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Abstract

Multimodal object detection has attracted great atten-
tion in recent years since the information specific to differ-
ent modalities can complement each other and effectively
improve the accuracy and stability of the detection model.
However, compared to processing the inputs from a single
modality, fusing information from multiple modalities can
significantly increase the computational complexity of the
model, thus impairing its efficiency. Therefore the multi-
modal fusion module needs to be carefully designed to en-
hance the performance of the detection model while keep-
ing the computational consumption low. In this paper, we
propose a novel lightweight fusion module that can effi-
ciently fuse the inputs from different modalities using chan-
nel switching and spatial attention (CSSA). The effective-
ness and generalizability of the module are tested using two
public multimodal datasets LLVIP and FLIR, both of which
comprise paired infrared (IR) and visible (RGB) images.
The experiments demonstrate that the proposed CSSA mod-
ule can substantially improve the accuracy of multimodal
object detection without consuming excessive computing re-
sources.

1. Introduction
Object detection, an integral branch of computer vision,

is widely used in real-world applications. However, uni-
modal object detection, which is restricted by environmen-
tal factors, is sometimes insufficient for all realistic scenar-
ios [18, 33]. For example, the quality of RGB images will
be severely compromised in low light conditions, thus af-
fecting the detection accuracy. In tasks that require high
accuracy and robustness, such as autonomous driving and
traffic monitoring, fusing signals from multiple modalities

Figure 1. Daytime (top row) and nighttime (bottom row) samples
from the FLIR dataset [30]. Objects in the bounding box indicate
that the current modality can obtain more details and can be used
as a complement to another modality.

has become a typical way to improve the performance of
the model [2, 7, 22, 28]. One common combination is to
fuse RGB images with IR images as they are complemen-
tary. RGB cameras can obtain more details of an object
when the light is sufficient, but provide little help in dim
light conditions. IR images, on the other hand, can ensure
that the contour of the object can be obtained in poorly lit
or obscured situations, but information such as the texture
and color of the object is absent. Figure 1 shows the paired
RGB and IR samples from the FLIR dataset [30].

A widely employed fusion method in recent research is
mid-fusion, also known as feature fusion, where two back-
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bone networks are used to extract feature maps from the
input modalities separately, and then the feature maps are
fused using a fusion model [4, 8, 10, 12]. Mid-fusion al-
lows the detection model to extract detailed information
from each input, thus achieving a better performance. How-
ever, the additional backbone network also adds more pa-
rameters to the model. To discover the underlying asso-
ciations between different inputs, many researchers used
complex fusion modules such as illumination-aware [8], or
self-attention [4] to adequately exploit the information from
both modalities. These additional modules lead to higher
computational complexity, hence limiting the deployment
of the model.

In this paper, a lightweight multimodal fusion module
that uses channel switching and spatial attention (CSSA)
is proposed to address the problems mentioned above.
The proposed module can significantly improve the per-
formance of multimodal object detection through channel
switching and spatial attention without compromising ef-
ficiency. Specifically, channel switching replaces the fea-
ture map of each modality that has less impact on the de-
tection result with the corresponding feature maps of an-
other modality. The channel switching process allows each
modality to retain its unique features while effectively fus-
ing the features of other modalities. To enhance the spatial
attention of the model without introducing additional pa-
rameters, max and average pooling are used to assess the
importance of each location in the feature map from the
channel dimension. Our experiment on the FLIR [30] and
LLVIP [11] datasets demonstrates that compared to the re-
cently proposed multimodal detection models, CSSA can
significantly improve detection performance while consum-
ing fewer computational resources. The contributions of
this paper are summarized as follows:

• To the best of our knowledge, we are the first to in-
troduce channel switching into multimodal object de-
tection and demonstrate its effectiveness. In addition,
we combine channel switching with spatial attention to
enable the detection model to analyze the input modal-
ities from both channel- and spatial-levels and thus
achieve state-of-the-art performance.

