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Abstract

The rapid progress in automatic prohibited object detec-
tion within the context of X-ray security screening, driven
forward by advances in deep learning, has resulted in the
first internationally-recognized, application-focused object
detection performance standard (ECAC Common Testing
Methodology for Automated Prohibited Item Detection Sys-
tems). However, the ever-increasing volume of detection
work in this application area is highly reliant on a lim-
ited set of large-scale benchmark detection datasets that are
specific to this domain. This study provides a comprehen-
sive quantitative analysis of the underlying distribution of
the prohibited item instances in three of the most prevalent
X-ray security imagery benchmark and how these correlate
against the detection performance of six state-of-the-art ob-
ject detectors spanning multiple contemporary object detec-
tion paradigms. We focus on object size, location and aspect
ratio within the image in addition to looking at global prop-
erties such as image colour distribution. Our results show a
clear correlation between false negative (missed) detections
and object size with the distribution of undetected items be-
ing statistically smaller in size than those typically found in
the corresponding dataset as a whole. For false positive de-
tections, the size distribution of such false alarm instances
is shown to differ from the corresponding dataset test dis-
tribution in all cases. Furthermore, we observe that one-
stage, anchor-free object detectors may be more vulnera-
ble to the detection of heavily occluded or cluttered objects
than other approaches whilst the detection of smaller pro-
hibited item instances such as bullets remains more chal-
lenging than other object types.

1. Introduction
X-ray security screening is widely used in aviation and
other transportation domains, with a recent focus on the de-
velopment of automatic identification of prohibited items
within complex and cluttered X-ray images using a range of
object detection approaches [1]. These developments have
now led to changes in international aviation security regu-
lations resulting in the first international security equipment

SIXray10OPIXray PIDray

Figure 1. Typical images from X-ray datasets SIXray [26],
OPIXray [40] and PIDray [41].

standard for automatic prohibited item detection - the Eu-
ropean Civil Aviation Conference (ECAC) Common Test-
ing Methodology for the integration of Automated Prohib-
ited Item Detection Systems (APIDS), which provides cer-
tified performance compliance for X-ray security scanner
systems in the area of automated threat object detection
(ECAC APIDS) and possibly represents one of the first, if
not the first, internationally recognised performance stan-
dard for object detection algorithm performance [33].

Within this context, prior work has investigated the per-
formance of deep learning-based detectors for security in-
spection and threat-item detection within X-ray security im-
agery [3, 8, 15, 22, 36, 39]. Furthermore, recent work has
seen the introduction of new paradigms for object detection,
such as the use of Vision Transformers [23] and anchor-
free models [12,42,43]. However, the performance of all of
these object detection approaches is very dependent on the
availability of suitable X-ray security imagery datasets with
sufficient object annotations, diversity and scale which has
often been lacking within the common public X-ray dataset
resources [1, 25, 28].

Previous works have investigated the use of transfer
learning to overcome the relatively small size of X-ray se-
curity datasets for image classification [2] and object detec-
tion [11, 39] and report that a pre-trained model on a large-
scale dataset such as ImageNet [32] or MS-COCO [21] re-
sults in higher detection performance despite the cross-over
from perspective projection photographic imagery to paral-
lel projection transmission imagery. However, pre-training
on such datasets could induce dataset bias that may not
hold for the target dataset [13] which exhibits many differ-
ences from photographic image (object detection) datasets

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

524



Folding
knife

Multitool
knife

Scissor Straight
knife

Utility
knife

0K

1K

2K

3K

4K

5K

C
ou

nt

15
89

16
12

14
94

80
9

16
35

40
4

43
0

36
9

23
5

34
3

OPIXrayTrain Test

Firearm Knife Pliers Scissors Wrench

43
22

27
58

46
24

91
8

28
16

65
6

32
1 74

6

21
4

26
8

SIXray10Train Test

Baton Bullet Gun Hammer Handcuffs Knife Lighter Pliers Powerbank Scissors Sprayer Wrench
0K

