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Abstract

Contrastive learning methods have been applied to a
range of domains and modalities by training models to iden-
tify similar “views” of data points. However, specialized
scientific modalities pose a challenge for this paradigm, as
identifying good views for each scientific instrument is com-
plex and time-intensive. In this paper, we focus on apply-
ing contrastive learning approaches to a variety of remote
sensing datasets. We show that Viewmaker networks, a re-
cently proposed method for generating views without exten-
sive domain knowledge, can produce useful views in this
setting. We also present a Viewmaker variant called Div-
maker, which achieves similar performance and does not
require adversarial optimization. Applying both methods
to four multispectral imaging problems, each with a differ-
ent format, we find that Viewmaker and Divmaker can out-
perform cropping- and reflection-based methods for con-
trastive learning in every case when evaluated on down-
stream classification tasks. This provides additional ev-
idence that domain-agnostic methods can empower con-
trastive learning to scale to real-world scientific domains.
Open source code can be found at https://github.
com/jbayrooti/divmaker.

1. Introduction
Contrastive learning methods have demonstrated re-

markable ability to learn high-quality representations with-
out relying on labels, often achieving equivalent or higher
classification accuracy than supervised approaches after
pretraining on large unlabeled image datasets [7, 33, 45].
These advances suggest the utility of contrastive learning in
settings beyond natural images, including many impactful
applications in the sciences, engineering, medicine, and be-
yond. However, a key barrier to mainstreaming contrastive
learning applications is choosing the appropriate “views”:
the data corruptions that determine the contrastive learn-
ing process [7, 37]. It is challenging to develop effective

views for new applications, as this process requires domain
knowledge and trial and error for each setting.

Aerial satellites measure terabytes worth of multispec-
tral image data in various forms every day. They use re-
mote sensors to measure distinct wavelengths of light and
stack outputs into n-channel images, which are used to ana-
lyze light beyond the human-visible spectrum. Such images
can offer insights into natural phenomena like temperature
variation that RGB data cannot. Robust and accurate self-
supervised learning techniques for satellite images could
aid advances in agricultural growth efficiency, understand-
ing of climate change, tracking urban development, and en-
vironmental monitoring [15, 18, 24–26]. In this paper, we
investigate contrastive learning with multispectral satellite
images.

The dominant views for contrastive learning on natural
images were identified via extensive trial and error, and in-
volve applying augmentations such as color jitter and hor-
izontal flipping to RGB images [38, 44]. However, these
RGB views do not transfer well to multispectral images
since each channel has different numeral ranges and se-
mantics, making it impossible to directly apply such trans-
formations. Domain-agnostic generative Viewmaker net-
works [35] propose to learn such data transformations with
a generative model trained adversarially with an encoder.
However, Viewmaker networks have not yet been applied
to a broader range of scientific data.

To address this gap, we evaluate Viewmaker networks
on multispectral satellite image datasets. Furthermore, we
introduce a generative network called Divmaker, which pro-
duces views optimized for diversity and does not require ad-
versarial optimization. While Divmaker performs slightly
worse than Viewmaker, our results confirm that both
domain-agnostic view generation methods enable higher
quality contrastive learning than with reasonable, hand-
designed augmentations. We demonstrate this on three dif-
ferent large-scale multispectral satellite datasets and com-
pare with an RGB satellite dataset for additional context.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

440



(a) The input image is from NWPU-RESISC45 with the label Baseball Diamond.

(b) The input image is band 2 from So2Sat Sentinel-2 with the label Compact Low-Rise.

(c) The input image is band 1 from BigEarthNet with the multi-label: Mixed Forest, Transitional Woodland/Shrub, Non-Irrigated Arable Land, Broad-
Leaved Forest.

Figure 1. Learned perturbations (bottom right) appear varied in shape, intensity, and placement to augment semantic features in
the original input in targeted ways. The input image is on the left and resulting views are given on the top right. Perturbations (deltas)
were generated using Viewmaker and then linearly scaled to the full image range for clear visualization with corresponding views.

2. Related Work

Contrastive learning. Self-supervised learning enables
learning representations from large, unlabeled datasets
which can be used for downstream tasks like classification,
object detection, semantic segmentation, or visual naviga-
tion. Contrastive learning methods have been shown to pro-
duce good representations by identifying transformed pos-
itive “views” of the same inputs [6–8, 14, 42, 45]. Such
approaches rely on good choices of data augmentations
[38, 44] that yield representations discriminative with re-
spect to the downstream tasks and yet general enough to
be applied to new tasks. Such augmentations may not al-
ways be known a priori. This problem is especially per-
tinent in less common domains and modalities like multi-
spectral satellite images, 3D images, tabular data, and voice
recordings.