• We propose a parameter-free spatial attention mod-
ule that can efficiently assign weights to different in-
puts without increasing the complexity of the detection
model, which can then be employed for time-critical
tasks.

• We conduct extensive experiments on two public mul-
timodal datasets and demonstrate the generalizability
of the proposed model.

The rest of the paper is organized as follows: Section 2 re-
views work related to multimodal object detection and the

fusion strategies in multimodal object detection. Section 3
describes the details of the proposed model. The design of
the experiments and the ablation study are presented in sec-
tion 4. Finally, the conclusion is provided in section 5.

2. Related Work
In multimodal object detection tasks, the fusion strategy

is a key factor affecting the performance of detection, as it
determines the overall structure of the multimodal detector.
In this section, we first present the work related to multi-
modal object detection, and then we dive into fusion strate-
gies for multimodal detection.

2.1. Multimodal Object Detection

Benefiting from the growing availability of multimodal
data, multimodal object detection has become an active re-
search topic in computer vision. The FLIR [1] and LLVIP
[11] datasets are two important benchmarks for multimodal
object detection tasks, facilitating research on IR and RGB
image fusion. Since the objective of multimodal detection
is the same as unimodal detection, many related studies are
based on the traditional RGB detection models such as Reti-
naNet [17], and YOLO [21]. Heng et al. [10] uses Reti-
naNet as the detection framework, where an extra back-
bone network is added as a feature extractor for the IR
modality, and three convolution blocks are applied to input
modalities from the spatial perspective to achieve inter- and
intra-attention. For [20], the multimodal detector is based
on YOLOv5, using a cross-modality attentive feature fu-
sion module to identify the correlation between the input
modalities. Additionally, [8, 14] utilize illumination-aware
modules that allow the detection model to adjust weights to
different input modalities based on light conditions, further
improving the model’s performance.

2.2. Fusion Strategies in Multimodal Object Detec-
tion

Multimodal object detection can be divided into three
categories in light of the fusion strategy, including early-
fusion, late-fusion, and mid-fusion [5, 13, 19, 24, 29].

Early-fusion (pixel fusion) is the most intuitive fusion
approach, where IR and RGB images are concatenated to
generate a 4-channel image, which is then fed into a regular
object detection architecture such as [16, 17, 21]. Previous
studies [12, 24] have revealed that fusing two inputs from
an early stage forgoes features specific to each input, thus
reducing detection accuracy.

In late-fusion (decision fusion), the inputs of the two
modalities are fed separately into two unimodal object de-
tection models to generate bounding boxes, and the pre-
dicted bounding boxes are fused using statistical methods
[3, 13, 31]. For example, [3] uses Probabilistic Ensembling,
which allows the model to cope with unaligned data. As
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only the bounding boxes are fused, this approach is effi-
cient but requires a highly precise unimodal object detection
model.

Lastly, mid-fusion (feature fusion) adopts the two-
backbone structure to facilitate the separate processing of
different inputs and then the extracted feature maps are
fused by fusion modules. Most research on multimodal
object detection focuses on mid-fusion [10, 12, 20, 23], as
this strategy provides greater flexibility in the design of fu-
sion modules specific to inputs, thus allowing the detec-
tion model to explore deeper correlations between input
modalities. However, these additional modules significantly
increase the complexity of the detection model, resulting
in high memory usage and latency. The authors of UA-
CMDet [23] report in their paper that the time required by
UA-CMDet to process a single input is 370ms, which is
an unacceptable inference time for many time-critical tasks.
To deal with this problem, GAFF [10] uses ResNet18 as the
backbone and only focuses on spatial attention in the fusion
module. The lightweight backbone, coupled with the ab-
sence of channel attention, not only cuts down the size of the
model but also compromises the quality of the fusion. To
overcome the aforementioned problems, we propose CSSA,
which can take into account both channel and spatial level
attention while ensuring low computational cost.

3. Methodology

The multimodal object detection model employed in this
paper is adapted based on Faster R-CNN [16]. The detailed
structure of the proposed module can be found in Figure 2.

