


Figure 1. The proposed geometry-aware panorama registration and layout estimation framework. Given two panorama images, we
introduce GPR-Net that aims to learn fine-grained geometric cues, including boundary coordinates, correspondence, and co-visibility, via
a geometry transformer, and then directly regresses the relative pose (translation and rotation) via a pose transformer. The final layout is
then obtained by registering the two layouts using the estimated pose and taking the union of the two individual layouts derived from the
estimated layout boundary maps.

correspondences in a different space. We devise a geome-
try transformer that conceptually samples the layout bound-
aries of two input layouts and estimates rich geometric cues
on the sampled locations (Figure 1a). Specifically, for each
boundary sample in each of the two panoramas, it estimates
the ceiling-wall and floor-wall boundary coordinates. In ad-
dition, it estimates the correspondence map from the sam-
ples in the first panorama to the second panorama and a co-
visibility map describing if a sample in the first panorama is
visible in the second panorama. Each of these maps (lay-
out boundary, correspondence, and co-visibility) is a 1D
sequence of values. This representation has the advantage
of having more supervision signal for fine-grained estima-
tion, thus leading to better learning performance. Then, we
feed the learnt latent features of the geometry transformer
into a pose transformer that directly regresses the relative
pose (translation and rotation) (Figure 1b). In addition to
the direct pose regression, we alternatively evaluate on a
RANSAC-based pose computed by the estimated layouts,
correspondence and co-visibility. To obtain the final 3D lay-
out, we first compute a 3D layout for each panorama based
on the estimated ceiling-wall and floor-wall boundary maps
followed by taking the union of two layouts registered with
the estimated pose (Figure 1c).

We extensively validate our model by comparing with
the state-of-the-art panorama registration and layout esti-
mation methods on a large-scale indoor panorama dataset
ZInD [3]. The experimental results demonstrate that our
model is superior to competing methods by achieving a
significant performance boost in both panorama registra-
tion accuracy (Rotation error@2.5◦: +62.27%, Translation
error@2.5◦: +45.98%) and reconstruction accuracy (2D
IoU +6.77%).

In summary, our contributions are as follows:

• We propose the first complete stereo panoramic layout
estimation framework. Our architecture jointly learns

the layout and registration from data, is end-to-end
trainable, and does not rely on a pose prior.

• We devise a novel panorama registration framework to
effectively tackle the wide baseline registration prob-
lem by exploiting the layout geometry and computing
a fine-grained correspondence of samples on the layout
boundaries.

• We achieve state-of-the-art performance on ZInD [3]
dataset for both the panorama registration and layout
reconstruction tasks.

2. Related Work
2.1. Single-view room layout estimation

There exist many methods to estimate the room layouts
from just a single image taken inside an indoor environ-
ment. Methods that take only one perspective image in-
clude earlier attempts that relied on image clues and opti-
mization [7, 8, 19] and later neural networks [13, 28]. Cap-
turing the increasing availability and popularity of full 360◦

panoramic images, the seminal work by Zhang et al. [30]
proposed to take panoramas as native inputs for scene un-
derstanding. Recently, several methods were proposed to
predict the room layouts from a single panorama using neu-
ral networks. A major difference between these methods
is the assumption on the shape of the room layouts - from
being strictly a cuboid [32], Manhattan world [23, 29], to
general 2D layouts (Atlanta world) [16]. For our work, we
choose to adopt the Manhattan assumption because more
corresponding data is available. See Zou et al. [33] for
a thorough survey on predicting Manhattan room layouts
from a single panorama. More recent methods delivered
state-of-the-art performance by transforming the problem
into a depth-estimation one [26] or by leveraging power-
ful transformer-based network architecture [12]. Although
these single-view methods perform well in the cuboid and
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L-shape rooms, they tend to fail in the large-scale, complex
and non-convex rooms where a single-view panorama cov-
ers only part of the whole space due to occlusion.

2.2. Panorama registration

Image registration, i.e., finding transformations between
the cameras of two or multiple images taken of the same
scene, is a key component of Structure-from-Motion (SfM).
We refer to [5, 34] for a comprehensive survey and an ex-
tensive study. Summarizing the surveys, registration prob-
lems can be categorized by: 1) the assumptions about the
camera model, e.g., perspective (pinhole camera), weak-
perspective, or orthographic, 2) the assumptions about the
transformation, e.g., rigid, affine, or general non-rigid, and
3) the types of the image inputs, e.g., perspective images or
full 360◦ panoramas, and with/without depths. In addition,
the difficulty differs greatly on whether the images are taken
densely/closely or sparsely/far apart.