Learning from satellite images. Deep learning re-
search on satellite imagery contends with a variety of fac-
tors including vast unlabeled datasets, spatial-temporal het-
erogeneity within classes, cloud interference, and texture
and color discontinuities between image tiles [36]. Learn-
ing methods have been productively applied to tasks such
as poverty mapping [13], local climate zone classification
[47], water temperature prediction [39], food safety anal-
ysis [27], enhancing agricultural yield [4], everyday scene
classification [9,17,29], and sustainable development mon-
itoring [46]. In this paper, we investigate classification of
land use, local climate zones, and everyday scenes.

Contrastive learning for satellite images. Multispec-
tral satellite images often contain heterogeneous back-
grounds with significant structural information and vary-
ing resolutions depending on the remote sensor’s settings
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(a) The input image is from NWPU-RESISC45 with the label Baseball Diamond.

(b) The input image is band 1 from EuroSAT with the label Highway.

(c) The input image is band 2 from So2Sat Sentinel-1 with the label Dense Trees.

Figure 2. Divmaker manages to generate diverse and effective views without adversarial optimization. We see this as perturbations
from the Divmaker (bottom right) appear to act in similar ways to perturbations from the Viewmaker (upper right). The original input
image is given on the left and perturbations (deltas) have been linearly scaled to the full image range for clear visualization.

[3,10]. Since these characteristics differ from those of stan-
dard RGB images (i.e. in ImageNet or CIFAR-10), tradi-
tional contrastive learning augmentations do not transfer
well to multispectral images. Features like geographical
distance between patches have been shown to produce use-
ful views for datasets [19], although this requires having ac-
cess to the coordinate location of each image or very-high
resolution allowing the images to be divided into smaller
patches during training [3]. Another work splits input im-
ages into two views based on their channels, passes them as
inputs to two different encoder networks, and uses the em-
beddings themselves as positive views for contrastive learn-
ing [1]. Since each remote sensing application has different
bands, the splitting process would need to be customized.
There have been additional methods proposed like sharp-
ness transformation and random erasure [16, 30], however
many of these depend on dataset-specific properties (i.e.

high resolution and number of bands) or have varying effec-
tiveness across datasets. Due to the diversity of multispec-
tral image formats, it is less feasible to exhaustively search
for the most effective augmentation strategy as in [7], which
isolated the best augmentation pairs on RGB images. Thus,
we focus on general out-of-the-box view-generating meth-
ods that need little customization.

Domain-agnostic machine learning. Domain-specific
self-supervised learning algorithms have enabled significant
gains in fields such as natural language processing [11, 12],
computer vision [7, 8], and speech processing [2]. How-
ever, many other domains with rich, unlabeled datasets
could also benefit from self-supervised approaches. Recent
work responds to this interest in advancing domain-agnostic
self-supervised learning with new benchmarks [32, 34] and
learning algorithms [23, 41]. In this work, we apply and
build on Viewmaker networks and demonstrate that such
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domain-agnostic learning approaches can be fruitfully ap-
plied in a range of different remote sensing applications.

3. Methods
In this section, we discuss Viewmaker and introduce a

new variant called Divmaker, which optimizes for diverse
view generation.

3.1. Viewmaker

The Viewmaker [35] is a generative network trained to
produce augmented images, or views, that are useful for
contrastive learning. The Viewmaker V takes an input im-
age X and gives a perturbation V (X), which is added to the
input to obtain the view X+V (X). Adversarial training en-
courages perturbations to be complex and strong enough to
necessitate encoding useful representations. Perturbations
are constrained to an l1 sphere (with size controlled by a dis-
tortion budget hyperparameter) around the input to maintain
faithfulness to the original features. Lastly, the network in-
jects random noise so perturbations differ from each other.
Viewmaker-learned views have seen recent success, outper-
forming baseline augmentations on speech recordings and
wearable sensor data and attaining comparable downstream
accuracy on natural images. Note that the Viewmaker’s ad-
versarial training setup with the encoder requires a fully dif-
ferentiable objective.

3.2. Diversity Viewmaker (Divmaker)

We introduce the Divmaker, a domain-agnostic view
generation approach that does not require adversarial train-
ing and optimizes for diverse rather than challenging views.
Like the Viewmaker, Divmaker offers a way to generate
new views and uses the same contrastive loss.

