges
of fisheye semantic segmentation and scene completion.
Beyond-FoV semantic segmentation. Early fisheye se-
mantic segmentation methods [10, 46, 47] generate syn-
thetic fisheye datasets based on existing pinhole seman-
tic segmentation datasets. These techniques employ focal
length augmentation to enhance their adaptability to real-
world scenarios. In [4,70], the degree of freedom in gen-
erating synthetic fisheye images is enlarged, transforming
rectilinear images to fisheye images in a more comprehen-
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Figure 2. FishDreamer: Fisheye semantic completion transformer.
Taking a single fisheye image as input, the model predicts pixel
patterns and object labels beyond fisheye vision. Swin [33] is used
as the backbone. The two sub-task heads interact each other via
the proposed Polar-aware Cross Attention module bidirectionally.

sive way and enhancing the generalization on real fisheye
images with various perspectives. In [1,9, 16, 42], de-
formable components in CNNs are investigated to better
adapt to wide-angle images. In [38, 61-64], the FoV is fur-
ther expanded to 360° with panoramic or annular images.
In [66, 67, 74, 75], wide-FoV-driven visual attention and
distortion-aware transformer models are designed to learn
long-range dependencies in panoramic images. In [21, 65,
78], knowledge distillation is studied on panoramic images.
In [17,21,36,51,73], large-FoV semantic segmentation is
revisited from a domain adaptation perspective by adapt-
ing from label-rich pinhole images to label-scare images
such as fisheye images, panoramic images, and images re-
flected by convex mirrors. In [18,37,54], semantic segmen-
tation is extended to panoptic segmentation on wide-FoV
images with instance predictions. In [6, 18, 19], pixel-level
contrastive learning is studied for wide-angle segmentation.
In [2, 12,23, 24], multi-task learning has been implemented
on fisheye images such as object detection, depth estima-
tion, and semantic segmentation. In contrast to these works,
our work tackles fisheye semantic completion, which pro-
vides dense semantic information not only for the original
wide-angle fisheye images but also beyond the field of view,
giving rich semantic understanding of the expanded scene.

3. Methodology
3.1. Overview

In this section, we introduce FishDreamer — a novel ap-
proach capable of simultaneously achieving reliable extrap-
olation of fisheye images and a full-FoV semantic segmen-
tation for both visible and previously unseen areas within
fisheye images. As illustrated in Fig. 2, FishDreamer com-

prises four modules: the feature extraction backbone based
on the Swin Transformer [33] (Sec. 3.2), the outpainting
module (Sec. 3.3), the semantic decoder based on UPer-
Net [59] (Sec. 3.4) and the Polar-aware Cross Attention
(PCA) mechanism (Sec. 3.5). Next, we will provide a com-
prehensive description of each module and their respective
roles within the FishDreamer framework.

3.2. Feature Extractor

We begin by describing our feature extraction backbone,
the Swin Transformer [33], which facilitates informative hi-
erarchical feature learning and has been proven very effec-
tive, e.g., in image and video classification [33, 34], activ-
ity recognition [39] and vanilla semantic segmentation [29].
Similar to other transformer-based models Swin leverages
self-attention [55], but also employs a non-overlapping
shifted window partitioning mechanism which enhances ef-
ficiency by focusing on the generated windows while pre-
serving cross-window communication capabilities.

We utilize a four-stage Swin Transformer as our fea-
ture extraction backbone. In the first stage, multiple non-
overlapping image patches are generated. As we address
outpainting and semantic segmentation using 2D image data
as input, a 2D shifted window pipeline is employed, operat-
ing within the 2D spatial domain. Assuming the 2D spatial
dimensions of the input image are [H, W] and the shifted
window size is chosen as [N, N, a total of £ x ¥ patches
are extracted using the aforementioned window partition-
ing technique. Next, these patches are projected from R? to
RY using a linear projection layer. Next, we will describe
further details of the Swin Transformer blocks .

