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Abstract

Human pose estimation (HPE) with convolutional neural
networks (CNNs) for indoor monitoring is one of the major
challenges in computer vision. In contrast to HPE in per-
spective views, an indoor monitoring system can consist of
an omnidirectional camera with a field of view of 180° to de-
tect the pose of a person with only one sensor per room. To
recognize human pose, the detection of keypoints is an es-
sential upstream step. In our work we propose a new dataset
for training and evaluation of CNNs for the task of keypoint
detection in omnidirectional images. The training dataset,
THEODORE+, consists of 50,000 images and is created by
a 3D rendering engine, where humans are randomly walk-
ing through an indoor environment. In a dynamically cre-
ated 3D scene, persons move randomly with simultaneously
moving omnidirectional camera to generate synthetic RGB
images and 2D and 3D ground truth. For evaluation pur-
poses, the real-world PoseFES dataset with two scenarios
and 701 frames with up to eight persons per scene was cap-
tured and annotated. We propose four training paradigms
to finetune or re-train two top-down models in MMPose and
two bottom-up models in CenterNet on THEODORE+. Be-
side a qualitative evaluation we report quantitative results.
Compared to a COCO pretrained baseline, we achieve sig-
nificant improvements especially for top-view scenes on the
PoseFES dataset. Our datasets can be found at https://
www.tu-chemnitz.de/etit/dst/forschung/
comp_vision/datasets/index.php.en.

1. Introduction
With the growing need for indoor monitoring, human

pose estimation (HPE) has become one of the main research
areas of modern computer vision research [23, 27]. How-
ever, most of this research was conducted on perspective
views with a limited field of view which is not appropri-
ate for indoor scenarios when an entire room is to be cov-
ered with only one sensor. For this problem, cameras with
an omnidirectional camera model and wide-angle fisheye
lenses are best suited. Nevertheless, fish-eye lenses have

the characteristic of distortion which makes it necessary to
model these distortions implicitly in the training data. In
this work, we propose a fuss free way to use convolutional
neural networks (CNNs) for human pose estimation in om-
nidirectional images. The application field of this work is
Ambient Assisted Living (AAL). AAL stands for concepts,
products and services that introduce new technologies into
daily living in order to improve the quality of life for peo-
ple in all phases of life, especially in old age. These sys-
tems, here a camera-based smart sensor that is mounted in
the ceiling of a room, monitor elderlies’ activities to pro-
vide behaviour analysis results for care attendants, relatives
and physicians. Besides a daily activity protocol, the sys-
tem is capable to recognize emergency situations such as
unpredictable human falls [30]. With the help of infrared
lighting, video-based sleep quality estimation is employed
to be able to draw conclusions about the current behaviour
of an affected person as well as anomalies of the behaviour.
The contribution of our work is threefold:

• we provide a top-view omnidirectional syn-
thetic dataset with keypoint annotations, namely
THEODORE+.

• For evaluation purposes, the PoseFES dataset, a new
real-world top-view omnidirectional dataset with key-
point annotations was created.

• The adaption of state-of-the-art approaches for key-
point detection to a monocular top-view omnidirec-
tional camera.

2. Related work
2.1. Human pose estimation in perspective and om-

nidirectional images

HPE is a popular topic in computer vision because of
its wide range of applications, such as action and activ-
ity recognition, augmented reality (AR) and rehabilitation
feedback systems. Early implementations have used hand-
crafted features as well as pre-defined human models [11].
In recent years, researchers have shifted to deep learning-
based methods. Xiao et al. [40] provided a simple base-
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line by using ResNet-50 [13] to generate heatmaps for each
keypoint. HRNet [33] further improved the results by in-
troducing a high resolution backbone network. These are
top-down methods, which use a separate person detector to
isolate image areas with the person, and then perform key-
point estimation on them. In contrast, bottom-up methods
are able to detect keypoints for multiple persons in a single
inference pipeline. OpenPose [2] uses part affinity fields to
associate the estimated keypoints with the individual per-
sons in the image. CenterNet [45] estimates the offset of
each joint to the person center point and use it to associate
them with the persons.