Before formalizing the Divmaker view-generation loss,
we introduce the following notation. Consider a tempera-
ture parameter τ , an anchor input x ∈ D with embedding z,
and associated views xi with embeddings zi for 1 ≤ i ≤ K.
We use the cosine similarity measure on embeddings:

sim(z, z′) =
zT z′

||z||||z′||
(1)

And define:

h(z, z′) = exp

(
sim(z, z′)

τ

)
(2)

Then the Divmaker loss is:

L = Ex∼D

(
−

K∑
k=1

log
h(zk, z)

h(zk, z) +
∑

l ̸=k h(zk, zl)

)
(3)

The intuition is to optimize diversity by maximizing co-
sine similarity between the original input and its gener-
ated views while minimizing similarity between two views

(K = 2) for the same input. This is in contrast to the View-
maker, which tries to create challenging views via an ad-
versarial loss without explicitly optimizing for the diversity
of the views. This diversity objective was previously used
for self-supervised anomaly detection [28], where the views
learned were a finite set of learned masks. Instead, we gen-
erate dynamic and input-conditioned views with a stochas-
tic neural network, as Viewmaker does. The Divmaker loss
is also closely related to the Triplet loss [43], which has
been widely used in other applications and shares parallels
with standard contrastive learning losses [20].

Like the Viewmaker, the Divmaker network outputs a
bounded perturbation, which is added to the input to pro-
duce a view that can be used for contrastive learning. The
strength of Divmaker-generated views is controlled by the
distortion budget, which specifies the magnitude of Di-
vmaker’s perturbation output as done in the Viewmaker.
Training with diverse views could help capture a wider
range of augmentations encountered in practice and enable
the encoder to learn useful representations earlier in train-
ing. Furthermore, by separating the Divmaker and encoder
objectives, we eliminate the differentiable restriction on the
encoder, allowing Divmaker to work with state-of-the-art
non-differentiable contrastive learning methods [5, 6]. Fi-
nally, while we did not experience training instabilities with
Viewmaker, Divmaker’s avoidance of adversarial training
may enable more stable training for larger models [21].

3.3. Datasets

We apply Viewmaker and Divmaker to four large-scale
satellite datasets. Examples from each dataset are given in
Figure 3. Note that each band is shown separately for mul-
tispectral images.

EuroSAT is a dataset of 27,000 images consisting of
low cloud-cover satellite Sentinel-2 images from 34 Euro-
pean countries. Images are labeled with one of 10 classes
describing land use such as Sea and Lake, Industrial, and
Pasture with 2,000 to 3,000 images per class. Each image
includes 13 spectral bands in the visible, near infrared, and
short wave infrared part of the light spectrum [17].

So2Sat LCZ42 Sentinel-1 and Sentinel-2 is a bench-
mark dataset composed of 400,673 low cloud-cover im-
ages collected by Sentinel-1 and Sentinel-2 satellites over
42 large cities and 10 smaller areas spanning six continents.
Images are labeled with one of 17 classes in the Local Cli-
mate Zones (LCZ) classification scheme, which are based
on climate-relevant surface properties such as structure, sur-
face cover, and anthropogenic parameters. Some examples
include Open High-Rise, Dense Trees, Heavy Industry, and
Water [47]. Sentinel-1 data contains 8 real-valued bands
Sentinel-2 data contains 10 real-valued bands.

BigEarthNet is a multi-label dataset made up of 590,326
Sentinel-2 image patches collected from 10 European coun-
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(a) Twelve samples from the satellite NWPU-RESISC45 dataset. (b) A single EuroSat sample with the label Sea and Lake.

(c) A single So2Sat Sentinel-1 sample with the label Open High-Rise. (d) A single So2Sat Sentinel-2 sample with the label Dense Trees.

(e) A single BigEarthNet sample with the multi-label: Sea and Ocean,
Water Bodies.

Figure 3. Multispectral satellite images have very different characteristics from RGB images, and thus require different strategies
for creating views. We display randomly selected images from each dataset considered. All channels are shown for multispectral images
with band number prefaced with ”b”.
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Dataset Metric Basic Expert Expert Viewmaker Divmaker

NWPU-RESISC45 Accuracy N/A 76.07 67.61 71.72
EuroSAT Accuracy 90.93 90.68 96.4 95.67
So2Sat Sentinel-1 Accuracy 31.12 29.33 38.25 36.39
So2Sat Sentinel-2 Accuracy 51.6 51.54 60.08 59.67
BigEarthNet F1 Score 4.03 4.21 12.99 10.83

Table 1. Domain-agnostic methods outperform domain-specific approaches on satellite datasets. We measure performance as linear
classification accuracy over pre-trained representations except on BigEarthNet, for which we use F1 score of multi-classification accuracy.
For multispectral datasets, random cropping makes up the basic expert augmentations with horizontal flipping added for expert views. For
NWPU-RESISC45, we use standard expert RGB augmentations. Results are averaged over four seeds with tuned distortion budgets.

Figure 4. Downstream task performance can change drastically with the distortion budget, but a wide range of settings enable good
performance.

tries. Each image is labeled with a subset of 43 land-
cover classes such as Pastures, Water Bodies, Agro-Forestry
Areas, and Green Urban Areas [31]. Note that, in the
BigEarthNet dataset, two bands measure 20 × 20 images,
six bands measure 60× 60 images, and four bands measure
120×120 images. To standardize the full size, we resize all
bands to 120× 120 resolution and then stack the bands.