The Swin Transformer block leverages its own Shifted-
Window based Multi-head Self-Attention (SW-MSA)
mechanism, as opposed to the standard Multi-head Self-
Attention (MSA) found in ViT [11]. This approach mit-
igates the limitations of the vanilla ViT structure, specifi-
cally concerning the lack of cross-window connections and
restricted model capacity. The workflow of the Swin Trans-
former block can be described as:

2171 =SW — MSA(LN(Zlfl)),

1
2 = MLP(LN(ﬁl_l) + 21, M

where SW-MSA stands for the Shifted-Window based
Multi-head Self-Attention, LN indicates layer normaliza-
tion, MLP is multi layer perception with GELU nonlinear-
ity, [ marks the layer number, 2;_; is the attention output,
z;—1 and z; are the outputs of {{ — 1}—th and {l}—th mod-
ules, respectively. After each module there is a residual con-
nection. All Swin blocks are equipped with the shifted win-
dow partitioning approach described above. Swin processes
the image in a hierarchical manner, since it splits the in-
put into non-overlapping patches and subsequently merges
them at different resolutions.
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3.3. Outpainting

Outpainting approaches typically employ several layers
of deconvolution as the task head, and FishDreamer is no
exception. Given that fisheye semantic completion seeks to
accomplish both image completion and semantic comple-
tion simultaneously, we opt not to incorporate a more com-
plex outpainting decoder in the design. Specifically, Fish-
Dreamer uses three layers of deconvolution, along with the
PCA mechanism described in Sec. 3.5, to upsample and
produce the feature map obtained from the feature extrac-
tor. This process generates the extrapolated output, which
can be calculated as follows:

Zs = ConvT;(zs),
z = ConvTiy1(Zs + PCA(Zs,20)), (2)
z = ConvT; 0(2),

where ConvT is the 2D transposed convolution operator
with kernel size= 3 x 3 while the stride and padding are set
as 2 and 1. ¢ indicates the stage of the ConvT and is chosen
as 0 in this work. PCA is the proposed Polar-aware Cross
Attention module which will be detailed in Sec. 3.5, z, and
z. denote the feature extracted from the Swin Transformer-
based backbone and the features from semantic completion
head, Z denotes the feature map of the semantic segmenta-
tion branch after the first ConvT layer, z denotes the final
merged feature map, respectively. With additional priors
from the semantic completion head we can acquire a se-
mantically coherent outpainting result.

3.4. Segmentation

Considering the hierarchical structure of the features ob-
tained using the Swin Transformer backbone, more ad-
vanced techniques for dense prediction, such as Feature
Pyramid Networks (FPN) [30] and U-Net [44], can be em-
ployed for linking the hierarchical information. In our work,
we incorporate UPerNet [59] with our proposed PCA.

As depicted in Fig. 3, UPerNet features a top-down ar-
chitecture with lateral connections that facilitate the fusion

of high-level semantic information with lower-level details.
The model utilizes a Pyramid Pooling Module (PPM) [77]
to achieve a larger receptive field and generate effective
global prior representations. UPerNet has the capability to
learn visual attributes for semantic segmentation and im-
age completion at multiple levels. {F, Fy, F3, Fy} denotes
the set of the resulting feature maps of each stage of the
backbone. The corresponding downsampling rate for the
{F\, F», F3, Fy} are {4,8,16,32}, respectively. In the de-
coder stage, the PPM is only used at the top of Fjy, where
the resulting feature map can be denoted as F}. Then, F is
upsampled and sum with Fj3 to progressively fuse multi-
level features. The upsampling and downsampling rates
are kept the same and finally four feature maps are ob-
tained through the decoder stage. The corresponding fea-
ture maps for the four stages of the decoder are be referred
to as {Fl, By, By, F4} Fy (which is alternatively denoted
as z,) is then merged with the feature z, from the image
completion branch by using the PCA module explained in
the next subsection. The final feature map can be obtained
as follows:

Zout = FUSB(F17 F27F3vzpca)7 (3)

where the z,., denotes the output feature map of the PCA
mechanism. We fuse the feature maps via concatenation.

3.5. Polar-aware Cross Attention

As image outpainting and semantic segmentation tasks
are tightly intertwined, we design the novel Polar-aware
Cross Attention (PCA) module to encourage the informa-
tion flow between the two heads.