3.1. Framework Overview

Faster R-CNN is adopted as our object detection frame-
work, as it is a two-stage detection framework that can
achieve high accuracy. As shown in Figure 2 (a), the model
takes IR and RGB images as input and two ResNet 50s [9]
are used as the backbone network, each of which contains
four stages. Four CSSA modules are used to fuse the fea-
ture maps generated from each stage, and each CSSA mod-
ule contains two sub-modules: channel switching and spa-
tial attention. During channel switching, the weight of each
channel from the input feature maps is evaluated by the Ef-
ficient Channel Attention (ECA) layer [25], and the channel
with insignificant information for the final prediction is re-
placed with the corresponding channel from another modal-
ity. After channel switching, the spatial attention module
calculates the significance of each location in the feature
map using two channel-wise pooling operations and pro-
duces a fused feature map by summation operations (see
Section 3.2). Finally, the fused feature maps are then fed
into the Feature pyramid network (FPN) [16] and the detec-
tion head to generate the bounding boxes.

3.2. Proposed Fusion Module

3.2.1 Channel Switching

Channel attention can enrich the multimodal fusion mod-
ule with feature-level information, allowing the module to
learn the features shared between modalities while retaining
features exclusive to the modality. To perform channel at-
tention, channel switching is applied in our module, as it is
efficient and effective for feature interaction across modal-
ities [26, 32]. The first step of channel switching is to as-
sign weights to the feature maps of each modality from the
channel dimension. To ensure the efficiency of the module,
we choose the ECA block [25], which consists of a global
average pooling (GAP), a 1D convolution, and a sigmoid
function. ECA can perceive local cross-channel interaction
efficiently and can be described as:

ωm = σ (f (GAP (Xm))) (1)

where

GAP(X) =
1

HW

H−1∑
i=0

W−1∑
j=0

Xij (2)

where Xm ∈ RH×W×C is the feature maps obtained from
modality m (a height×width×channel tensor), and f(X) is
a 1D convolution layer. The σ symbol denotes the sigmoid
activation function. ECA [25] first uses GAP to downscale
the input feature map to a 1×1×C vector and then a 1D con-
volution is used to obtain cross-channel interaction. Finally,
the weight is calculated by a sigmoid function. The weights
ωm ∈ R1×1×C acquired from the ECA block are subse-
quently used for channel switching. The switching process
can be represented as:{

Xm,c if ωm,c ⩾ k
Xm′ ,c if ωm,c < k

(3)

where m
′

represents the modality from another input; c de-
notes c-th channel; k is a predefined threshold. When the
weight of the c-th channel is below the value of the thresh-
old k, the model replaces it with the corresponding channel
of another modality.

3.2.2 Spatial Attention

The objective of spatial attention is to highlight the loca-
tions in a feature map containing core information, which
can be used as a complement to channel switching. To
achieve this goal, we utilize two parameter-free operations:
channel-wise average pooling (CAP) and channel-wise max
pooling (CMP). These two operations can effectively con-
dense the information in the feature map without increas-
ing the complexity of the module. CSSA first concatenates
the two feature maps obtained from the channel switch-
ing block to form Xcat ∈ RH×W×2C , which is then fed
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Figure 2. Overview of the proposed model. (a) shows the overall architecture of the detection model. (b) illustrates the detailed structure
of CSSA. σ symbol denotes the sigmoid function, ⊗ represents element-wise multiplication and ⊕ means summation operation.

into CAP and CMP to acquire the attention map ωavg ,
ωmax ∈ RH×W×1. Next, a weighted feature map Xw

cat

is produced by performing element-wise multiplication be-
tween Xcat, ωavg , and ωmax. The procedure can be pre-
cisely described as:

Xw
cat = Xcat ⊗ CAP(Xcat)⊗ CMP(Xcat) (4)

where

CAP(X) =
1

c

c−1∑
c=0

Xc
ij (5)

CMP(X) = max(x1
ij , ..., x

c
ij) (6)

where ⊗ denotes element-wise multiplication. Lastly, the
process that produces the final fusion result can be formu-
lated as:

Xfused =
Xw

IR +Xw
RGB

2
(7)

where

Xw
IR, X

w
RGB = Split(Xw

cat) (8)

Here, the weighted feature maps Xw
IR, X

w
RGB ∈

RH×W×C have the same dimensions as the input feature
maps.