Though HPE is well researched for perspective images,
it is only starting to get attention for omnidirectional im-
ages. There has been research that focus on using head-
mounted fisheye cameras for pose estimation, such as Ego-
Cap [26], Mo2Cap2 [41], xR-EgoPose [35] / SelfPose [34],
EgoGlass [44] and Wang et al. [38]. However, the applica-
tion of CNNs for HPE in overhead omnidirectional images
has not been thoroughly investigated. This is largely due to
the lack of training data in this domain.

Georgakopoulos et al. [5,10] employ a 3D human model
to create a dataset of binary silhouettes, which are rendered
through the calibration of the fisheye camera. The CNN
is trained to differentiate between the pre-set poses, rather
than estimate the joint positions. Haque et al. [12] train
CNN and LSTM [15] to achieve view-point invariant 3d
pose estimation on a singular depth image. Denecke and
Jauch [6] use the 3D point cloud calculated by the smart
sensor and prior knowledge of the human body to estimate
the joint positions. The results of this method are restricted
by factors such as the mounting position of the camera and
differences between each individual body. The inference
speed is limited by the speed of the smart sensor. Heindl
et al. [14] generate multiple rectilinear views from a fish-
eye image and perform 2D keypoint estimation using Open-
Pose without finetuning the model. The 3D skeleton is re-
constructed by a stereo vision setup. This method requires
that the calibration parameters of the cameras are known.
The temporal performance is heavily restricted by the over-
head of generating multiple views and inferencing on all
of them. Garau et al. achieve viewpoint-invariant 3D HPE
with a capsule auto-encoder named DECA [8] on depth and
RGB images, namely ITOP and PanopTOP31K datasets.

2.2. Top-view HPE datasets

Haque et al. [12] introduced the Invariant-Top View
Dataset (ITOP), which consists of 100K real-world depth
images. It contains no RGB-images, therefore limiting the
use of popular CNN-based HPE models. Garau et al. in-
troduced the PanopTOP framework in [9] for generating
semi-synthetic top-view human images of normal perspec-
tive camera with 2D- and 3D-pose groundtruth from the

multi-view dataset Panoptic [19]. With this framework they
create the PanopTOP31K dataset. It contains top-view and
front-view persons as well as the corresponding depth maps,
point clouds and 3D meshes. This is the first semi realis-
tic HPE dataset of RGB images from the top-view. How-
ever, there are a few shortcomings in this dataset. Firstly,
the image resolution is very low at 256× 256 pixels, while
the persons in the images effectively occupy no more than
100×100 pixels. Secondly, there are a lot of artifacts in the
synthesized images, the most severe of which is hand po-
sition ghosting, where there are multiple instances of each
arm / hand in the images. Finally, the subjects are positioned
in front of a white background and the camera position is
fixed, thus the variations are low across the dataset.

2.3. Synthetic data generation for CNN training

There exist many datasets for the task HPE, such as MPII
[1], Human3.6M [18] and COCO keypoints [21]. However,
capturing real-world HPE data with accurate groundtruth
annotations either require a specific motion capture sys-
tem [18] or a large-scale manual annotation process [21].
Therefore, it is often expensive and time-consuming. Syn-
thetic data generation, on the other hand, can create pixel
precise annotations without additional steps. Additionally,
it does not raise privacy concerns.