1K

2K

3K

4K

5K

C
ou

nt

15
13 18

37 21
78

35
46

20
96

32
90

41
69

42
36

51
71

43
52

29
70

43
50

37
3

40
9

40
6

12
88

43
6 92

8 12
30

87
2 13

47

98
3

49
6 71

4

31
1

41
2 65

4 92
5

55
4 82

9

35
1

12
04

11
97

12
22

36
1 87

2

20
2

29
9 51

9

47
0

30
2 50

2

40
7

50
2

40
1

50
3

40
0

50
1

PIDrayTrain Test Easy Test Hard Test Hidden

Figure 2. PIDray, OPIXray, SIXray10 dataset statistics: class-wise prohibited item instances within {Train, Test} data splits.

(Fig. 1). For instance, X-ray images are semi-transparent
transmission imagery, meaning that objects appear translu-
cent and visually blended front-to-back whereas, in natural
photographic images, foreground objects visually occlude
background objects. As a result, the creation of dedicated
X-ray security datasets has been an important step in the
development of APIDS-capable approaches but in itself is
inherently challenging due to the requirement for concur-
rent access to an X-ray security scanner, a diverse range of
suitable prohibited threat items and similarly a suitably di-
verse set of passenger bags in which to em-place them. As
a result, a limited number of large-scale benchmark datasets
have emerged [26, 31, 40, 41] upon which the relative per-
formance analysis of APIDS capable approaches is now
largely reliant [1, 5, 25, 28, 39]. Consequently, a statisti-
cal review of these benchmark dataset resources and their
differences from more conventional object detection bench-
mark datasets [21], is an important step in improving the
effectiveness of object detectors when applied to X-ray se-
curity prohibited item detection.

Beyond the specifics of X-ray imagery, multiple stud-
ies [16, 27, 38] provide ample evidence of dataset bias on
common object recognition datasets, causing an inclination
towards highly biased object detection models. In this re-
gard, dataset bias refers to systematic errors in a dataset
affecting the generalisation ability of learning-based algo-
rithms, resulting in poor performance on models developed
beyond the original dataset domain (distribution mismatch
between dataset and the task) [37, 38]. The majority of the
methods for object detection bias mitigation utilise dataset
re-sampling to adjust the relative frequencies of dataset
samples, improving the model generalisation performance

[6, 19, 20]. For instance, REPAIR [19] removes the repre-
sentation bias by learning a probability distribution over the
dataset that favours hard instances for a given representa-
tion. On the other hand, AFLITE [18] introduces adversar-
ial filters designed to detect different types of dataset bias
to eliminate noisy labels and feature distribution skewness
before training the model.

Despite the study of dataset bias becoming particularly
relevant for prohibited object detection, existing studies
[4,13,35,46] on dataset bias have been conducted on natural
photographic (visible spectrum) datasets, such as the PAS-
CAL Visual Object Classes [10], ImageNet [32] or COCO
[21]. Furthermore, as the prohibited object detection liter-
ature commonly adopts pre-trained contemporary detection
architectures [2, 3], there is an increasing possibility of en-
countering the aforementioned dataset biases and risks in
X-ray security imagery.

Against this background, in this study, we analyze the
underlying statistical trends of the image samples and object
instances within the most extensive, and commonplace, X-
ray security imagery datasets and their resultant impact on a
suite of representative object detectors, providing extensive
quantitative analysis on failure modes and potential sources
of detection bias.
Our key contributions are as follows:
– A statistical evaluation of three of the most extensive

and commonly used X-ray security imagery benchmark
datasets, namely OPIXray [40], SIXray [26] and PIDray
[41], based on image and object instance properties, in-
cluding image colour and object bounding box (location)
distribution, highlighting the key differences against a
standard natural image dataset (COCO [21]).
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– A reference performance benchmark of six contempo-
rary object detectors spanning different paradigms:- Cas-
cade R-CNN [7] (multi-stage), Deformable DETR [45]
(Transformer-based detection head), FSAF [44] (anchor-
free and online feature selection), Faster R-CNN [30]
with Swin Transformers [23] (two-stage detector with
a Vision Transformer-based backbone), YOLOX [12]
(state-of-the-art one stage real-time) and CenterNet [42]
(keypoint-based).