4. Experiments

Experiments are conducted on FLIR [30] and LLVIP
[11] datasets to compare the overall performance of the pro-
posed model with the baselines in terms of precision and
efficiency. In addition, we have investigated the impact of
different sub-blocks of the CSSA module on prediction re-
sults.
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Method Modality FLIR LLVIP Average

AP50 AP75 mAP AP50 AP75 mAP AP50 AP75 mAP

Faster R-CNN IR 73.4 34.2 37.9 92.6 48.8 50.7 83.0 41.5 44.3
Faster R-CNN RGB 65.0 22.8 30.2 88.8 45.7 47.5 76.9 34.3 38.9

Halfway Fusion RGB+IR 71.5 31.1 35.8 91.4 60.1 55.1 81.5 45.6 45.5
GAFF RGB+IR 74.6 31.3 37.4 94.0 60.2 55.8 84.3 45.8 46.6
ProbEn RGB+IR 75.5 31.8 37.9 93.4 50.2 51.5 84.5 41.0 44.7

CSAA (ours) RGB+IR 79.2 37.4 41.3 94.3 66.6 59.2 86.8 52.0 50.3

Table 1. The evaluation results on two public datasets measured by AP in percentage.

4.1. Experimental Setup

4.1.1 Datasets

The FLIR dataset [1] is one of the most widely used datasets
for multimodal object detection tasks. It contains RGB and
IR image pairs collected from the perspective of automobile
drivers, and these data contain both day and night scenar-
ios. In this experiment, we use the FLIR dataset proposed
by [30], as the RGB and IR images are heavily unaligned in
the original version [1]. This version contains 5,142 well-
aligned RGB-IR data pairs, of which 4,129 are used for
training and 1,013 for testing. The aligned-FLIR involves
four types of objects, including 8,987 people, 20,608 cars,
2,566 bicycles, and 95 dogs. We removed all dog labels
as they are not adequate for training, so the objects left are
“people”, “cars”, and “bicycles”.

Besides FLIR [30], the LLVIP dataset [11], a recently
released multimodal object detection dataset, is also used
in the experiments. LLVIP contains RGB-IR image pairs
captured by surveillance cameras in 26 different locations,
with most of the data collected in dimly lit conditions. The
dataset includes a total of 15,488 semi-manually aligned
data pairs, 12,025 pairs of which are used for training and
3,463 for testing. “Pedestrian” is the only object category
in the dataset.

4.1.2 Implementation details

Our CSSA detection model is adapted based on the Faster
R-CNN model [16] from the Detectron2 library [27] and
trained on a single NVIDIA Tesla V100 GPU. The back-
bones applied in the experiment are two ResNet 50s [9] pre-
trained on ImageNet [6]. To train the model, we adopt ran-
dom flipping and resize the data from both datasets to 640
× 512. The optimizer employed is AdamW with a learn-
ing rate of 2.5e-4, and the model is trained for 10 epochs
with a batch size of 16. The hyper-parameter k mentioned
in Equation 3 is set to 2e-3.

We employ three competing multimodal object detec-
tion models as the baseline, including Halfway fusion [12],

GAFF [10], and ProbEn [3], and apply them on both FLIR
[30] and LLVIP [11] datasets in our comparative study.
Moreover, Faster R-CNN [16] is also seen as one of the
baselines to prove the effectiveness of the fusion. For a fair
comparison, the experimental setting for all the baselines is
identical to ours.