Modern takes on registration problems often leverage
state-of-art programs/libraries such as COLMAP [21] and
OpenMVG [14]. Our problem falls into a lesser-studied cat-
egory: registering rigid transforms between sparse panora-
mas. While there exist methods that tackle sparse perspec-
tive image inputs [4,20] and methods that handle panoramas
natively [10, 15, 24], our results show that we can improve
upon the state-of-the-art panorama registration methods in
our sparse view setting. A key bottleneck was that tradi-
tional SfM methods often fail to handle the wide baseline
registration problem where the views are far apart from each
other. Chen et al. [2] factorize the continuous 5-dimensional
solution space of relative camera poses into discrete prob-
ability distributions with a novel four unit-vector parame-
terization, and directly learn the relative camera pose of
two wide baseline perspective images. Shabani et al. [22]
proposed an extreme SfM framework that utilizes seman-
tics (i.e., room type, doors, windows, etc) to match indoor
panoramas with few visual overlaps. In contrast to previous
methods that perform the registration in the global pixel-
space, we propose a novel learning-based panorama regis-
tration framework that directly compute the registration be-
tween two panoramas without any prior knowledge.

CoVisPose [9] shares the same goal with ours in the reg-
istration part. We argue that there are 4 differences. First,
we are the first to jointly handle pose and layout estimation
which could mutually benefits each of the two tasks, how-
ever the CoVisPose [9] focuses on the panorama registration
only. Table 1 shows an improvement in layout estimation
when using GT registration indicates that layout estimation
improves only due to joint training. Second, CoVisPose [9]
uses the floor boundary of the visible area. By contrast, we
estimate the floor and the ceiling of room boundary. There-
fore, we can derive the full 3D layout directly, but CoVis-
Pose [9] can not. Third, our method can increasing the num-

ber of output tokens, however the CoVisPose [9] can not. In
addition, the ceiling coordinates and increasing tokens show
the improvements in Table 3, and Table 4 and Table 6 re-
spectively. Fourth, we will make the code for training and
testing available. The code of CoVisPose [9] will likely not
become available.

2.3. Scene reconstruction using sparse panoramas

Attempts to reconstruct indoor scenes using just a hand-
ful of RGB panoramas as inputs [17, 18] are nascent but
promising since photographers are adapting 360◦ cam-
eras into their workflows (e.g., Matterport 3D capture sys-
tem [1]) and it is awkward to capture dense panoramic in-
puts due to camera/tripod setups. While previous methods
assume that all the input panoramas are already registered,
PSMNet [26] introduces the first learning-based framework
that jointly estimates the room layout and registration given
a pair of panoramas. However, it still has a major bottle-
neck that an initial approximate (noisy) registration must be
given (e.g., either manually specified or computed by exter-
nal methods) during both the training and inference stages.
Our GPR-Net is also an end-to-end deep neural network that
jointly learns the room layout and panorama registration.
Most importantly, our model does not rely on a pose prior
and is thus suitable for real-world application scenarios.

3. Methodology
3.1. Network architecture

Figure 2 illustrates the GPR-Net architecture, which
consists of two main blocks, geometry transformer and
pose transformer. The geometry transformer learns a set
of 1D horizon tokens that encode geometric cues (layout
boundary, correspondence and co-visibility) sampled on the
panorama, while the pose transformer directly regresses
the relative pose using features learned from the geometry
transformer.

Geometry transformer. First, we feed two (vertically)
axis aligned panoramas I1 and I2 into a ResNet-50 [6] fea-
ture extractor and generate two feature maps of resolution
16×8. Following the encoder-decoder transformer architec-
ture, we feed the extracted feature maps into the transformer
encoder block using the two sets of 16 × 8 pixels as input
tokens. The output tokens of the transformer encoder block
will be used for cross attention in the transformer decoder
block. We use a 2D UV coordinate system to parameter-
ize a panorama image with (u, v) in [0, 1] × [−1, 1]. The
u coordinate describes the horizontal position and the v co-
ordinate the vertical position. We want to query multiple
values (ceiling-wall boundary, floor-wall boundary, corre-
spondence, co-visibility) for different u coordinates. We
therefore uniformly sample the u coordinate ∈ [0, 1] with N
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Figure 2. GPR-Net architecture. The network consists of two main blocks. The geometry transformer takes two panoramas as input
and extracts feature maps as tokens by ResNet-50. These tokens are fed into an encoder-decoder transformer for learning rich geometric
cues. We then sample the layout boundary to get a sequence of query tokens as inputs to the transformer decoder. The output tokens of the
transformer decoder encode multiple types of information about the boundary samples and are further processed using multiple auxiliary
MLP heads to generate supervision signals, including ceiling/floor boundary coordinates V, correspondence map O, and co-visibility map
C. The pose transformer takes input as the output tokens of the geometry transformer decoder with two extra query tokens for predicting
the translation T ∈ R2 and rotation R ∈ SO(2) of the relative pose.