Song et al. [32] introduce 3D computer graphics to cre-
ate interior scenes with realistic textures and furniture. The
authors in [39] extended this concept with agent function-
ality to navigate freely in the 3D environment. McCormac
et al. [22] describe methods for creating physical and pho-
torealistic interior renderings. A similar approach is taken
by Li et al. [20], but with a vast amount of professional in-
terior designs and object assets while creating a synthetic
dataset. In [3] the authors simulate different human bodies
with various assigned textures to train CNNs to recognize
poses. Hoffman et al. [16] compare synthetically generated
humans to investigate the influence of synthetic data com-
pared to real but augmented data. With SURREAL [37], the
authors introduce a dataset with photorealistic computer-
generated images containing annotations for body parts and
action sequences. In a multi-agent simulation concerning
interaction in household scenarios, Puig et al. [25] present
VirtualHome. Since VirtualHome provides interactions of
humans with objects, this simulation serves very well in an
AAL context. With ElderSIM [17], another AAL-focused
eldercare simulation is introduced. Here various modalities,
including RGB videos, 2D and 3D skeletons and different
camera angles, are provided. Concerning omnidirectional
imagery, none of the above methods provide such content,
which is mandatory if CNNs are to be applied in this do-
main. A simulation using computer graphics for omnidirec-
tional ego-pose imagery is introduced in [26, 34, 35].

To obtain omnidirectional top-view images to train
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CNNs, the work of Scheck et al. [28] introduces a proce-
dure for generating such images, resulting in a dataset for
object detection and semantic segmentation. This approach
was extended by Seuffert et al. [31] with stereo image pairs
and the corresponding depth maps. Seidel et al. [29] present
an omnidirectional dataset for the optical flow, focusing on
household activities. However, skeletal keypoints for simu-
lated humans are still missing in these datasets for the ap-
plication of HPE.

3. Datasets

3.1. THEODORE+ dataset

Building upon the work of Scheck et al. [28], a large-
scale synthetic dataset of indoor omnidirectional scenes is
generated. The implementation details closely follow the
original work, utilizing six indoor settings and domain ran-
domization to create a diverse dataset. The object tex-
tures and the human model parameters (height and weight)
are randomized, and at the same time the camera position
changes constantly to ensure varied perspectives. During
the simulation, each character has eight pre-defined anima-
tions that belong to four categories: sitting, lying, falling,
and walking. An animation is selected from this animation
set and executed depending on the character’s action. For
instance, when a character interacts with a chair, the sitting
animation is triggered. Furthermore, a fall may be activated
on the way to the selected chair in the virtual environment,
which then executes the respective animation. The corre-
sponding action of a virtual character is also part of the
exported data and is usable for activity recognition. Our
simulation uses Unity’s universal render pipeline (UDP) for
rendering the images with a distortionless virtual fisheye
camera. We did not use the high-definition render pipeline
(HDRP) because of restrictions of the texture package we
used, and it is debatable whether using resource intensive
photorealistic synthetic images for training CNNs is advan-
tageous [36].

Beside bounding boxes and segmentation masks, our
dataset features full body 2D and 3D pose information and
action information of the human model. The implemen-
tation based on the Unity engine is extended to map the
human body skeleton points from the engine’s internal for-
mat to the COCO format [21] with 13 keypoints. No data
is available for the simulated characters for the keypoints
left eye, right eye, left ear and right ear. Therefore, these
points receive the coordinates [0,0] during the export. The
new dataset consists of 50,000 images with a resolution of
2048×2048 pixel and ∼ 160,000 character instances. Each
file is saved in PNG format to exclude compression arti-
facts in the exported images. The 2D keypoints are con-
verted to pixel coordinate space during export, while the 3D
keypoints remain unchanged. An overview of the dataset

modalities is shown in Fig. 1. The dataset contains a scene’s
RGB image (1a), 2D Keypoints in pixel space (1b), and
non-normalized 3D keypoints (1c) of each person. Further-
more, the keypoints’ occluded attribute is true if superim-
posed by another object and not visible to the camera (key-
points with a red border in 1b).