– A quantitative investigation on the failure modes of the
six different object detectors considered showing a cor-
relation of the false negative and false positive detection
occurrences against ground truth for the purpose of detec-
tion bias identification. Additionally, a class-wise analy-
sis of the distribution of object instances within the train-
ing and testing sets for further understanding of detector
performance and bias.

2. Evaluation Methodology

We present our evaluation methodology spanning down-
selected datasets (Sec. 2.1), object detectors (Sec. 2.2) and
object instance statistical analysis (Sec. 2.3 in addition to
implementation details (Sec. 2.4).

2.1. Datasets

To assess the performance and potential dataset bias of X-
ray security imagery, we analyse three of the most exten-
sive, and commonly used, prohibited item detection datasets
which are characteristically diverse, covering different X-
ray scanners, prohibited item distribution and reflective of a
likely real-world scenario.
OPIXray [40] consists of 8, 885 X-ray images with five
classes of prohibited item (folding knife, straight knife, scis-
sor, utility knife, multi-tool knife) and represents cluttered
and overlapping stream-of-commerce baggage items.
SIXray [26] consists of 1, 059, 231 images with 8, 929 X-
ray images containing at least one prohibited item among
five classes (gun, knife, wrench, pliers, scissors) originating
from stream-of-commerce baggage and parcel X-ray scans
collected from several subway stations. In this work, the
SIXray partition is used, containing the 8, 929 images with
prohibited items and 10× images without.
PIDray [41] is a large-scale prohibited items dataset includ-
ing 12 classes of prohibited items (baton, bullet, gun, ham-
mer, handcuffs, knife, lighter, pliers, power bank, scissors,
sprayer, wrench) and 124, 486 images coming from three
different scenarios (airports, subway stations and railway
stations). The testing partitions are divided into easy (ex-
actly one prohibited item), hard (two or more objects in the
same image) or hidden (purposely hidden objects within the
bag contents).
The distribution of prohibited items object within these the

datasets is illustrated in Fig. 2 with a comparison of their
colour characteristics further shown in Fig. 3.

2.2. Object Detection

To provide our performance benchmark, we down-select six
state-of-the-art object detection architectures spanning dif-
fering detection paradigms (e.g. single-stage, multi-stage,
deep convolutional neural networks, vision Transformers).

Cascade R-CNN (CR-CNN) [7]: is a modification of the
R-CNN [14] that resolves the trade-off of having to choose
between low Intersection over Union (IoU) thresholds that
generate imprecise detections and high IoU thresholds
that negatively affect performance. It does so by training
a sequence of detectors one after the other, each with
a progressively higher IoU threshold, to become more
discerning in identifying false positives.
FSAF [44]: is a single-stage object detection framework
that uses feature selection on multiple anchor-free branches
to overcome issues with heuristic-based feature selection
and overlap-dependent anchor sampling. FSAF is built
on a feature pyramid architecture and has been shown to
improve object detection accuracy with minimal additional
inference time.
Deformable DETR (DDETR) [45]: is an extension of the
Detection Transformer (DETR) object detection model,
which uses a transformer architecture to model sequential
relationships between features that uses a deformable atten-
tion mechanism. Deformable DETR improves convergence
by having attention modules focus only on adjacent features
and addresses the issue of detecting objects at different
scales. It retains the benefits of DETRs transformer-based
architecture while achieving these improvements.
Faster R-CNN w/ Swin Transformer (FRCNNw/ST)
[23]: Liu et al. introduced the Swin Transformer, a vision
Transformer with shifted windows, which shows significant
detection performance gains when used as a backbone
for object detection. It is used in conjunction with Faster
R-CNN [30], an anchor-based two-stage detector that uses
a region proposal network.
YOLOX [12]: follows the success of the YOLO family
of detectors, and is an anchor-free architectural variant of
YOLOv3 [29] consisting a decoupled detection head (i.e.,
separated networks for classification and bounding box
regression) and a strong label assignment and achieves
state-of-the-art performance at real-time (YOLOX-S ver-
sion).
CenterNet [42]: converts the detection task to a keypoint
detection by predicting the centre of the objects and
regressing the remaining parameters. It achieves a great
speed-accuracy trade-off and can be used for other tasks
such as 3D and keypoint detection.
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Table 1. Detectors training details.
Architecture Optimiser Epochs Lr