Given the two feature maps from the semantic segmen-
tation head (z;) and the image completion head (z.), PCA
initially constrains the polar distribution within each patch
using a polar mask obtained from a newly designed polar-
mask generator. This generator creates polar masks with
varying quantities and radius. Let the total number of the
generated masks be N,,.sr and the set of polar masks be

= {M; |i € [0, Npask]}. A linear projection layer is
employed for the masked feature map of each sub-task. The
projected and masked patch partitions for both the feature
maps from the semantic segmentation- (z,) and the image
completion heads (z,.) can be computed as follows:

zi,zn =Lg(M® z5), L.(M ® z.), 4)

where the L and L. indicate the linear projection layers
of the semantic segmentation branch and the image com-
pletion branch, respectively. A multi-head cross-attention
mechanism is utilized to integrate the focuses from the
image completion branch into the semantic segmentation
branch. To this intent, linear projection layers Pg, Px, and
Py, are employed to compute the necessary query, key, and
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from coupled sub-task feature map. Note this behavior can be either unidirectional or bidirectional.

value components for the MSA. The resulting merged fea-
ture map is then passed through an additional bottleneck
layer to obtain the combined feature map. This final merged
feature map is subsequently added to 2} to produce the ul-
timate output. This workflow can be formalized as:

Zpca = Z: + CBN(SA(PQ(Z:)vpK(Zj)vPV(ZE))v )]

where z,., denotes the final mixed feature output of the
proposed PCA mechanism, the C'gx denotes the bottleneck
layer and SA denotes the self-attention mechanism which is
calculated as SA(Q, K, V)=Softmaz(QK™//p)V and
p denotes the scale factor [11].

In comparison to the previous FishFormer work [68],
which solely focuses on one task, i.e., fisheye distortion
correction, our model (shown in Fig. 4) simultaneously ad-
dresses two critical tasks for autonomous driving, namely
semantic segmentation and image completion, which in-
volves predicting the unseen regions of fisheye images by
considering the entire scene. This blind zones information
is crucial for autonomous vehicles in order to minimize po-
tential risks, such as route planning and risk alerting within
the blind zones of fisheye sensors. Our PCA mechanism
is employed at the end of the model, merging feature maps
from both the semantic segmentation and image completion
heads. In contrast, the Layer Attention Mechanism (LAM)
proposed by FishFormer, is integrated between every two
transformer blocks, which is less efficient in terms of the
number of attention blocks used. Additionally, while Fish-
Former encodes different annular slices, we force each to-

ken to encode features of a specific polar distribution. To-
kens lacking valid features are discarded to enhance com-
putational efficiency.

3.6. Training

Loss function. Multiple well-established loss functions are
employed to simultaneously ensure the accuracy of blind-
area prediction and complete-FoV semantic segmentation.
Considering the full-scene image completion task of the
fisheye image, we make use of a high receptive field per-
ceptual loss, i.e., Lpp, an adversarial loss, i.e., Lqqy, a re-
construction loss, i.e., L,... and a feature matching loss, i.e.,
L . Next, we discuss these loss functions in detail.

First, leverage the high receptive field perceptual
loss [52] Ly, which calculates the difference between the
feature maps of the predicted results and the target images.
This loss function does not require an exact reconstruction
workflow, which is particularly suitable for our case when
addressing the challenge of limited information in the blind
area. L, can be calculated as:

Lhp(2p, 2t) = M (D(¢(Zp)»¢(zt))2) ) (6)

where D(-) denotes an element-wise distance function
(mean-squared error) loss and M denotes the sequential
two-stage mean operation. The Ly, calculates the distance
between the extracted features of the prediction (z,) and the
ground truth (z;). ¢ denotes dilated convolutions. Ly, does
not require an exact reconstruction, which is a very good
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Figure 5. Distributions of Cityscapes [7], Cityscapes-BF, KITTI360 [28], and KITTI360-BF in terms of class-wise pixel percentage across
the datasets. We use the logarithmic scaling of the vertical axis and insert the pixel frequency above the bar.

property in our case due to the lack of information of the
blind area.