3.2. PoseFES dataset

We created the real-world dataset PoseFES for evalu-
ation purposes by extending the FES Dataset [28] with
one scenario and pose annotations. It consists of two se-
quences, which have been recorded in a laboratory apart-
ment with an omnidirectional fisheye camera. The image
resolution is 1680 × 1680 pixels. The first sequence, Sce-
nario 1 (Sc1), contains 400 frames (Record 00000.png –
Record 00399.png), in which three persons walk through
the apartment performing daily activities. Overlapping
of persons is kept very seldom for this sequence. Sce-
nario 2 (Sc2) contains 301 frames (Record 00600.png –
Record 00900.png), in which a maximum of eight persons
appear at the same time. Heavy overlapping is present in
most frames of this sequence. There are 735 and 2161 in-
stances in Sc1 and Sc2, respectively.

Axis-aligned bounding boxes and keypoints are anno-
tated for the dataset. The bounding boxes are generated
using OmniPD [43] and then adjusted manually. 17 key-
points are annotated for all persons, which conform to the
keypoints provided by COCO [21]. Two extra keypoints,
shoulder center and hip center are extrapolated by averag-
ing shoulder and hip keypoints, respectively. Annotations
are available in CVAT and COCO format. Sample images
as well as annotations are shown in Fig. 2. More images
are available in Sec. 5.4 where we present some qualitative
evaluation.

4. Training CNNs for pose estimation in omni-
directional images

4.1. Model choices

We choose three models to train on our synthetic dataset.
SimpleBaseline2D [40] adds three de-convolution lay-

ers with batch normalization and ReLU activation to the
commonly used backbone network ResNet [13]. A 1 × 1
convolutional layer at the end generates k heatmaps for
k keypoints of a person object. The loss is calculated
by the Mean Squared Error (MSE) between the predicted
heatmaps and the groundtruth heatmaps. Using 256 × 192
pixels as input resolution and ResNet-50 backbone, the au-
thors are able to reach state-of-the-art performance on the
COCO Keypoints dataset with this simple structure.

HRNet [33] introduces a new network structure for HPE.
It contains four parallel multi-resolution subnetworks. The
first stem net reduces the input resolution by 4. The fol-
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(a) RGB Image (b) 2D keypoints (c) 3D keypoints

Figure 1. Example scene from THEODORE+ dataset with an RGB image, 2D and 3D keypoints visualized. Annotations are grouped per
instance (person) by colour.

(a) scenario 1 (b) scenario 2

Figure 2. Example images with annotations from PoseFES dataset. Annotations are grouped per instance (person) by colour.

lowing subnetworks reduce the resolution to the half of the
former one and simultaneously double the depth of the fea-
ture maps. Information is exchanged between each stage of
the subnetworks by exchange units. At the end of the net-
work, the heatmaps are predicted from the stem net which
has the highest resolution.

Both SimpleBaseline2D and HRNet are top-down meth-
ods. We use MMPose [4] to train both networks. MM-
Pose is a pose estimation toolbox under the OpenMM-
Lab project. It supports many state-of-the-art methods
as well as popular datasets. This enables us to conve-
niently deal with dataset manipulation and model eval-
uation. We use the COCO-pretrained models provided
by MMPose as our baseline, namely res50 coco 256x192-
ec54d7f3 20200709.pth for SimpleBaseline2D and hr-
net w48 coco 384x288-314c8528 20200708.pth for HR-
Net, both of which can be found in MMPose model zoo.

CenterNet [45] employs a completely different ap-
proach for object detection and pose estimation. Object
detection is performed by estimating the heatmaps of the
center points of objects and regressing the object size in
x and y directions. Keypoints are regarded as properties
of the center point, and thus regressed as offset values to
the center point. In this way, CenterNet is able to perform
object (in this case, person) detection and keypoint esti-
mation for multiple objects at the same time. It is prefer-
able for our AAL application because of its low calculation
cost, which enables it to be implemented in an embedded
platform. We use the original implementation by the au-
thors1. The baseline models are multi pose hg 1x.pth and
multi pose dla 1x.pth from its model zoo.