CR-CNN [7] SGD 20 10−2

FSAF [44] SGD 20 10−2

DDETR [45] Adam [17] 50 10−4

FRCNNw/ST [23] AdamW [24] 30 10−4

YOLOX [12] SGD 20 10−3

CenterNet [42] SGD 20 2× 10−3

2.3. Object Instance Analysis

In order to investigate the effect of the underlying distribu-
tion of object instances on detector performance, a statis-
tical analysis of the distribution of three spatial parameters
is performed: object area, centre and aspect ratio. In this
context, area of an object refers to the total number of pix-
els that its bounding box occupies; centre is the geometrical
centroid of the bounding box relative to image and aspect
ratio is the ratio of width to height. Regarding the cen-
tre, we report the Euclidean distance from the image centre.
Our analysis aims to uncover the distribution of the loca-
tion and size of objects within the sample images and how
this potentially differs from a natural images dataset such as
COCO [21]. Furthermore, the distribution of these parame-
ters for false positive and false negative detection results is
also performed.

2.4. Implementation Details

The training of the detector architectures (Sec. 2.2) is imple-
mented using the MMDetection framework [9]. All detec-
tors are pre-trained on the COCO dataset [21]. Training de-
tails are implemented using the default configurations with
a few modifications, shown in Tab. 1.

Standard data augmentation techniques as described in
the original works are used. All training is carried out using
an NVIDIA GeForce RTX 2080 Ti.

3. Evaluation Results
We present our evaluation spanning dataset analysis
(Sec. 3.1), detection performance (Sec. 3.2) and detection
relative to dataset object instance distributions (Sec. 3.3).

3.1. Dataset Analysis

The colour analysis of the X-ray datasets compared to the
COCO dataset is shown in Fig. 3 in the form of RGB and
HSV histograms. It is observed from the RGB histogram
that while the COCO dataset has a seemingly uniform distri-
bution across the intensity values, X-ray datasets are highly
skewed to high values on the three RGB and HSV chan-
nels (mostly because of the white background). OPIXray
and PIDray show higher peaks at 255 since they have large
background regions. In contrast, SIXray10, where bag-

Table 2. AP @ IoU=0.5 comparison for the OPIXray dataset.

Model Folding Straight Scissor Utility M-tool mAP

CR-CNN 0.934 0.771 0.961 0.836 0.949 0.890
FSAF 0.821 0.804 0.956 0.805 0.868 0.851
DDETR 0.909 0.774 0.963 0.859 0.934 0.888
FRCNNw/ST 0.945 0.842 0.977 0.854 0.959 0.915
YOLOX 0.908 0.801 0.974 0.859 0.935 0.896
CenterNet 0.911 0.758 0.977 0.820 0.909 0.875

Table 3. AP @ IoU=0.5 comparison for the SIXray10 dataset.

Model Firearm Knife Wrench Pliers Scissors mAP

CR-CNN 0.882 0.824 0.838 0.882 0.873 0.860
FSAF 0.894 0.776 0.792 0.885 0.898 0.849
DDETR 0.913 0.934 0.910 0.944 0.960 0.932
FRCNNw/ST 0.897 0.856 0.899 0.920 0.947 0.904
YOLOX 0.909 0.869 0.891 0.907 0.938 0.903
CenterNet 0.906 0.862 0.887 0.918 0.908 0.896

gage images tend to occupy the full image plane, shows a
peak at slightly smaller values, corresponding to the green,
blue and orange colours of a typical bag (this peak is
also observed for OPIXray and PIDray, albeit significantly
lower). Additionally, the hue component distribution on
the COCO dataset shows peaks at the orange (most likely
corresponding to a range of lighter skin tones, since per-
son is the most common category) and blue (sky in outdoor
images) colours, whilst the saturation mostly decreases to-
wards bright colours, with one peak at high saturation val-
ues, indicating a high relatively presence of pure colours.
On the other hand, the X-ray datasets are generally not sat-
urated images with peaks at the blue and orange colours,
having an additional peak with a hue component of zero
(corresponding to the white background).

