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Abstract

This paper presents a novel approach for visible-thermal
infrared stereoscopy, focusing on the estimation of dispar-
ities of human silhouettes. Visible-thermal infrared stereo
poses several challenges, including occlusions and differ-
ently textured matching regions in both spectra. Finding
matches between two spectra with varying colors, textures,
and shapes adds further complexity to the task. To ad-
dress the aforementioned challenges, this paper proposes a
novel approach where a high-resolution convolutional neu-
ral network is used to better capture relationships between
the two spectra. To do so, a modified HRNet backbone is
used for feature extraction. This HRNet backbone is ca-
pable of capturing fine details and textures as it extracts
features at multiple scales, thereby enabling the utilization
of both local and global information. For matching visible
and thermal infrared regions, our method extracts features
on each patch using two modified HRNet streams. Fea-
tures from the two streams are then combined for predicting
the disparities by concatenation and correlation. Results
on public datasets demonstrate the effectiveness of the pro-
posed approach by improving the results by approximately
18 percentage points on the ≤ 1 pixel error, highlighting
its potential for improving accuracy in this task. The code
of VisiTherS is available on GitHub at the following link:
https://github.com/philippeDG/VisiTherS.

1. Introduction

The objective of this paper is to propose a method for
estimating pixel disparities between a visible image and a
thermal infrared image. The idea of combining these two
types of images is to benefit from each of them for tasks,

(a) RGB rectified image (b) LWIR rectified image

Figure 1. A rectified visible and thermal infrard image from the
LITIV 2018 dataset [17].

such as object detection. If both images form a stereo pair,
estimating disparity allows depth estimation that can fur-
ther be used to improve detection itself or subsequent tasks,
like tracking. The estimation of these pixel disparities can
be used to align the visible-thermal infrared stereo thereby
generating an augmented image. These augmented images
are particularly useful in challenging scenarios such as low
light, fog, and smoke, and can significantly enhance the ac-
curacy of object detection and tracking. In contrast to clas-
sical stereo, pixel pattern-based approaches are insufficient
in visible-thermal infrared stereo, highlighting the need for
more advanced techniques for estimating pixel disparities.

To deal with this particular challenge, we focus on es-
timating disparities of human silhouettes. We assume that
those disparities are estimated from a sparse set of points,
that is, our method is designed for sparse stereoscopy. Hu-
man silhouettes can be captured in both visible and thermal
images, where the silhouette in thermal images is formed
from the body’s heat emission, and in the visible images
by the color on the person. In this case, relying solely on
pixel patterns as in classical stereo is insufficient. For ex-
ample, the shirt logo present in the visible image (Figure
1a) is absent in the thermal image (Figure 1b). In classi-
cal stereo, the shirt logo would have been an effective mean
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of estimating the disparity. We can also observe that the
heat emitted through the shirt is unevenly distributed across
surface. Consequently, the thermal image displays some in-
tensity variation in the shirt region, while the visible image
depicts uniform black coloring. We aim to propose a precise
and efficient method that can estimate the disparity between
the pixels in two human silhouettes.

This paper introduces a new convolutional neural net-
work (CNN) architecture, called VisiTherS (standing for
Visible-Thermal infrared Stereo), for estimating the dispar-
ity between visible and thermal image pairs. We propose
to use a high-resolution network for extracting features as
we believe that it can capture better the relationships be-
tween the pixels in both types of images. For this purpose,
we selected HRNet to obtain a series of feature maps with
strong semantic meaning at different scales. We investi-
gated two ways to use the feature maps. First, we concate-
nated the features at the different scales of the last stage,
which are adjusted to match the highest resolution feature
map size. The resulting feature maps can take advantage of
both high-resolution information and multi-scale informa-
tion, providing a more comprehensive representation of the
input data.Second,we concatenated high-resolution feature
maps of two stages, thus retaining only the high-resolution
information. We show that both of these strategies to ex-
ploit high-resolution features significantly improve results
compared to the best SOTA methods.