1https://github.com/xingyizhou/CenterNet
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4.2. Training

The training paradigm is the same for MMPose and Cen-
terNet:

a) The afore mentioned pretrained models are finetuned
on the THEODORE+ dataset. For MMPose, learning
rate (LR) is reduced to 1/10 of the original LR for
training on COCO. For CenterNet, LR is slightly re-
duced from 1.25e−4 to 1e−4. No LR decay is used
for all models.

b) All networks are trained from scratch on
THEODORE+. For MMPose, LR starts at 5e−4
and is decayed until 5e−5. For CenterNet, the con-
stant LR of 7e−4 and 5e−4 are used for the network
with hourglass and DLA backbones respectively.

c) All networks are trained from scratch on the com-
bined dataset from COCO keypoints dataset and
THEODORE+ (C&T+). LR settings are kept the same
as in b).

d) Pretrained models are finetuned on the combined
dataset C&T+. Settings are kept the same as in a).

The pretrained models are first tested on the PoseFES
dataset and the baseline performance is noted. During fine-
tuning or training, the models are validated directly on
PoseFES after every epoch. If the model outperforms the
one from the last epoch, it is saved as the best performing
model. We finetune for 30 epochs and train for 60 epochs
and choose the best performing models to fully test on Pose-
FES.

5. Evaluation results on PoseFES
5.1. Evaluation metrics

We use the object keypoint similarity (OKS)-based aver-
age precision (AP) and average recall (AR) as defined in
COCO [21] to evaluate the trained models. COCO API
evaluates 17 keypoints by default. However, THEODORE+
dataset only has 13 keypoints. Due to catastrophic for-
getting [7], the model is unable to estimate the positions
of eyes and ears after training or finetuning solely with
THEODORE+ dataset. Therefore, we evaluate all the mod-
els on the 13 keypoints, excluding eyes and ears. In this
case, the COCO API is adapted by deleting the sigma val-
ues for eyes and ears. Sigma values for other keypoints
are kept unchanged. The models that are trained or fine-
tuned with the combined dataset (training routines b) and
c)) are evaluated additionally on all 17 keypoints. Unfortu-
nately, there exists no commonly used large scale dataset for
evaluating HPE in top-down view of a fisheye camera. The
PanopTOP31K dataset [9] is not suitable due to the short-
comings mentioned in Sec. 2.2 and the fact that the images

are not generated with a fisheye camera model. Therefore,
the performance of all models are evaluated based on their
performance on PoseFES dataset.

For SimpleBaseline2D and HRNet, the person bounding
boxes are required for evaluation, since they are top-down
methods. We provide the models with ground truth bound-
ing boxes, which means the person detection accuracy is
100%. To estimate the influence of the person detection
accuracy, we tested the models finetuned on C&T+ using
bounding boxes that are inferenced by OmniPD [43], whose
accuracy on PoseFES is 85.6%. CenterNet performs person
detection and keypoints estimation at the same time, there-
fore it does not need bounding box input.

5.2. Evaluation results of MMPose models
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Figure 3. Comparison of MMPose models before and after train-
ing, evaluated on PoseFES for 13 KPs. Top diagram shows evalu-
ation AP on Sc1 and bottom diagram shows evaluation AP on Sc2.
C corresponds to COCO-pretrained models, T+ ft, T+, C&T+ and
C&T+ ft correspond to training routines a) - d), respectively. ft
stands for finetuning. AP is given at OKS = 0.5 : 0.05 : 0.95.