evenly distributed samples. We obtain the set U = {ui}Ni=1.
The query samples are encoded by linear positional encod-
ing and are the input tokens of the transformer decoder.
The output tokens of the transformer decoder encode mul-
tiple types of information about the boundary samples and
are used as inputs to the pose transformer. To enable de-
tailed supervision during training, the output tokens are fur-
ther processed using multiple auxiliary MLP heads. Specif-
ically, we use: (i) layout MLP heads Fc

k and Ff
k with

k = (1, 2). The outputs of Fc
k and Ff

k are the v coordinates
of the ceiling and floor boundaries in the panorama image
Ik, respectively. We denote the v coordinates of the ceiling
boundaries as Vc

k and the floor boundaries, Vf
k . For each

V{c,f}k , we further exploit the Layout-to-Depth (L2D) trans-
formation [25] to generate a corresponding horizon depth
map D{c,f}k to provide a better supervision on the layout
depth; (ii) correspondence MLP head Fcor that outputs a
horizon correspondence map O = {oi}Ni=1, where oi indi-
cates the correspondence between ui ∈ I1 and oi ∈ I2; and
(iii) co-visibility MLP head Fcovis that outputs a horizon
co-visibility map C = {ci}Ni=1, where ci is a value ∈ [0, 1],
encoding whether the i− th element in O should be consid-
ered (ci = 1) or not (ci = 0) in the pose estimation.

Pose transformer. The input to the pose transformer are
the output tokens of the geometry transformer decoder with
two extra query tokens for predicting the translation and ro-
tation components of the relative pose. The transformer
network follows a standard transformer encoder architec-
ture. We would like to remark that we only consider 3-DoF
transformations in ZInD [3] following [26]. Therefore, the
outputs are two tokens representing latent features of rel-
ative pose and are further processed with translation MLP
head FT and rotation MLP head FR to extract a translation
vector T ∈ R2 and rotation R ∈ SO(2), respectively.

3.2. Loss functions

Here we elaborate on the layout, correspondence, co-
visibility, cycle-consistency, and pose loss functions used
for training our network.

Layout loss calculates the low-level geometry loss between
the predicted horizon depth maps D{c,f}{1,2} of input panora-

mas I1 and I2 and the corresponding ground-truth D{c,f}{1,2} .
The loss is defined as follows:

Llayout =
1

M

∑
j=(c,f)

∑
k=(1,2)

∥Dj
k − Dj

k∥1, (1)

where M is the dimension of the horizon depth maps.
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Table 3. Ablation study on panorama registration. We evaluate how different (top block) design choices in ceiling/floor boundary maps
and training strategies would impact pose estimation. The best results are in yellow highlight.

Rotation Translation angle Translation vector
Method Success (% ↑) Mn (◦ ↓) Med (◦ ↓) 2.5◦ ↑ 5◦ ↑ 10◦ ↑ Mn (◦ ↓) Med (◦ ↓) 2.5◦ ↑ 5◦ ↑ 10◦ ↑ Mn (m. ↓) Med (m. ↓) 0.5m. ↑
Ceiling only 99.94 4.4552 1.6138 0.6733 0.8791 0.9464 6.3809 1.8979 0.6026 0.8107 0.9051 0.3203 0.1172 0.8907
Floor only 99.94 4.4778 1.6146 0.6727 0.8783 0.9466 6.4596 1.9022 0.6027 0.8105 0.9051 0.3233 0.1176 0.8898
Ceiling+Floor 99.94 4.4760 1.6163 0.6727 0.8785 0.9457 6.4423 1.8998 0.6024 0.8102 0.9043 0.3234 0.1176 0.8901

Joint training 99.88 4.8402 1.7527 0.6461 0.8486 0.9344 6.9567 2.0494 0.5701 0.7882 0.8935 0.3263 0.1263 0.8729
2-stage training 99.94 4.4552 1.6138 0.6733 0.8791 0.9464 6.3809 1.8979 0.6026 0.8107 0.9051 0.3203 0.1172 0.8907

Table 4. Quantitative evaluation of panorama registration using the varying number of query tokens. The best results are in yellow
highlight.