Our proposed method consists of two HRNet streams,
where each patch of the image in the stereo pair has its own
feature extractor.While both streams have the same struc-
ture, but there is no weight sharing between them. Vis-
iTherS takes two small square patches as input and extracts
features from them, resulting in a feature vector for each
image patch. To enhance the robustness of our network for
predicting disparities, we employ two fusion techniques on
the feature vectors. Firstly, we perform a correlation prod-
uct between both vectors, forwarding the result to the corre-
lation head. Secondly, we perform a concatenation between
the two vectors, forwarding the result to the concatenation
head. Better results are generally obtained by using the two
fusion techniques simultaneously compared to only using
correlation or concatenation. The correlation and concate-
nation heads consist of fully connected layers outputing the
probability of both patches being the same or not. Each
classification head has its own loss function, and during
testing, we employ both classification heads to obtain the
disparity predictions.

Our contributions can be summarized as follows:

• We propose VisiTherS, a new CNN architecture based
on two streams composed of a high-resolution convo-
lutional neural network feature extractor. Our archi-
tecture extracts features from both image domains and
uses two fusion processes to compute the probability

of the input patches being the same.

• Our findings show that our model is highly effective
in performing disparity estimation between visible and
thermal image pairs and that high-resolution features
are a good choice for this kind of task. This represents
a significant improvement over existing approaches
and highlights the potential of our novel CNN archi-
tecture in advancing the field of disparity estimation.

2. Literature review
Stereo estimation can be achieved through two primary

approaches: sparse stereo and dense stereo. These two ap-
proaches are the main methods used to perform the stereo
estimation. Sparse stereo estimation involves selecting two
regions from the original images, rather than inputting the
entire images into the network. That is, only small patches
around the disparity points are fed into the network. The ob-
jective is to find the corresponding patch in the other image.
The disparity is calculated by measuring the pixel distance
between the coordinates of these two patches. Since dense
disparity labels are not required, this approach is applicable
to both dense and sparse datasets, although it is generally
slower in the case of dense stereo estimation.

Several papers have explored this approach in visible-
visible stereo, including the pioneering work of Zbontar and
LeCun [23], where a CNN is used to learn the similarity
between a 9 × 9 region on the left and right images, with
the goal of determining the disparity between these regions.
Luo et al. [15] built upon this approach by creating a feature
vector for the left image patch and a feature volume for the
right patch and using correlation products to calculate the
probability distribution of the disparity. Kendall et al. [13]
proposed the GC-Net, which was the first end-to-end archi-
tecture using a Siamese network for feature extraction and
3D convolution for disparity mapping. Other methods have
then been developed, including those using spatial pyramid
pooling modules for feature extraction, and hourglass net-
works for cost volume regularization and disparity regres-
sion [7].

In dense stereo, disparities are estimated for each pixel of
the images. To effectively train a machine learning model
and reduce the likelihood of it overfitting, it is necessary
to have datasets that contain a large number of densely la-
beled examples. The first that proposed an end-to-end dense
stereo model were Mayer et al. [16]. This work had a
huge impact on the field since they created a densely anno-
tated dataset FlyingThings3D. This dataset consists of im-
ages having a disparity value at every pixel, which leads
to a lot of subsequent work using the end-to-end method.
Their method, called DispNet, is inspired by FlowNet [10]
for compression and decomposition, respectively. The com-
pression part is built with convolutions that result in a final
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reduction factor of 64. The decompression then resizes the
disparity maps gradually in a non-linear way, taking into
consideration the characteristics in the compression step.
The final result of the network is a disparity map with the
same image size as the input image.

Prior to the rise of neural networks, Visible-thermal in-
frared stereo relied on matching feature points, often using
SIFT [14] as a feature descriptor. MSIFT [6] was then intro-
duced to improve the correlation between RGB channels in
RGB (visible)-NIR (Near-infrared) pairs of images. How-
ever, some methods have opted to use window-based meth-
ods, such as mutual information [20], HOG [8], SSD [5],
LSS [19], to find image matches. Among these window-
based methods, Bilodeau et al. [5] found that mutual infor-
mation is the most accurate approach [17].