We first evaluate the COCO pretrained models and our
trained models on the PoseFES Dataset for 13 keypoints on
scenario 1 and 2 separately. Fig. 3 visualizes the evalua-
tion APs of MMPose models on PoseFES as bar charts, so
that the trends can be easily spotted. Commonly for MM-
Pose models SimpleBaseline2D and HRNet, finetuning pre-
trained models on THEODORE+ alone results in heavy per-
formance degradation. For both scenarios, AP is reduced
by 10% for SimpleBaseline2D and over 20% for HRNet.
Predictably, training from scratch on THEODORE+ alone
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yields very low performance. Finetuning on the combined
dataset results in performance improvements of 1%–2%
for both models. The two models behave differently when
trained from scratch on the combined dataset. For HR-
Net, the trained model is slightly worse than the COCO
pretrained model, while for SimpleBaseline2D the results
are slightly better than the finetuned model for scenario 1
but worse for scenario 2. The complete evaluation results
are shown in Tab. 1. The evaluation results using OmniPD
bounding boxes are denoted C&T+ ft w/PD.

Table 1. Evaluation results of MMPose models for 13 KPs on
PoseFES Dataset. The best results are marked bold.

Model SimpleBaseline2D HRNet

Sc Dataset AP AR AP AR

1

COCO 72.2 74.8 81.0 83.0
T+ ft 61.5 63.6 60.9 63.1
T+ 19.9 23.6 44.8 47.6
C&T+ 74.9 77.6 79.2 81.6
C&T+ ft 74.6 76.8 81.8 83.7
C&T+ ft w/ PD 60.1 61.5 65.4 66.7

2

COCO 68.1 74.8 77.0 79.2
T+ ft 57.8 61.5 50.9 62.2
T+ 9.1 13.8 21.2 27.8
C&T+ 67.3 70.6 75.7 77.7
C&T+ ft 70.0 72.6 78.6 80.7
C&T+ ft w/ PD 59.0 60.5 63.8 64.9

Scenario 2 is more difficult for both models. Overall,
the highest AP and AR values are reached by finetuning
pretrained models on the combined dataset. For HRNet, the
improvement is 1.6% for AP and 1.5% for AR. It is less
consistent for SimpleBaseline2D.

Table 2. Evaluation results of MMPose models for 17 KPs on
PoseFES Dataset. The best results are marked bold.

Model SimpleBaseline2D HRNet

Sc Training AP AR AP AR

1

COCO 67.4 69.9 75.7 78.2
C&T+ 66.9 69.7 72.2 75.0
C&T+ ft 67.4 69.7 76.1 78.3
C&T+ ft w/ PD 53.7 55.3 60.4 62.1

2

COCO 63.2 67.0 71.9 74.6
C&T+ 60.0 63.4 68.4 71.7
C&T+ ft 62.6 65.8 72.9 75.3
C&T+ ft w/ PD 52.3 54.3 58.9 60.2

Tab. 2 lists evaluation results for 17 keypoints. For HR-
Net the results stay in line with those for 13 keypoints. Fine-
tuning pretrained model on combined dataset yields the best
performance, albeit less than 1% over COCO pretrained

model. For SimpleBaseline2D, training or finetuning on
the combined dataset provides no benefit over COCO pre-
trained model.

5.3. Evaluation results of CenterNet models
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Figure 4. Comparison of CenterNet models before and after train-
ing, evaluated on PoseFES for 13 KPs. CN-DLA stands for Cen-
terNet with DLA [42] backbone, and CN-HG stands for CenterNet
with Hourglass [24] backbone.

Table 3. Evaluation results of CenterNet models for 13 KPs on
PoseFES Dataset. The best results are marked bold.

Model CN-DLA CN-HG

Sc Dataset AP AR AP AR

1

COCO 31.1 35.0 34.8 38.4
T+ ft 29.2 34.8 51.0 55.5
T+ 38.9 44.4 44.0 48.8
C&T+ 41.2 44.4 48.4 52.6
C&T+ ft 45.9 50.7 53.5 56.6

2

COCO 23.0 27.6 24.9 30.4
T+ ft 10.4 17.9 34.3 42.0
T+ 17.6 27.4 21.5 31.1
C&T+ 26.7 34.9 39.5 49.1
C&T+ ft 34.5 44.0 43.9 51.7

CenterNet shows very different behaviours than MM-
Pose models. In Fig. 4, both variants benefit from joint
training of object detection and keypoints estimation when
evaluated on PoseFES. Both models significantly outper-
form the COCO pretrained models except for CN-DLA
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Table 4. Evaluation results of CenterNet models for person detec-
tion on PoseFES Dataset.