The object parameters distribution is presented in Fig. 4.
The dimensions, centre, aspect ration and area, are shown
as contour plots, where each contour represents the prob-
ability mass of lying among different density levels (10%,
30%, 50%, 70% and 90%) with densities obtained via Gaus-
sian kernel density estimation. It is observed from the area
and dimensions distributions (Fig. 4, upper two rows) that
the COCO dataset has a higher concentration of small ob-
jects, while X-ray datasets have clear peaks at 104 pix-
els. This variation is explicable in relation to the perspec-
tive image view of the COCO images that gives rise to
perspective foreshortening (i.e. object further away appear
smaller) whilst the parallel projection of the X-ray scan alle-
viates any such perspective effects. Ultimately, pre-training
on the COCO dataset may leverage this prior information
and hence a bias to predict small objects can be induced
(see Sec. 3.3). The distribution of the object bounding
box centresreveal that while objects tend to appear near the
image centre in all datasets, they are constrained into the
scanned region in the X-ray datasets, with OPIXray being
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Figure 3. RGB and HSV histograms for X-Ray datasets: OPIXray [40], SIXray10 [26] and PIDray [41]; compared with COCO dataset [21].

Table 4. AP @ IoU=0.5 comparison for the PIDray dataset. Three reported values are evaluated on {easy/hard/hidden} test sets.
Model Baton Pliers Hammer Powerbank Scissors Wrench Gun Bullet Sprayer HandCuffs Knife Lighter mAP

CR-CNN .985/.933/.357 .999/.965/.916 .960/.898/.774 .953/.951/.753 .958/.926/.735 .984/.969/.930 .158/.416/.655 .945/.873/.332 .775/.892/.544 .989/.983/.989 .379/.630/.479 .843/.741/.125 .827/.848/.633
FSAF .982/.940/.357 .999/.970/.890 .965/.906/.719 .952/.965/.672 .924/.931/.621 .979/.957/.942 .088/.307/.550 .950/.909/.264 .748/.866/.595 .988/.982/.990 .279/.615/.474 .855/.765/.114 .809/.843/.599
DDETR .989/.952/.589 .999/.983/.941 .971/.945/.860 .969/.968/.723 .970/.968/.845 .987/.983/.981 .099/.337/.645 .966/.877/.384 .950/.914/.703 .988/.986/.990 .578/.724/.537 .872/.781/.388 .861/.868/.716
FRCNNw/ST .988/.976 /.717 .990/.979/.949 .988/.952 /.921 .969/.978 /.835 .981/.963/.910 .988/.987/.990 .506/.579/.756 .962/.872/.505 .958/.943/.676 .988/.986/.990 .692/.753/.620 .867/.787/.906 .906/.896/.765
YOLOX .986/.958/.615 .989/.986/.883 .969/.943/.826 .964/.966/.737 .982/.964/.840 .958/.987/.978 .334/.472/.666 .960/.902/.393 .905/.928/.676 .989/.986/.990 .670/.707/.525 .846/.795/.213 .879/.883/.695
CenterNet .977/.935/.935 .990/.975/.914 .972/.908/.655 .952/.955/.649 .967/.933/.649 .983/.970/.963 .278/.441/.568 .891/.748/.207 .732/.863/.334 .989/.987/.989 .439/.605/.362 .851/.723/.143 .835/.837/.566

the most constrained case (given the small size of bags in
this dataset). Additionally, the distribution of the test sets
is presented. A careful examination exhibits small vari-
ances in the area between the test and training sets on the
SIXray10 and PIDray datasets, while other object parame-
ters retain similar distributions. Finally, no significant dif-
ference is found with respect to aspect ratio.