In recent studies of visible-thermal infrared stereo,
Beaupré et al. [3] proposed a novel method using two
Siamese networks to compute the disparity from visible to
thermal and vice versa. The Siamese networks have shared
parameters, and their architecture is similar that of Luo et
al [15]. The method involves comparing a small patch of
a visible image with a patch in the thermal image of the
same height, but of the full width of the original image. The
correlation is done with every possible translation to find
the corresponding disparity. The same principle applies to
the other Siamese network, however the small patch corre-
spond to is the thermal image at the given disparity while
the wider image is the visible image. To select the final dis-
parity, a summation layer is used, to sum up, the prediction
vector from each network branch, with the final disparity
being the maximum element.

In a subsequent work by Beaupré et al. [4], a mod-
ified approach was proposed, yielding to significant im-
provements over the previous method. Unlike the previous
method, this approach does not share weights between the
two feature extraction branches. This change was made due
to the dissimilar nature of the two types of images used in
visible-thermal infrared stereo matching. Unlike the typi-
cal inputs used in Siamese networks, the visible and ther-
mal images are dissimilar in terms of color, shape, and con-
trast. The only aspect they have in common is the shape
of the objects, which is not even exactly the same due to
the differences in how the images are captured. Therefore,
parameter sharing between feature extractors is not appro-
priate in this case. This approach served as an inspiration
for our work. In the work of Duplessis-Guindon et al. [11],
an approach was proposed for estimating the disparity of
people in a scene using segmentation masks obtained from
both visible and thermal images. Masks helped estimate the
disparities at the object boundaries.

Visible-infrared stereo matching is not limited to thermal
infrared, as there have been studies on Visible-Near infrared
(NIR) stereo as well. Aguilera et al. [2] investigated the ef-

fectiveness of three different CNN architectures compared
to the traditional methods mentioned earlier for this task.
Building on their previous work, Aguilera et al. [1] intro-
duced quadruplet networks that take two matching pairs of
images, providing two pairs of positive examples and four
pairs of negative examples for training. However, simi-
larly to visible-thermal infrared stereo, there is a shortage
of datasets for Visible-NIR stereo. To address this problem,
Zhi et al. [22] created a method that transforms a visible im-
age into the NIR spectrum and uses the resulting image for
self-supervised learning.

3. Proposed method

Our method is inspired by the work of [4]. Figure 2 visu-
ally depicts the overall architecture of our model. It is com-
posed of two streams, one for the visible (RGB) and one
for thermal infrared (LWIR) patches. In both, features are
extracted using a high-resolution CNN. Features are then
fused and patches are classified. Our architecture is detailed
in the following.

3.1. Feature extractor

In this section, we explain in detail the feature extraction
part of our architecture. It requires two patches as input, an
RGB and an LWIR patch. These patches are sized 36× 36
to capture the surrounding context of the image around a
point where we wish to calculate disparity. These patches
are referred to in the following as PRGB and PLWIR. As
shown in Figure 2, each patch is processed by its own fea-
ture extractor with different learned weights. Each feature
extractor outputs a 36×36×64 feature map represented by
FRGB and FLWIR as illustrated in Figure 2.

For feature extraction, we selected HRNet [21] to obtain
high-resolution features. This is motivated by the fact that
visible and thermal infrared are different, and we believe
that more expressive feature maps are required to match
them. Traditional CNN backbone architectures reduce res-
olution between convolution layers, leading to less infor-
mation in the final feature maps. HRNet major objective is
to align input and output resolution. HRNet maintains res-
olution after each convolution and each stage adds a new
feature map scale. The network output is a concatenation of
these feature maps. All feature maps are resized to match
the original input size. The final feature map, therefore, has
a large number of channels. The original HRNet [18] net-
work performs a series of convolutions on this final feature
map to reduce its dimensions. However, our goal in intro-
ducing this feature extractor is to have the best possible res-
olution. We therefore only scaled the number of channels to
have as output a feature map of size 36× 36× 64. The last
dimension of the feature map represents the number of fea-
ture channels. In our HRNet architecture, we removed the
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Figure 2. Overview of our proposed network architecture. RGB: visible, LWIR: Thermal infrared. Features are first extracted by two
independent streams for RGB and LWIR. Features are then combined together using concatenation and correlation. Correlated features
and concatenated features are then fed to two separate classification heads. Classification results are then combined (not shown in the
figure).

upper layers from the original and kept only the first three
stages.