Model CN-DLA CN-HG

Sc Dataset AP AR AP AR

1
COCO 44.2 52.7 47.9 55.2
C&T+ ft 48.4 56.0 53.8 62.0

2
COCO 56.9 64.3 54.5 61.9
C&T+ ft 65.9 71.7 69.8 74.4

when finetuned only on THEODORE+. To isolate the in-
fluence of the improvement in person detection on HPE,
we compare the evaluation results of keypoint estimation in
Tab. 3 to the evaluation results of bounding boxes in Tab. 4.
To keep it simple, we compare only the models of finetun-
ing with the combined dataset with the COCO pretrained
model. CN-DLA’s improvement in person detection AP is
4.2% for Sc1 and 9% for Sc2. Its improvement in keypoint
estimation AP is 14.8% for Sc1 and 11.5% for Sc2. For
CN-HG, the person detection AP improvement lies at 5.9%
for Sc1 and 15.3% for Sc2. Its improvement in keypoint es-
timation AP is even more significant at 18.7% for Sc1 and
19%. We can conclude that the relationship between im-
provement in person detection and keypoint estimation is
not proportional. Keypoint estimation benefits much more
from the training than person detection.

Evaluation results for 17 keypoints are listed in Tab. 5.
Similarly to 13 keypoints, both models perform best when
COCO pretrained model is finetuned on combined COCO
and THEODORE+ dataset.

Table 5. Evaluation results of CenterNet models for 17 KPs on
PoseFES Dataset. The best results are marked bold.

Model CN-DLA CN-HG

Sc Training AP AR AP AR

1
COCO 28.1 31.7 32.4 35.7
C&T+ 29.6 32.7 34.4 38.4
C&T+ ft 35.1 40.3 38.1 42.4

2
COCO 19.9 24.7 21.7 27.0
C&T+ 15.1 22.4 24.1 34.4
C&T+ ft 23.3 33.3 27.7 36.1

5.4. Qualitative evaluation

In this section we evaluate the quality of the estimation
results by the two most relevant models, HRNet and Cen-
terNet with Hourglass backbone, both finetuned on C&T+.

We conclude from the quantitative evaluation that the
finetuning provides only an improvement of the AP by less
than 2% for HRNet, which seems not significant. Persons at
the edges or in the outer circle of the omnidirectional view

Record_00625.png GT HRNet COCO HRNet C&T+ ft

Record_00666.png GT HRNet COCO HRNet C&T+ ft

Record_00791.png GT HRNet COCO HRNet C&T+ ft

Figure 5. Comparison of estimation examples by HRNet fine-
tuned on C&T+. The cropped area are marked with red dashed
bounding boxes in the original image.

look similar to those in the perspective image when stand-
ing or lying down. These instances are therefore not diffi-
cult for a good top-down model like HRNet even without
finetuning. However, the appearance of the body changes
dramatically when the person bends over or goes to the cen-
ter of the omnidirectional image as shown in Fig. 5. Our
finetuned model shows a clear improvement over the orig-
inal model in these critical cases. In addition, we observe
improvements in estimating joints in occluded body parts
either by other body parts of the same person or by another
person.

Record_00750.png GT CN-HG COCO CN-HG C&T+ ft

Record_00851.png GT CN-HG COCO CN-HG C&T+ ft

Record_00859.png GT CN-HG COCO CN-HG C&T+ ft

Figure 6. Instances of improved estimation results by CenterNet.
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Record_00666.png GT CN-HG COCO CN-HG C&T+ ft

Figure 7. A failed detection and joint estimation by CenterNet.