3.2. Detection Performance

The detection performance across the OPIXray, SIXray10
and PIDray datasets is shown in Tables 2 - 4. In the
X-ray security detection context, being able to detect an
object is more important than how accurate the bound-
ing box is, hence we report class-wise average precision
(AP) and mean AP (mAP) across all classes considering an
IoU threshold of 0.5. In general, Transformer-based detec-
tors achieve the highest detection performances, with Faster
R-CNN w/Swin Transformers illustrating superior detec-
tion for the OPIXray and PIDray datasets, and Deformable
DETR on SIXray10. On the other hand, FSAF and Cen-
terNet detectors perform the weakest. On an analysis of the
test splits of PIDray (Tab. 4), it is further observed that these
two detectors have a significantly lower mAP for the hidden
(heavily occluded object) test split, making them unreliable
object detectors within this context. Interestingly, the mAP
does not exhibit a notable change between the easy and hard
splits (some classes increase their AP while others decrease

it), indicating that the evaluated detectors are not heavily af-
fected by the number of objects in them (the hard split con-
tains exclusively more than one item). This is also observed
by Song et al. [34]. Additionally, some categories are more
difficult to detect than lesser dangerous objects (e.g., Gun vs
Wrench in PIDray), demonstrating that a class-wise analy-
sis is needed in order to create tailored object detectors that
identify more important items.

3.3. Detection Performance Instance Analysis

The distributions of the ground truth bounding box proper-
ties presented in Sec. 3.1, including area, centre and aspect
ratio, indicate that there is no significant distribution vari-
ance within the training and testing X-ray security datasets.
Accordingly, we question Can the detectors perform reli-
ably on objects that belong to the same training distribu-
tion? If not, how do the predictions vary across the se-
lected object instance parameters? Subsequently, we evalu-
ate the distribution of selected properties within False Neg-
ative (FN) and False Positive (FP) predictions from the cho-
sen detectors and demonstrate the skewness of these distri-
butions within training and testing splits (Fig. 5). Regarding
the area, it is observed that the median value of the area of
FN samples across all datasets and detectors is smaller than
that of the test and train distributions, indicating that unde-
tected objects tend to have a smaller area (pixels) compared
to the ground truth set area. In addition, the distribution of
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Figure 4. Density estimation (using a Gaussian kernel) of the area, dimensions, bounding box centre and aspect ratio of the ground truth
bounding boxes on OPIXray, SIXray10, PIDray and COCO.

area in FP samples differs from the test distribution, with
lower or higher variations depending on the detector and
datasets. Notably, the FSAF detector on the PIDray Hid-
den (heavily occluded) set shows the most significant dif-
ference, where higher area size samples are mismatched.
Conversely, the smallest distribution difference between the
test and training sets was observed in the OPIXray dataset,
resulting in smaller changes in predictions regarding their
area. Concerning the centre parameter, we observed a slight
increase in the median value of the distance of the FP pre-
dictions centre location from the centre of the image on the
OPIXray dataset, while the rest did not exhibit any obvi-
ous trend. This indicates that while objects are usually con-
strained within an enclosed region, this does not affect mod-
ern detectors. As for the aspect ratio, the FN distribution in
the OPIXray dataset shows a larger spread in aspect ratios

than in the test set.
Furthermore, we explore the distribution shifts towards

properties within class-level object bounding boxes within
the datasets. As the area distribution exhibits the most sig-
nificant changes in predictions, we focus our investigation
on this parameter via the use of the PIDray test set (since
it is the most challenging). Specifically, we first calculate
the median area values of each class in the train, test, FN,
and FP prediction sets. Subsequently, the relative error of
the median (1− (medianset(FP )/medianarea(test))) of
FN, FP and train ground truth with respect to the test ground
truth is calculated (Tab. 5), enabling us to determine the rel-
ative change of the area among object categories regard-
ing the evaluated sets. Accordingly, negative values indi-
cate that larger areas were miss-matched (FP/Test), or un-
detected (FN/Test), while positive values refer to smaller
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Figure 5. The distribution of detector performance across object instance parameters regarding the evaluated sets including train, test
ground truth, predicted false positive and false negative sets.

area predictions compared to test distribution within these
classes.