Second, an adversarial loss is used to ensure the preser-
vation of local details. A discriminator, Dg(-), is used to
distinguish between “real” and “fake” patches. The visible
parts of the built images are marked as real, while patches
that intersect with the blind area are marked as fake. We
then compute the non-saturating adversarial loss L4, as:

£p = ~E.[log De(a)] ~ Bun log De(@) 0 M)
EG’ = _Ew,m [IOg D& (9})] ) (8)
)

Loy = S58¢ (»CD) + S8¢ (ﬁG) — Igigl,

where  denotes a sample from dataset, Z is the outpainting
prediction, and M denotes the circular masks to synthesized
fisheye images. sg; stops gradient w.r.t. k, and L4, is the
joint adversarial loss which needs to be optimized.

Third, L,.. measures the L1 distance between the out-
painted image generated by FishDreamer and the ground
truth, which can be calculated via the following equation:

(10)

Lree = |2 — 1.

Then, Ly, [57] is leveraged to denote a discriminated-
based perceptual loss, which stabilizes training and im-
proves the performance.

Finally, for the semantic completion we employ further
two additional loss functions, i.e., a cross entropy loss L.
and a Lovasz-softmax 10ss Lipvas- [3].

The final FishDreamer loss £ becomes:

L= >\adv 'Ladv +)\hp ' ﬁhp"’)\fm "Cfm

(11)
+ /\'rec . Erec + /\ce : ‘cce + /\lovasz : Llovasz»

which is the weighted sum of the above losses. We empir-
ically set Aqqy, =20, A\pp=060, A 11, =200, A\pcc=20, Ace=30,
and Aj,p4s.=10 in all the experiments.

Table 1. The training and validation sets splits of the derived
Cityscapes-BF and KITTI360-BF.
Dataset | Train Validation Total
Cityscapes-BF 2,975 500 3,475
KITTI360-BF 9,800 2,455 12,255

4. Experiments
4.1. Datasets

To facilitate training and evaluation of fisheye seman-
tic completion, we derive Cityscapes-BF and KITTI360-BF
from the Cityscapes [7] and KITTI-360 [28] datasets. To
achieve this, we conduct a radial distortion of perspective
images via the following equation [26]:

xg=xo(1+ klrjzc + kg’r; + kgv'? + k‘47'J8c +...)
Yd = yo(l + k‘l'f']% + kﬂ’% + k37’? + k’47‘]8c + )

where P, = (7,,y,)7 € R?*! is a pixel in the original
pinhole image and P; = (24,94)7 € R?*! is its corre-
sponding pixel in distorted fisheye image. [k1,k2,k3,k4,...]
are the radial distortion parameters and 7 is the Euclidean
distance between the distorted pixel and the distortion cen-
ter P. = (w.,y.)7 € R?*%,

Following the previous work of FisheyeEX [25], we use
the same fourth order polynomial model to apply a distor-
tion on original images. Besides, we acquire a circular mask
by applying a mask generator. It masks out a circular region
of the ground-truth image, aiming to make our synthesized
fisheye image like the natural fisheye images captured via
a fisheye camera. Therefore, our datasets are composed
of: complete-FoV fisheye images, complete-FoV fisheye
semantic labels, and circular masks. The datasets distribu-
tion are shown in Fig. 5.

12)

)T

4.2. Implementation Details

FishDreamer was implemented in PyTorch and trained
for fisheye semantic completion end-to-end on an NVIDIA
RTX 3090 graphics card. Backbone weights are initialized
from models pretrained on ImageNet [8]. We choose the
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Figure 6. Qualitative comparisons with alternative methods on Cityscapes-BF and KITTI360-BF. We compare the proposed FishDreamer
with our simple baseline since it already surpasses previous works [25] in terms of PSNR without the help of PCA. We also compare with
the fisheye semantic segmentation method FisheyeSeg [70]. Best viewed in color.

Table 2. Quantitative comparison of fisheye semantic completion
on Cityscapes-BF dataset. * indicates results from [25].