4.1.3 Evaluation Metrics

To quantitatively compare the proposed model with the
baselines, we utilize the Average Precision (AP) computed
by the COCO evaluation metric [15], in which the Inter-
section Over Union (IOU) is measured between the ground
truth and predicted bounding box, and a prediction is only
considered as true positive when IOU ⩾ a threshold. The
COCO evaluation metric [15] calculates the AP50 and
AP75 of the model with IOU threshold ⩾ 0.5 and 0.75,
and the mean Average Precision (mAP) is obtained using
the IOU value ranges from 0.5 to 0.95 with a step of 0.05.
Furthermore, the complexity of the models is evaluated by
counting the inference time for a single image and the mem-
ory consumption when the model is loaded.

4.2. Comparative Studies

4.2.1 Quantitative Results

The performance of the proposed model and the base-
lines mentioned above are evaluated on the FLIR [30] and
LLVIP [11] datasets. The results are shown in Table 1.
Compared to the unimodal object detection models, our
CSSA model outperforms Faster R-CNN (RGB) [16] by
14.2% and Faster R-CNN (IR) by 5.8% on AP50. The
result demonstrates that CSSA can effectively fuse the in-
formation from both modalities to improve detection re-
sults. For multimodal object detection models, our model
outperforms Halfway fusion [12] and GAFF [10], by 7.7%
and 4.6% on AP50, respectively, as Halfway fusion does
not assign attention to the input modalities and GAFF only
considers spatial-level attention. Our model involves both
feature- and spatial-level attention, thus greatly improving
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the performance of detection. Lastly, CSSA also exceeds
the latest model ProbEn [3] on AP50, AP75, and mAP. In
our experiments, the AP of ProbEn is lower than what the
ProbEn authors reported. A possible reason for the differ-
ence is that the authors of ProbEN use the original FLIR
dataset [1], and the backbone they applied is ResNet 101
[9]; however, we replaced the backbone of all the baselines
with ResNet 50 for a fair comparison with our model.

Different from FLIR, which captures images from the
perspective of drivers, LLVIP [11] collects data using traf-
fic cameras. Therefore, the experiment of LLVIP confirms
that our model can be applied to different realistic scenarios.
The evaluation results are reported in Table 1. Compared to
the unimodal object detection models, the proposed model
outperforms Faster R-CNN (IR) [16] by 8.5% and Faster
R-CNN (RGB) by 11.7% on mAP. Our CSSA model also
outperforms Halfway fusion [12] by 4.1%, GAFF [10] by
3.4%, and ProbEN by 7.7% on mAP, respectively.

In addition, the average AP scores of the two datasets are
also calculated. As shown in Table 1, the proposed model
still outperforms all the baselines, with an average AP50
score of 86.8%, and mAP score of 50.3%. These results
further demonstrate the strong generalizability of the CSSA
model and its ability to achieve state-of-art performance on
both datasets.

4.2.2 Qualitative Results

On top of a quantitative evaluation, we also perform a qual-
itative evaluation on the FLIR dataset [30]. Figure 3 shows
the detection results of the proposed model and the base-
lines. The results prove the complementarity between the
IR and RGB images. For example, in Figure 3 (a), the IR
detector fails to capture the bicycle because of the subtle
difference in temperature between the object and the envi-
ronment; however, the RGB image captures details of tex-
ture and color of the bicycle, thus enabling the Faster R-
CNN (RGB) [16] to correctly detect the object. On the other
hand, in Figure 3 (c), the RGB detector, in stark contrast to
IR, misses most pedestrians.

For multimodal detectors, ProbEn [3] uses a late-fusion
strategy, which allows the model to capture the object de-
tected by either IR or RGB detectors and to achieve the
lowest miss rate in this evaluation. Nevertheless, ProbEn
needs to handle more overlapping detections. Experimen-
tal results show that ProbEn sometimes accidentally retains
overlapping detections, leading to more false positive out-
puts, and therefore a higher false positive rate than that of
our model. On the other hand, CSSA, GAFF, and Halfway
fusion [10, 12] apply the mid-fusion strategy, which can
make full use of the information from both input modali-
ties. Thanks to the CSSA module, our detection model can
extract information from both feature and spatial perspec-

tives, resulting in the lowest miss rate and false-positive rate
among the three models.