From Tab. 5, it is seen that the FP predictions for the bul-
let object category tend to be mismatched with larger area
bounding boxes in all three PIDRay test sets. This can be
explained given that bullets have small ground truth bound-
ing boxes and small variations in the predicted bounding
boxes give rise to high IoU. Conversely, wrenches are mis-
matched against smaller objects in the PIDray hidden (heav-
ily occluded) data spit. It should be noted however that as
some classes have fewer FN and FP depending on their per-
formance, as the wrench category (Tab. 4). With respect to
the gun category, the distribution of the FN in the hidden

set is significantly smaller, meaning that either the detec-
tor cannot locate highly cluttered guns and/or that they are
just partially detected with smaller bounding boxes, having
a similar problem with the IoU as in the bullets (but not
as drastic). Finally, the highest difference is found in the
FN for Faster R-CNN w/Swin Transformer on the handcuff
category of the PIDray hidden set. This, however, corre-
sponds to a single instance and is attributable to handcuffs
being the only deformable object (due to the linking chain
between the bracelets), resulting in variable object geome-
try and hence bounding box annotations.
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Table 5. The Area Percentile Change on categories of PIDray {hidden, hard, easy} sets from top to bottom, each cell depicts the 1 −
(median(set)/median(test)) meaning that red colour cells have larger change of the area among object categories.

Detector Set Bato
n

Bull
et

Gun Ham
mer

Han
dC

uff
s

Knif
e

Ligh
ter

Plie
rs

Pow
erb

an
k

Scis
so

rs

Spra
ye

r

W
ren

ch

GT Train -0.09 -0.41 0.07 0.19 0.08 0.02 -0.16 -0.24 0.15 -0.12 0.12 0.05
CR-
CNN

FN 0.17 0.54 -0.81 -0.02 0.40 0.13 0.03 0.51 0.15 0.19 -0.03 0.34
FP 0.04 -0.62 -0.12 0.23 0.62 0.44 -0.21 -0.39 -0.26 0.02 0.27 0.85

FSAF FN 0.09 0.26 -0.02 -0.05 0.20 0.13 0.02 0.51 0.18 0.07 -0.01 0.15
FP 0.27 -0.04 0.22 0.65 0.52 -0.45 -0.38 -0.35 0.29 0.22 0.92

DDETR FN 0.18 0.59 -0.87 -0.11 0.23 0.21 0.09 0.52 0.07 0.21 -0.01 0.45
FP -0.06 0.24 0.33 0.34 0.67 -0.01 0.06 0.14 0.33 0.23 0.80

FRCNNw/ST FN 0.18 0.68 -1.16 -0.08 -24.26 0.29 0.07 0.24 0.04 0.28 0.02 0.86
FP 0.35 -0.40 0.56 0.51 0.49 0.61 0.03 0.06 0.40 0.44 0.32 0.67

YOLOX FN 0.21 0.58 -0.95 -0.16 0.01 0.27 0.03 0.38 0.10 0.24 -0.08 0.65
FP 0.40 -0.03 0.30 0.40 0.78 0.46 0.10 0.19 0.29 0.44 0.40 0.72

CenterNet FN 0.09 0.34 -0.62 -0.08 0.09 0.13 0.03 0.41 0.10 0.11 -0.01 0.42
FP 0.41 -0.11 0.25 0.44 -0.20 0.42 0.02 0.07 0.30 0.15 0.30 0.58

GT Train 0.02 -0.01 0.56 0.22 -0.15 -0.17 -0.10 -0.13 0.00 0.16 0.06 0.04
CR-
CNN

FN 0.13 0.42 -0.05 0.13 0.47 0.01 0.19 0.09 0.09 0.28 -0.03 0.27
FP 0.51 -2.43 0.59 0.48 0.00 0.04 -0.09 -0.05 0.10 0.08 0.22 0.11