Dataset Cityscapes-BF
Sub-Task Image Completion | Semantic Completion
Method PSNR 1 SSIM?T FID | ! mloU 1
SRN* [58] 1771 0.81 169.42] n.a.
RK* [32] 2179 0.87 136.66! n.a.
HiFill* [71] 2227 089 109.89, n.a.
Boundless* [53] 23.54 0.90 64.26! n.a.
FisheyeEX* [25] 24.63 092 40.06 : n.a.
FisheyeSeg [70] n.a. n.a. na. ! 47.31
Swin-S + UPerNet na.  na  na | 53.65
SegFormer-B2 [60] n.a. n.a. na. ! 53.80
Simple Baseline (Ours) | 24.82  0.93  34.48 , 53.98
FishDreamer (Ours) 25.05 0.93  30.14 ! 54.54

AdamW optimizer [35] with a learning rate of 2.5x1074,
coefficients 51=0.9, $2=0.999, and weight decay n=10"2.
We use batch size of 8 and train our model for 50/70 epochs
for the ablation experiments and the final model experi-
ments respectively. We adopt Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and
Fréchet Inception Distance (FID) to evaluate the extrap-
olation performance, while mean Intersection over Union
(mloU) is used as the semantic completion metric.

4.3. Results

Cityscapes-BF results. In Table 2, we conduct comparison
between the state-of-the-art methods for image completion,
e.g., FisheyeEX [25], those for semantic segmentation, e.g.,
SegFormer [60], and the proposed FishDreamer approach.

Table 3. Quantitative comparison of fisheye semantic completion
on KITTI360-BF dataset. * indicates results from [25].

Dataset KITTI360-BF
Sub-Task Image Completion | Semantic Completion
Method PSNR 1 SSIM T FID | ! mloU 1
SRN* [58] 1825 079 143.90, n.a.
RK* [32] 2013 0.82 102.77! n.a.
HiFill* [71] 20.10 0.83  82.61 , n.a.
Boundless* [53] 21.52 0.87 53.17! n.a.
FisheyeEX* [25] 2231 090 34.68 na.
FisheyeSeg [70] n.a. n.a. na. ! 39.08
Swin-S + UPerNet n.a. n.a. n.a. : 40.00
SegFormer-B2 [60] n.a. n.a. n.a. ! 41.19
Simple Baseline (Ours) | 22.38 090 30.23 ; 42.24
FishDreamer (Ours) 22.51 091 2789 ! 43.57

Compared to the previous FisheyeEX, FishDreamer obtains
better results on the sub-task of image completion, which
are respective 25.05, 0.93, and 30.14 in PSNR, SSIM, and
FID. On the sub-task of semantic completion, FishDreamer
obtains the best score of 54.54% in mloU, yielding a large
performance boost in +7.23% as compared to the previ-
ous fisheye image semantic segmentation model Fisheye-
Seg [70]. Besides, compared to the methods for general
image semantic segmentation, such as Swin [33] and Seg-
Former [60], our FishDreamer model also yields consider-
able improvement. As the completion involves severe dis-
tortions and demands inferring semantics beyond the FoV,
the segmentation transformers deliver clearly lower scores
compared to their performances on standard segmentation
benchmarks. Yet, the state-of-the-art performance achieved
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Table 4. Ablation of different backbones.
Backbone PSNR SSIM mloU #Params(M)

Conformer-T [40] 24.34 0.9227 47.36 29.0
Conformer-S [40] 24.57 0.9237 49.81 45.0

MiT-BO [60] 23.28 0.9203 44.83 9.3
MiT-B2 [60] 24.12 0.9229 50.72 30.9
Swin-T [33] 2421 09167 50.96 349
Swin-S [33] 24.46 0.9224 54.01 56.2

in both tasks of FishDreamer demonstrates that outpainting
the content outside the fisheye camera’s FoV and complet-
ing the semantics of objects are conjugated. In other words,
by using a single end-to-end model for both problems we
can effectively leverage this complementary information,
yielding clear benefits for both tasks.