4.2.3 Comparison in Computational Efficiency

The analysis of memory consumption and inference time of
each model is illustrated in Figure 4. Since Faster R-CNN
(RGB) and Faster R-CNN (IR) use the same architecture,
they together are referred to as Faster R-CNN. All models in
the experiments are implemented based on Detectron2 [27],
and the evaluation is performed on an NVIDIA 3080ti GPU.

As Faster R-CNN is employed for unimodal object de-
tection, it only requires 972MB when the model is loaded.
For the multimodal object detection models, Halfway fu-
sion [12] and GAFF [10] require 3553MB and 4474MB re-
spectively, as they both use the mid-fusion strategy, where
the additional backbone and the complex fusion module
consume extra memory. ProbEn [3] adopts Probabilistic
Ensembling as the fusion method, which is a parameter-
free process. However, ProbEn requires two unimodal ob-
ject detectors to be loaded simultaneously, so the memory
consumption is doubled. In contrast, the proposed model
requires only 1575MB, outperforming all the multimodal
object detectors. The design of the dual backbone is also
applied to our CSSA model, but to address the problem of
excessive memory cost, we adopt a super lightweight fusion
module where only the one-dimensional convolution layers
can incur additional memory load.

According to the results in Figure 4 (b), Faster R-CNN
is the most efficient model, requiring only 23ms to com-
plete the inference for a single input. Halfway fusion [12]
and GAFF [10], as the models with the highest complex-
ity, require 42ms and 61ms to complete the prediction, re-
spectively. Thanks to the simplicity of the fusion module,
ProbEn achieves the fastest speed among the multimodal
detection models; it only takes 2ms to compute the fused
bounding boxes and 25ms for the entire prediction process.
Finally, the inference time required by the CSSA model is
31ms, which is an acceptable result compared to that of
ProbEn [3] and Faster R-CNN [16] as the proposed model
has higher accuracy and less memory usage.

4.3. Ablation study

In this section, we conduct an ablation study to ver-
ify our model design. CSSA consists of two sub-blocks,
channel switching and spatial attention, and we investigate
the performance of the detection model by applying the
two sub-blocks separately as a fusion module and report
the results in Table 2. The results indicate that both sub-
blocks, compared to unimodal object detectors, are effec-
tive in increasing prediction accuracy. Channel switching
adequately fuses features of the two modalities while re-
taining features specific to each modality, and spatial atten-
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Figure 3. The detection results of the six models mentioned in the experiment. The cars, pedestrians, and bicycles detected by the model
are represented by blue, yellow, and green bounding boxes, respectively. The red bounding boxes represent the error case (false positive
and false negative).
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Figure 4. The evaluation results of different methods on memory usage (a) and inference time(b).

Method AP50 AP75 mAP
Channel Switching 75.8 32.1 37.8
Spatial Attention 74.2 31.4 36.5

CSSA (ours) 79.2 37.4 41.3

Table 2. The results when only channel switching or spatial atten-
tion is applied.

tion captures the correlation between input modalities from
a space perspective. Therefore, we conclude that these two
modules can complement each other to further improve the
performance of the model.

5. Conclusion and Future Work

In this paper, a lightweight multimodal fusion operator
(CSSA) is proposed and applied to the multimodal object
detection task. Our study proves that CSSA can effectively
capture the information from both RGB and IR modalities
compared to other methods. We also show that both the
channel switching and spatial attention blocks in the pro-
posed module can significantly improve detection accuracy
and that their combination can further improve predictions
as both feature level and spatial level attention are consid-
ered.

Additionally, the lightweight design enables the CSSA
model to process 33 frames per second, which meets the re-
quirements of most real-time object detection applications.

In the future, the generalizability of CSSA can be further
explored by applying it to different detection frameworks.
In addition, further research could be conducted to explore
the feasibility of setting the channel switching threshold as
a trainable parameter rather than requiring manual adjust-
ment.
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