We investigated two ways of exploiting the feature maps
generated by HRNet. In the first, we concatenate features
from several scales at the last stage. This is illustrated in
Figure 3a. In the figure, yellow feature maps are 36 × 36,
orange feature maps are 18 × 18, and red feature maps are
9× 9. To obtain the concatenated feature map, we concate-
nated the three feature maps of the last stage and adjust their
sizes to match the highest resolution. This results in a con-
catenated output of the three multiscale feature maps, which
formed the final feature map FRGB or FLWIR, depending
on the stream.

In the second way presented in Figure 3b, we concate-
nate the highest resolution features from several stages.
More precisely, we are concatenating the high-resolution
feature map of the last stage with that of the previous stage.
Therefore, we only keep high-resolution information. This
results in a concatenated output of the two high-resolution
feature maps, which formed the final feature map FRGB or
FLWIR, depending on the stream.

3.2. Classification heads

In our proposed method, we employ two distinct fusion
operations on feature maps, namely correlation and con-
catenation, as described in [12]. These fusion operations
are widely used in disparity estimation for integrating im-
age features. While both operations have their advantages,
each also presents certain limitations. Specifically, the cor-
relation fusion operation is characterized by its computa-
tional speed and memory efficiency; however, it may re-
sult in the loss of some features from both spectra during
the fusion process. On the other hand, the concatenation

operation does not lead to any loss of features, but it en-
tails a trade-off between the computational time and mem-
ory space required for its implementation. The correlation
operation outputs a 36 × 36 × 64 feature map, represented
by fcorr in Figure 2. The concatenation operation outputs a
72×36×64 feature vector, which is represented by fconcat
in Figure 2. Both fcorr and fconcat are going through sepa-
rate fully connected networks (FCNs). The weights are not
shared between each fully connected network and each out-
put a classification vector. These are represented by ycorr
and yconcat in Figure 2. Both FCNs generate a 2D probabil-
ity vector and this vector represents the likelihood that two
patches are either identical or different.

3.3. Training losses

The network can learn by training on two corresponding
image patches of 36 × 36 pixels (PRGB and PLWIR), one
for the visible spectrum and one for the thermal spectrum.
During inference, the network is fed with a 36×36 patch in
the visible spectrum and it tries to locate the corresponding
patch within a larger thermal image patch. In other words,
the network learns to associate the two types of images and
can use this knowledge to identify the location of a visible
patch within a thermal patch.

To train our network, we employ two separate loss func-
tions, one for the correlation head and another for the con-
catenation head. This allows us to optimize the network
performance based on both fusion schemes. They are given
by

losscorr = −1/N

N∑
i=1

gtilog(yicorr), (1)
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(a) Concatenation of feature maps of various scales from the last stage.

(b) Concatenantion of feature maps from the last two stages.

Figure 3. Our proposed versions of feature extractors. For 36× 36 image patches, neglecting the number of channels, yellow feature maps
are 36× 36, orange feature maps are 18× 18, and red feature maps are 9× 9.

and

lossconcat = −1/N

N∑
i=1

gtilog(yiconcat), (2)

where N represent the number of data points, gti the
ground-truth, which is 0 or 1 if the patches are the same,
and yicorr and yiconcat are the similarity probabilities.

The total loss function is given by the sum of both losses
in both heads by

losstotal = losscorr + lossconcat. (3)

3.4. Disparity estimation

To evaluate the disparity, a maximum disparity value
dmax is established. To form a wider thermal patch, with
the same height of 36 and width of 36 + dmax, half of this
distance is added to both sides of the center point of the
patch. With this, the network is able to perform dmax trans-
lations of a 36 × 36 thermal image patch while the visible
patch remains the same.