RANSAC pose

Rotation Translation angle Translation vector
# Tokens # Success (% ↑) Mn (◦ ↓) Med (◦ ↓) 2.5◦ ↑ 5◦ ↑ 10◦ ↑ Mn (◦ ↓) Med (◦ ↓) 2.5◦ ↑ 5◦ ↑ 10◦ ↑ Mn (m. ↓) Med (m. ↓) 0.5m. ↑
256 99.94 4.4552 1.6138 0.6733 0.8791 0.9464 6.3809 1.8979 0.6026 0.8107 0.9051 0.3203 0.1172 0.8907
512 99.92 4.4565 1.6355 0.6747 0.8802 0.9491 6.3837 1.8960 0.6054 0.8117 0.9093 0.3297 0.1155 0.8935
1024 99.92 4.4065 1.6229 0.6743 0.8851 0.9498 6.4548 1.8680 0.6058 0.8111 0.9085 0.3398 0.1159 0.8939

Direct pose

256 100 2.0687 0.7670 0.9661 0.9822 0.9858 5.3703 2.3710 0.5238 0.7953 0.9296 0.2365 0.1468 0.9176
512 100 2.0970 0.7676 0.9670 0.9824 0.9850 5.2928 2.2418 0.5433 0.8057 0.9308 0.2332 0.1448 0.9175
1024 100 2.1102 0.7680 0.9667 0.9817 0.9845 5.2606 2.2021 0.5499 0.8086 0.9316 0.2319 0.1436 0.9186

Table 5. Ablation study on layout reconstruction. We evalu-
ate how different design choices in ceiling/floor boundary maps
would impact layout reconstruction. The best results are in yellow
highlight.

w/ GT pose w/o GT pose (Direct pose)
Method 2D IoU↑ δi ↑ 3D IoU↑ 2D IoU↑ δi ↑ 3D IoU↑
Ceiling only 0.8441 0.9604 0.8203 0.8249 0.9569 0.8018
Floor only 0.8449 0.9603 0.8211 0.8254 0.9568 0.8023
Ceiling+Floor 0.8402 0.9601 0.8166 0.8217 0.9562 0.7988

based pose and perform layout fusion using either the esti-
mated ceiling boundary map or floor boundary map. There-
fore, we conducted an experiment to evaluate the impact
of using only ceiling boundary, only floor boundary, or the
combination of two on the pose registration and layout re-
construction performance. As shown in Table 3 and Ta-
ble 5, the setting of using only ceiling boundary map and
using only floor boundary map leads respectively to a better
accuracy in RANSAC-based pose estimation and layout re-
construction. Therefore, we use this setting in all the other
experiments.

Joint training vs. 2-stage training. We train our ge-
ometry transformer first, freeze the model parameters, and
then train our pose transformer. As for the joint training
setting, we train the geometry transformer and pose trans-
former jointly. As shown in the lower part of Table 3, 2-
stage training method could achieve a better registration ac-
curacy. We believe this indicates that the fine-grained cor-
respondences between boundaries provide much better su-
pervision for the geometry transformer than the pose infor-
mation (rotation and translation).

The number of query tokens. In this experiment, we start
with the default setting of N = 256 query tokens along the

Table 6. Quantitative evaluation of layout reconstruction using
the varying number of query tokens. The best results are in
yellow highlight.

Direct pose RANSAC pose
# Tokens 2D IoU↑ δi ↑ 3D IoU↑ 2D IoU↑ δi ↑ 3D IoU↑
256 0.8254 0.9568 0.8023 0.8198 0.9516 0.7969
512 0.8259 0.9571 0.8028 0.8207 0.9512 0.7978
1024 0.8262 0.9571 0.8030 0.8202 0.9513 0.7974

u coordinate. To increase N without re-training the whole
model, we rotate the input panoramas and re-test the net-
work to add more query tokens progressively during the in-
ference. As shown in Table 4, the registration accuracy gets
better as we increasing the number of query tokens. We
thus adopt this pose for the layout fusion part, and we get
the best layout reconstruction accuracy when the number of
query tokens is 1024 as shown in Table 6.

5. Conclusions
We present a first complete solution for room layout re-

construction from a pair of panorama images. In contrast to
previous work, i.e. PSMNet, we do not rely on an approxi-
mate registration but can register the two panorama images
directly. The major improvement over PSMNet comes from
a novel Geometry-aware Panorama Registration Network
(GPR-Net) that effectively tackles the wide baseline regis-
tration problem. We propose to exploit the layout geometry
and compute fine-grained correspondences between the two
layout boundaries, rather than directly computing the regis-
tration on global pixel-space. The main limitation of our
method is that the layout fusion block that processes two
layouts is very simple. We recommend the development of
learned fusion modules as major avenue for future work.

6476