FSAF FN 0.19 0.25 -0.04 0.01 0.29 0.04 0.18 0.14 0.22 0.19 0.02 0.25
FP 0.15 -2.22 0.71 0.35 -0.11 -0.10 -0.06 0.08 0.02 0.14 0.40 0.12

DDETR FN 0.08 0.35 -0.05 0.06 0.25 -0.05 0.14 0.01 0.03 0.26 0.05 0.25
FP 0.30 -1.54 0.50 0.40 -0.04 0.42 0.18 0.05 0.21 0.33 0.25 0.05

FRCNNw/ST FN 0.13 0.48 -0.05 0.08 0.33 -0.09 0.16 0.09 0.11 0.28 -0.27 0.30
FP 0.21 -1.93 0.52 0.53 0.01 0.43 -0.11 0.01 0.31 0.31 0.21 0.22

YOLOX FN 0.13 0.53 -0.07 0.05 0.56 0.00 0.17 0.20 0.21 0.41 -0.16 0.47
FP 0.31 -1.48 0.62 0.44 0.02 0.46 0.03 0.14 0.31 0.24 0.21 0.26

CenterNet FN 0.30 0.44 -0.05 0.11 0.33 0.06 0.14 0.14 0.15 0.35 -0.02 0.30
FP -0.16 -1.94 0.75 0.42 -0.04 0.04 0.04 -0.17 -0.07 0.17 0.09 0.36

GT Train -0.05 -0.24 0.57 0.32 0.09 -0.21 0.04 0.03 0.13 0.31 0.44 0.11
CR-
CNN

FN 0.38 0.74 -0.01 -0.09 -0.14 -0.09 0.23 0.31 0.46 0.04 0.36
FP 0.52 -2.76 0.65 0.67 0.50 0.18 -0.07 -0.04 0.13 0.16 0.69 0.22

FSAF FN 0.33 0.71 -0.00 -0.09 -0.06 -0.17 0.23 -0.07 0.27 0.34 0.08 0.38
FP 0.63 -2.59 0.66 0.26 0.40 0.03 -0.09 0.38 0.02 0.10 0.72 0.48

DDETR FN 0.33 0.77 -0.00 -0.18 0.03 -0.26 0.25 -0.51 0.21 0.45 0.08 0.14
FP 0.18 -2.85 0.67 0.61 0.03 0.45 0.13 0.39 0.25 0.32 0.69 0.33

FRCNNw/ST FN -0.99 0.79 -0.02 0.05 -0.97 0.10 0.24 0.67 0.39 0.63 0.13 -0.38
FP 0.39 -2.57 0.66 0.58 0.28 0.44 -0.67 0.05 0.28 0.25 0.69 0.34

YOLOX FN 0.07 0.77 -0.05 -0.07 -0.97 0.21 0.26 -0.21 0.33 0.37 0.22 0.00
FP 0.32 -2.08 0.62 0.76 -0.06 0.39 -0.53 0.49 0.27 0.36 0.71 0.23

CenterNet FN 0.43 0.66 -0.01 -0.09 0.03 -0.04 0.18 -0.34 0.21 0.35 0.05 0.53
FP 0.48 -2.57 0.66 -0.19 0.24 0.31 -0.46 0.37 0.30 0.20 0.67 0.43

4. Conclusion

In this work, we statistically evaluate three X-ray security
imagery datasets, namely OPIXray [40], SIXray [26] and
PIDray [41]. The performance of six contemporary de-
tectors operating with different deep learning paradigms is
also evaluated, finding that Vision-Transformers-based de-
tectors are the most reliable detectors and, conversely, one-
stage anchor-free detectors have the worst performance, es-

pecially for heavily occluded objects. In addition, an analy-
sis of the distribution of the properties of false positives and
false negatives shows a bias towards smaller mismatches
and undetected instances. It is also found that small cat-
egories, such as bullets, may be predicted with unrealistic
sizes leading to lower overall detection performance. These
results emphasize the importance of X-ray security image
benchmark dataset analysis as a factor in the improvement
of current and future object detectors in this context.
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