After passing these patches in the feature extractor,
FRGB will be a feature map of size 36×36×64 and FLWIR

will be a feature map of (36 + dmax)× 36× 64. Next, the
FLWIR are passed through the fusion operations and passed
through the fully connected layers, as explained earlier. The
resulting ycorr and yconcat correspond to the probability of
the patches being the same or different.

For every possible disparity value in the enlarge ther-
mal patch, there is now a matching probability indicating
whether the 36×36 patch at this disparity value corresponds

to the visible patch or not. The disparity is then the index d̂
with the highest probability. This is given by

d̂corr = argmax(ycorr), (4)

and

d̂concat = argmax(yconcat). (5)

The final disparity is an average of the best disparity
from each branch d̂corr and d̂concat and is given by

d̂ =
d̂corr + d̂concat

2
. (6)

4. Experiments

In this section, we provide a detailed overview of the
experimental setup, datasets used for training and testing
our model, as well as our results with comparison with other
state-of-art methods. We also present an ablation study.

4.1. Implementation details

Our network is built using the PyTorch framework, with
a default patch size of 36 × 36 with a maximum disparity
of 64 for testing. The HRNet backbone was pre-trained on
ImageNet [9]. We only use the first three stages.

We employ the Adam optimizer for backpropagation.
We use a gradient step of 0.001. We trained for 200 epochs
with a batch size of 24, as it is the maximum that fits on an
RTX 2080 GPU.
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4.2. Dataset and metrics

We used two datasets: the LITIV 2014 [17] dataset
and the LITIV 2018 [17] dataset. The limited availability
of visible-thermal infrared datasets pose a significant chal-
lenge for training CNNs. In our particular case, despite us-
ing the LITIV datasets, the number of ground-truth points
is only slightly above 40,000, which is inadequate for ro-
bust training without data augmentation. Therefore, we use
two data augmentation techniques. The first data augmen-
tation technique consists of assigning the same disparity as
a ground-truth point to its immediate neighbors [4]. There-
fore, for a pixel with a Manhattan distance of one, we con-
sider that they all have the same disparity. This makes the
dataset 5 times bigger. Another technique used to generate
more data is mirroring over the y axis. This additionally
doubles the number of data points.

Our method was evaluated with cross-validation and
trained/tested using different folds, mixing both datasets for
training, validation and testing. We used the same folds as
Beaupré et al. [4]. The datasets feature several actors mov-
ing in a room. It is to be noted that a few files are missing
from the original datasets. Therefore, for a fair comparison,
we re-ran the Beaupré et al. [4] method on the slightly in-
complete dataset. We have evaluated our method with the
recall metric given by

Recall =
1

N

N∑
i=1

|d̂i − gti| ≤ n, (7)

where N stands for the number of points to be evaluated,
d̂i represents the evaluated disparity at a given point, gti

is the ground-truth at the same given point, and lastly, n
represents the allowed correspondence error in pixels.

4.3. Comparison with state-of-the-art methods

The performance of our proposed VisiTherS approach,
which incorporates both scale concatenation (VisiTherS-
scales) and stage concatenation (VisiTherS-stages), was
evaluated against several state-of-the-art (SOTA) methods
on the LITIV 2014 and LITIV 2018 datasets. Tables 1 and
2 present the results of these evaluations. The tables report
the mean of three folds. VisiTherS obtains SOTA results
on both datasets, with significantly improved performance
for the ≤ 1 pixel error and ≤ 3 pixel error, particularly
for the LITIV 2014 dataset. Given, the low standard devia-
tion, this performance is observed across all folds. This val-
idates our hypothesis that high-resolution features are im-
portant for matching the content of dissimilar modalities,
like thermal infrared and visible images. Comparing our
proposed two versions of feature exploitation strategies, we
can observe that they give results that are quite similar with
a small advantage to VisiTherS-scales for the ≤ 1 pixel
error on LITIV 2014 and the reverse on LITIV 2018. This

suggests that incorporating multiple scales can improve the
correspondence process since the complexity of the content
of patches may differ across scales, but considering differ-
ent stages can give equivalent results. On the LITIV 2018
dataset, 4D-MultispectralNet that uses object masks is not
far behind VisiTherS for the ≤ 1 pixel error, but having
high-resolution features proves to be globally a better strat-
egy. Adding masks to VisiTherS did not improve our re-
sults.