KITTI360-BF results. As shown in Table 3, the results
on the KITTI360-BF dataset are compared among fisheye
image completion methods, semantic completion methods,
and our two fisheye semantic completion approaches. Com-
pared to image completion methods like Boundless [53] and
FisheyeEX [25], our simple baseline achieves the second-
best result (22.38) with significant improvement. Moreover,
our FishDreamer model attains the best results in the im-
age completion sub-task, with respective scores of 22.51,
0.91, and 27.89 in PSNR, SSIM, and FID. In addition to im-
age completion, our FishDreamer achieves the best seman-
tic completion performance with an mloU of 43.57. These
results and improvements further demonstrate the promis-
ing performance of our proposed method, which effectively
couples both sub-tasks in an end-to-end manner.

4.4. Ablation Studies

Analysis of the backbones. To investigate the effect
of model backbones, we perform ablation study of Fish-
Dreamer with three different methods, including Swin [33],
MiT [60], and Conformer [40]. As shown in Table 4, each
method has two model scales. The best and the second best
results are marked with bold and underline, respectively.
Our method based on Conformer [40] models have better
performance on the sub-task of fisheye image completion,
and the model based on Conformer-S achieves respective
24.57 and 0.9237 scores in PSNR and SSIM, but obtains
sub-optimal performance in semantic completion, yielding
only 49.81 in mIoU. Compared to the Conformer models,
based on MiT-BO and -B2 [60] backbones that are specific
for semantic segmentation, our method achieves better re-
sults on the sub-task of semantic completion with 44.83
and 50.72 scores in mloU. The MiT-based models have
a smaller number of parameters (9.3M and 30.9M), how-
ever, the performance on the fisheye image completion is
lower as compared to the ones using Conformer counter-
parts. To achieve a balance between the two sub-tasks, the
Swin-based [33] backbone strikes a good balance between

Table 5. Analysis of Polar-aware Cross Attention.

Polar Mask  Direction mlIoU PSNR SSIM
S2P 53.73 2493 0.9246

w/o P2S 54.17 2456 0.9215
Bi-direction 53.89 24.82 0.9240

2 Bi-direction 54.10 24.93 0.9249
4 Bi-direction 54.21 25.01 0.9257
8 Bi-direction 53.84 24.82 0.9242

the fisheye image completion performance and the semantic
completion quality. Our method based on Swin-S backbone
obtains the best semantic completion result with 54.01 in
mloU, while it provides the second best result on fisheye
image completion with 24.46 in PSNR. This result aligns
with our observation that a backbone with superior seman-
tic completion capabilities can provide complementary ad-
vantages for the image completion sub-task.

Analysis of the Polar-aware Cross Attention (PCA). The
PCA mechanism is vital for the fisheye semantic comple-
tion task. To examine the impact of mask selection and di-
rection, we perform an ablation study of PCA in Table 5.
Without using the polar mask, the three ways of semantic-
to-outpainting (S2P), outpainting-to-semantic (P2S), and
Bi-direction achieve respective 53.73, 54.17, and 53.89 in
mloU of semantic completion task, and 24.93, 24.56, and
24.82 in image completion PSNR. When using the polar
mask and Bi-direction method, we further ablate the mask
generation with different mask numbers in {2,4,8}. As
shown in Table 5, our PCA module is robust to differ-
ent mask numbers, since each of them obtains compara-
ble performance. Nonetheless, we found that using 4 polar
masks could provide better results on both sub tasks, yield-
ing 54.21, 25.01, and 0.9257 in mIoU, PSNR, and SSIM,
respectively. This analysis demonstrates that our proposed
PCA module is effective in simultaneously addressing se-
mantic understanding and image completion.

5. Conclusion

In this paper, we look into fisheye semantic completion, a
novel task addressing the extended field of view perception
in terms of simultaneous image sensing and semantic under-
standing. To tackle this challenge, we propose FishDreamer
to intertwine image outpainting and segmentation via polar-
aware cross attention, which guides outpainting with ex-
tended semantic contextual information in the annular di-
mension. We establish Cityscapes-BF and KITTI360-BF
benchmarks to assess the effectiveness of driving scene un-
derstanding beyond fisheye vision. Extensive experiments
demonstrate the effectiveness of the proposed polar-aware
cross attention and FishDreamer over its counterparts.

In this future, we intend to introduce conditional diffu-
sion models to enhance the completion and investigate the
generalization of FishDreamer on real fisheye images.
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