The improvement is more evident for the CenterNet
model with Hourglass backbone. At the confidence thresh-
old of 0.4, the finetuned model can reliably detect per-
sons in the scene while keeping false positives at minimum.
Smaller instances around the edges and instances near the
center of the image are detected more reliably than the
COCO pretrained model. The estimated keypoints are more
accurate, especially for instances in the center directly un-
der the camera. Fig. 6 shows better estimation results by the
finetuned CenterNet model because of more accurate person
detection and more precise joint estimation. However, the
CenterNet model clearly falls behind the HRNet model. Es-
timation of occluded joints is hardly improved over COCO
pretrained model. Failure cases such as in Fig. 7 is often the
result of faulty person detection. Undetected person natu-
rally means no joint estimation, for example the instance in
Rechord 00625.png shown in Fig. 5 cannot be detected by
the finetuned CenterNet model.

5.5. Temporal performance

Our test bench is a workstation with an Intel Core i9-
9960X CPU and 128 GB of DDR4 memory. The GPU used
for inference is an Nvidia Titan RTX with 24 GB of GDDR
memory.

The MMPose models uses groundtruth bounding boxes,
therefore the inference time for person detection is not taken
into account. HRNet at the resolution of 384 × 288 pixels
needs on average 214ms per image for inferencing on Sc1
of PoseFES and 574ms on Sc2, which makes an average
of 369ms per image on the whole dataset. The inference
time depends on the number of instances, as is the same
with other top-down methods. The average inference time
per instance is 89ms for HRNet. The corresponding values
for SimpleBaseline2D is 159ms per image for Sc1, 468ms
per image for Sc2, 291ms per image for the whole dataset
and 71ms per instance at the resolution of 256×192 pixels.
Using OmniPD for person detection adds about 20∼ 30ms
overhead per image to the top-down pipeline.

CenterNet is a bottom-up model and its speed does not
depend on the number of instances per image. The mea-
sured inference time for CenterNet with DLA backbone is
53ms per image, and for CenterNet with Hourglass back-
bone it is 173ms. Both models process the inputs at the
resolution of 512× 512 pixels.

6. Conclusion
In this paper, we provide THEODORE+, a new synthetic

omnidirectional top-view dataset with 50,000 RGB-images
and annotated 2D and 3D keypoints, containing four ac-
tion categories: sitting, lying, falling and walking, rendered
through the unity engine. Furthermore, for evaluation pur-
poses, the PoseFES dataset, which contains 701 images of
real-world omnidirectional indoor scenes was manually an-
notated with 2D keypoints. We then trained and finetuned
state-of-the-art top-down and bottom-up HPE models for
perspective images to successfully perform HPE on Pose-
FES dataset, namely SimpleBaseline2D, HRNet and Cen-
terNet with two different backbone networks.

The key findings of our work can be summarized as fol-
lows. We figured out that (1) the training on synthetic data
from a perfect omnidirectional camera model significantly
improve the results of real-world data, captured by a non-
calibrated omnidirectional camera. Therefore, the network
is able to deal with the distortion from different omnidirec-
tional camera models. (2) The recognition of persons and
keypoints close to the center of the image are much more
improved than side-viewed persons. This corresponds to
the top-view task, which is one of our motivation to gener-
ate THEODORE+ for the home monitoring of elderly. Our
key finding (3) is already observed in the work of Scheck
et al. [28], and it could be confirmed through our work that
synthetic object detection bounding boxes improve the re-
sults for both disciplines, top-view object detection and top-
view keypoint estimation.

Optimizing our best trained model to an embedded plat-
form for person monitoring in an AAL-context is our major
next step. Further investigations based on THEODORE+
will be activity recognition and the lifting of 2D human
poses to 3D poses with and without stereo image data.
Thanks to our finetuned models, it is possible to create a
large-scale real-world human pose estimation dataset for
omnidirectional top-view with limited resources in the fu-
ture. Our datasets and the synthetic data generation pipeline
will be open for download after the publication of this pa-
per.
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