It should be noted that the results obtained with the Do-
main Siamese CNN method [4] differ slightly from those
reported in the corresponding paper, as the code was re-
run. It yields slightly lower results for ≤ 3 pixel error
precision, but for ≤ 1 pixel error and ≤ 5 pixel error
precision, the results are higher than their initial study due
to differences in the dataset. Considering both the new re-
sults and the originals, our proposed method outperforms
Domain Siamese CNN significantly showing the benefit of
high-resolution features.

4.4. Ablation study

4.4.1 Ablation study of feature fusion

Previous studies showed that using concatenation and cor-
relation of features simultaneously gave better results than
each separately [4]. Our new approach was able to vali-
date this observation. In this study, while both convolu-
tional neural networks (CNNs) extracted features from each
patch, only one feature fusion operation was performed at a
time to observe its performance. This study was performed
with VisiTherS-scales. Results are presented in Table 3.
They indicate that generally, the combination of both fu-
sion methods yields superior performance compared to each
fusion operation used separately. However, the correlation
fusion method outperformed the concatenation method and
the combined method (VisiTherS-scales) for the third fold
of LITIV 2014. Nevertheless, by comparing the results for
LITIV 2014 in Table 3, it can be observed that combin-
ing the two operations gives better results than using the
concatenation or correlation operation for most folds. For
LITIV 2018, the correlation operation outperforms the com-
bined operations for the second fold. The correlation op-
eration performs better in terms of recall metric across all
three precision values. In general, correlation is a more ef-
ficient approach than concatenation. However, the result is
improved when both are used together.

4.4.2 Comparison of the two proposed feature extrac-
tors

We conducted ablation studies on both versions of our pro-
posed feature extractors. By concatenating the full reso-
lution of the last two stages, we achieved better results,
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Table 1. Results on LITIV 2014 compared to SOTA Methods. The results are the mean of the 3 folds [4] domain with standard deviation.
†We re-ran their code with the slightly incomplete dataset. ‡: results on the complete dataset. VisiTherS-scales: feature maps concatenated
from three scales. VisiTherS-stages: high-resolution feature maps concatenated from two stages. Bold: Best Result

Method ≤ 1 pixel error ≤ 3 pixels error ≤ 5 pixel errors
Domain Siamese CNN [4] † 56.3 ± 3.6 89.9 ± 0.4 98.5 ± 0.4

Siamese CNN ‡ [3] - 77.9± 5.0 -
St-Charles [17] ‡ 48.2 ± 4.0 - -

Mutual Information [5] (40× 130) ‡ - 83.3 -
Mutual Information [5] (20× 130)‡ - 77.5 -
Mutual Information [5] (10× 130) ‡ - 64.9 -
Fast Retina Keypoint [5](40× 130) ‡ - 64.1 -

Local Self-Similarity [5, 17](40× 130)‡ 22.6 ± 10.7 73.4 -
Sum of Squared Difference [5](40× 130) ‡ - 65.6 -

4D-MultispectralNet [11] 57.5 ± 2.3 88.7 ± 1.0 98.6 ± 0.4
VisiTherS-scales (ours) 75.0 ± 0.7 96.2 ± 0.4 99.6 ± 0.2
VisiTherS-stages (ours) 74.1 ± 1.2 96.9 ± 0.6 99.8 ± 0.1

Table 2. Results of all our methods on the 2018 LITIV dataset. The results are the mean of the three folds with standard deviation. Bold:
Best Result.

