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1. Group size and connectivity
To further investigate the results, we evaluate the per-

formance of the model on the data set separated into group
size (number of panoramas) and percentage of co-visible
connections between the panoramas. Table 1 shows results
of this analysis. The main takeaway is that the rotation and
translation errors are low when there are a large number of
training examples. For datasets with more than 500 training
examples, the maximum mean translation error for Graph-
CoVis is 0.13m, whereas the best performing baseline has
a maximum error of 0.11m. For datasets with fewer than
100 training examples, the minimum mean translation error
for Graph-CoVis is 0.341m, whereas the best performing
baseline has a minimum error of only 0.14m. Thus, Graph-
CoVis performs worse for datasets with very few training
examples.

Figure 1 provides a visual representation of the ATE and
ARE as a function of connectivity percentage for the three
groups. As the connectivity percentage increases, we ob-
serve an improvement in the performance of Graph-CoVis
as well as the baselines.

Figure 2 shows that the number of training examples is
larger for higher connectivity percentages. While the base-
lines use an optimization step to obtain global poses, Graph-
CoVis must learn the global poses in an end-to-end fashion,
requiring sufficient training data across the spectrum of in-
put cases. As such, we believe that increasing the number
of training examples among the low connectivity percent-
age sets will benefit Graph-CoVis and further improve its
performance.

2. Qualitative examples
Figures 3 and 4 show some qualitative examples of

where our system performs significantly better and moder-
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ately better than baseline approaches. Fig 5 shows examples
when our system performs worse than the baselines.

3. Pose Graph Optimization
We perform Pose Graph Optimization (PGO) using GT-

SAM [1]. We apply a diagonal Gaussian noise model on
the prior constraint to specify the origin node, with stan-
dard deviations of 20 cm and 0.1 radians for translation and
rotation, respectively. We also apply the same model for
the odometry noise, with standard deviations of 30cm and
.3 radians. We use the Levenberg-Marquardt optimizer with
1000 iterations, with a relative error tolerance of 1 × 10−5

for the convergence criteria.

4. Other Baselines
A fair criticism may be made of our paper in that it could

be possible to compare to a more extensive set of baselines
based on additional recently published papers on multi-view
image and panorama pose estimation. Notably, three recent
works PoGO-Net [3], SALVe [2], and Extreme SfM [4] are
relevant.

As explained in the paper, Extreme SfM and SALVe
solve the problem of extreme-wide baseline pose estima-
tion, subject to little-to-no visual overlap, to estimate floor
level reconstruction of indoor spaces. Extreme SfM in
particular focuses on the difficult cases where a single
panorama is captured per room and “seeks to align images
from different rooms by exploiting the regularities of room
arrangement at a house-scale”. Since our problem consists
of multiple panoramas within the same large space and not
at a house-scale, we do not consider Extreme SfM as a di-
rectly comparable baseline approach.

SALVe is similar in application to Extreme SfM in its
end goal of floor plan reconstruction, but by the nature of
the method and input data distribution, it is a stronger can-
didate baseline. It handles all the panoramas captured in a
floor of a home, which include multiple visually connected
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Group-Size %Connection #Test #Train Methods Rotation Translation

Mn(◦ ↓) Med (◦ ↓) Std(◦ ↓) Mn (m. ↓) Med (m. ↓) Std(m. ↓)

Three

66% 52 108
CoVisPose + Greedy 7.849 1.991 18.743 0.308 0.095 0.641
CoVisPose + PGO 15.744 7.971 21.691 0.685 0.283 1.218

Graph-CoVis 5.362 1.364 15.923 0.340 0.124 0.993

100% 1203 2886
CoVisPose + Greedy 2.423 1.007 10.944 0.084 0.051 0.205
CoVisPose + PGO 2.612 0.948 11.386 0.084 0.046 0.228

Graph-CoVis 1.856 0.833 8.706 0.069 0.037 0.208

Four

50% 3 10
CoVisPose + Greedy 53.348 34.067 60.672 1.908 1.642 1.856
CoVisPose + PGO 51.777 25.058 59.321 1.614 0.867 1.936

Graph-CoVis 45.675 27.136 57.675 2.638 2.113 2.478

66% 38 73
CoVisPose + Greedy 7.048 1.920 22.248 0.248 0.099 0.598
CoVisPose + PGO 21.626 8.032 28.184 0.671 0.277 1.156