NWPU-RESISC45 is a dataset of 31,500 RGB satellite
images sourced from Google Earth. Images are labeled with
one of 45 classes such as Tennis Court, Thermal Power
Station, Airplane, Stadium, Circular Farmland, Chaparral,
Palace, Snowberg, Intersection, and Railway. The dataset
includes 700 samples for each scene class with large vari-
ations in translation, spatial resolution, viewpoint, object
pose, illumination, background, and occlusion. This dataset
is challenging due to large variance within-class and high
inter-class similarities [9]. Since the NWPU-RESISC45
dataset consists of RGB satellite images, we use it as a
control to compare Viewmaker performance when we have
more domain knowledge and better expert views.

4. Experiments

In this section, we explore whether Viewmaker and Div-
maker can outperform domain-specific methods by learning
to generate appropriate views on four well-known satellite
datasets.

4.1. Experimental Details

We first train the encoder and view-generating networks
simultaneously by pretraining on a dataset. Then we eval-
uate the quality of the learned representations using the
widely used linear transfer protocol [7,22,40]. We evaluate
on the RGB NWPU-RESISC45 dataset as a baseline to con-
firm that well-researched expert views from the RGB image
domain can give greater performance gains [7]. We use ran-
dom cropping as the basic expert transformation and com-
bine this with horizontal flipping for expert views for the
other datasets. While there exist more complex augmenta-
tion methods [16, 19, 30], we choose these because they are
generalizable to any large-scale satellite dataset and hence
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useful benchmarks in the domain-agnostic setting.

For pretraining and downstream task training, we use
a learning rate of 0.005 and the same encoder and view-
maker architectures, temperature parameter, batch size, and
other parameters as [35]. We find normalizing multispec-
tral images before passing through the Viewmaker and Div-
maker networks to be useful for all datasets except NWPU-
RESISC45, which has low standard deviation across chan-
nels before normalization. We also clamp all pixels in gen-
erated views symmetrically between −1 and 1. For the Di-
vmaker loss, we experimented with K = 2 and K = 3,
finding that K = 3 gave minimal performance gains for
greater computational cost. Hence, we used K = 2 in
all reported experiments throughout the paper. All imple-
mentation details are available in our open source code at
https://github.com/jbayrooti/divmaker.

4.2. Results and Interpretation

In Table 1, we report the best performance for every
method on each dataset. For the NWPU-RESISC45 dataset,
learning from expert RGB transformations results in the
highest linear classification accuracy over learned View-
makers. This is not surprising, considering the abundance
of research into these RGB transformations [7, 38]. For the
multispectral datasets, we find much stronger gains from
Viewmaker and Divmaker methods, compared to the hand-
crafted augmentations: horizontal flipping and cropping.
This demonstrates the utility of domain-agnostic methods
like Viewmaker and Divmaker when working with less pop-
ular data forms.

Divmaker performs better than Viewmaker on the RGB
dataset and nearly as well on the multispectral datasets, in-
dicating that a broader range of objectives for generative
views can enable success on multispectral data. We pro-
vide illustrations of views and perturbations on NWPU-
RESISC45 in Figure 1 and a comparison of perturbations
produced by Viewmaker and Divmaker in Figure 2. Related
work demonstrates that, in some cases, the Viewmaker net-
work can identify and alter semantic features in an input
to aid learning [33]. Although it is hard to pinpoint exact
interpretations of the perturbations, our work corroborates
this as perturbations appear correlated across channels and
sometimes with simple image features.

We also compare downstream classification performance
for Viewmaker and Divmaker with different distortion bud-
gets in Figure 4. This demonstrates that, while the bud-
get should be tuned for optimal performance, a wide range
of budgets allow for good performance. These results
also confirm that Divmaker can achieve comparable perfor-
mance with Viewmaker for slightly higher budgets. This is
expected since Divmaker does not use adversarial training.

5. Conclusion

In this paper, we examine whether domain-agnostic ap-
proaches to contrastive learning can scale to an important
scientific domain: multispectral satellite images. Our ex-
periments show that domain-agnostic methods can outper-
form existing domain-specific contrastive learning methods
using out-of-the-box baseline views. This insight is impor-
tant considering the utility of multispectral satellite images,
and suggests that domain-agnostic self-supervised methods
may enjoy success across a wider array of scientific appli-
cations. Additionally, we demonstrate another successful
strategy for domain-agnostic view learning with the Div-
maker, which avoids adversarial optimization. Future direc-
tions of research include comparing against more sophisti-
cated domain-specific view-generation methods, analyzing
further downstream differences between the Viewmaker and
Divmaker, and considering additional multispectral applica-
tions like water temperature prediction [39] and sustainable
development monitoring [46].
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