Methods ≤ 1 pixel error ≤ 3 pixels error ≤ 5 pixels error
DASC Sliding Window [17] 10.4 - -

Multispectral Cosegmentation [17] 26.5 - -
Domain Siamese CNN [4] † 44.2 - -

4D-MultispectralNet [11] 60.5 ± 4.4 87.4 ± 2.0 98.7 ± 0.1
VisiTherS-scales (ours) 63.3 ± 7.0 92.6 ± 2.3 99.7 ± 0.2
VisiTherS-stages (ours) 63.6 ± 5.4 94.8 ± 2.6 99.9 ± 0.1

as demonstrated in Table 4. Comparing the results on the
LITIV2014 dataset, we observed an improvement in preci-
sion from 96.24 to 96.94 for ≤ 3 pixel errors. However,
for ≤ 3 pixel errors, the precision dropped slightly from
75.00 to 74.14, which can be considered relatively similar
as the standard deviation overlaps. The precision for ≤ 5
pixel errors improved slightly from 99.61 to 99.87. Re-
garding the results on the LITIV 2018 dataset, VisiTherS-
stages always gets better results compared to the VisiTherS-
scales.

4.4.3 Impacts of the choice of layers

We tested the accuracy of the high-resolution layer accord-
ing to each stage in HRNet. We can see the results in the
table 5. In this table, x1 represents the first stage full reso-
lution output, x2 represents the second stage full resolution
output, and x3 represents the third stage full resolution out-
put (see figure 3b). We can see that the best results are split
between x2 and x3. Indeed, for the ≤ 1 pixel error, the
last stage has better performance. However, for ≤ 3 pixel
error and ≤ 5 pixel error, stage x2 is better. This, there-
fore, justifies our choice to use the output of x2 and x3 in

VisiTherS-stages.

5. Conclusion

This paper introduces a new method for visible-thermal
infrared disparity estimation. The proposed model is de-
signed with two versions of feature extractors that employ
two streams to extract features independently for each vi-
sual and thermal infrared image patch. The first version
concatenates features of different scales in one layer, while
the second version concatenates high-resolution features of
different stages. The model combines the extracted features
from both images using two operations, namely correlation
and concatenation, to jointly enhance the network perfor-
mance. Overall, the proposed model, VisiTherS, offers a
novel solution for disparity estimation with promising re-
sults. Experimental evaluation on public datasets reveals
that the proposed method surpasses several SOTA methods.
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Table 3. Ablation study of fusion methods in terms of recall for several pixel errors. Bold: Best Result.

Correlation Concatenation VisiTherS-scales (both operations)
≤ 1 pixel ≤ 3 pixels ≤ 5 pixels ≤ 1 pixel ≤ 3 pixels ≤ 5 pixels ≤ 1 pixel ≤ 3 pixels ≤ 5 pixels

LITIV2014-fold1 73.44 96.22 99.76 69.22 93.32 99.11 75.61 95.97 99.80
LITIV2014-fold2 68.23 94.89 99.37 64.88 95.45 99.41 75.08 96.06 99.67
LITIV2014-fold3 77.15 95.87 99.66 80.93 97.68 99.86 74.30 96.06 99.36
LITIV2018-fold1 68.39 92.79 99.62 60.70 90.72 99.50 68.64 94.65 99.92
LITIV2018-fold2 59.33 92.21 99.71 56.07 87.14 97.73 55.40 90.16 99.52
LITIV2018-fold3 64.14 93.06 99.55 59.95 87.20 97.80 65.98 92.83 99.64

Table 4. Ablation study of comparison between proposed versions of feature extractors in terms of recall for several pixel errors. Bold:
Best Result.

Dataset Error VisiTherS-scales VisiTherS-stages
LITIV 2014 ≤ 1 pixel 75.00 ± 0.66 74.14 ± 1.21

≤ 3 pixels 96.24 ± 0.40 96.94 ± 0.56
≤ 5 pixels 99.61 ± 0.23 99.87 ± 0.04

LITIV 2018 ≤ 1 pixel 63.34 ± 7.00 63.55 ± 5.37
≤ 3 pixels 92.55 ± 2.26 94.83 ± 2.64
≤ 5 pixels 99.69 ± 0.21 99.90 ± 0.10

Table 5. Results on LITIV2014-fold1, according to the depth of
the high-resolution stage. Bold: Best Result.

Error x1 x2 x3
≤ 1 pixel 73.04 76.66 76.83
≤ 3 pixels 95.58 96.64 96.35
≤ 5 pixels 99.26 99.84 99.76
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