Graph-CoVis 10.694 2.099 25.795 0.391 0.166 0.567

83% 67 153
CoVisPose + Greedy 4.536 1.413 13.568 0.204 0.081 0.418
CoVisPose + PGO 12.131 4.962 19.478 0.490 0.180 0.910

Graph-CoVis 6.411 1.204 20.784 0.282 0.110 0.603

100% 437 1160
CoVisPose + Greedy 3.199 1.069 15.071 0.111 0.064 0.256
CoVisPose + PGO 3.429 1.045 13.949 0.127 0.056 0.319

Graph-CoVis 1.754 0.870 7.397 0.095 0.052 0.226

Five

50% 3 2
CoVisPose + Greedy 2.739 2.472 2.053 0.140 0.115 0.083
CoVisPose + PGO 26.961 5.718 35.364 0.830 0.559 0.777

Graph-CoVis 8.262 1.046 10.001 0.504 0.418 0.412

60% 14 39
CoVisPose + Greedy 10.203 2.961 18.762 0.539 0.145 0.994
CoVisPose + PGO 27.103 12.960 34.467 0.810 0.478 0.956

Graph-CoVis 9.439 3.542 18.216 0.528 0.217 0.924

70% 26 64
CoVisPose + Greedy 8.096 2.114 26.835 0.196 0.132 0.212
CoVisPose + PGO 20.244 11.380 23.232 0.721 0.267 1.190

Graph-CoVis 8.303 1.889 17.971 0.341 0.162 0.627

80% 44 117
CoVisPose + Greedy 4.155 1.211 14.433 0.169 0.080 0.285
CoVisPose + PGO 18.725 8.783 24.781 0.471 0.232 0.658

Graph-CoVis 3.311 1.236 13.439 0.181 0.106 0.218

90% 46 149
CoVisPose + Greedy 2.611 1.516 7.474 0.160 0.078 0.408
CoVisPose + PGO 7.975 3.258 13.829 0.339 0.138 0.639

Graph-CoVis 2.354 1.022 6.865 0.151 0.098 0.181

100% 219 609
CoVisPose + Greedy 2.584 1.107 11.986 0.120 0.070 0.244
CoVisPose + PGO 3.368 1.028 12.599 0.139 0.063 0.367

Graph-CoVis 2.433 0.948 10.915 0.128 0.064 0.319

Table 1. Mean rotation and translation error for different group sizes, separated into sub-sets based on connectivity (percentage) between
panoramas. The number of training and test examples are shown for each sub-set.

panoramas in a single space and visually not-connected
panoramas across rooms. The former case is the same as
our multi-view setting. SALVe uses separately trained depth
and room layout estimation networks followed by a geo-
metric alignment of the top-down projections of the room
layouts. A deep network then verifies if the top-down pro-
jections are plausible. Finally a pose graph optimization
algorithm estimates the global poses of all the panoramas
that were connected by the alignment and verification steps.
In theory, one could apply required modifications to the
SALVe system to run on smaller sub-sets of panoramas once
the SALVe code becomes available.

Finally, PoGO-Net is a GNN-based alternative to pose

graph optimization. Applied to perspective images, it re-
quires a preprocessing step of generating an initial view-
graph that is subsequently refined and filtered by a GNN
to estimate the final poses. A possible preprocessing ap-
proach is to estimate two-view poses using state-of-the-art
for two-view panorama pose (which is CoVisPose) followed
by pose graph optimization. This is indeed one of the cho-
sen comparison baselines in our paper. Upon PoGO-Net
becoming publicly available, it’s accuracy can be directly
compared to Graph-Covis by applying it on the view-graph
that results from running the CoVisPose + Greedy baseline.



Figure 1. Connectivity percentage plotted against a) Mean ARE and b) Mean ATE in the graph for group size of three, four, and five.

Figure 2. Connectivity percentage plotted against the number of
training samples for the trained model, separated by group size of
three, four, and five.
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Figure 3. Two examples where Graph-CoVis performs significantly better than baselines.



Figure 4. Two examples where Graph-CoVis performs moderately better than baselines



Figure 5. Two examples where Graph-CoVis performs worse than baselines.


