
C-PLES: Contextual Progressive Layer Expansion with Self-attention for
Multi-class Landslide Segmentation on Mars using Multimodal Satellite Imagery

Abel A. Reyes1, Sidike Paheding1, A. Rajaneesh2, K.S. Sajinkumar1, Thomas Oommen1

1Michigan Technological University 2University of Kerala
{areyesan, spahedin, skochapp, toomme}@mtu.edu rajaneesh@keralauniversity.ac.in

Abstract

Landslide segmentation on Earth has been a challenging
computer vision task, in which the lack of annotated data
or limitation on computational resources has been a major
obstacle in the development of accurate and scalable arti-
ficial intelligence-based models. However, the accelerated
progress in deep learning techniques and the availability of
data-sharing initiatives have enabled significant achieve-
ments in landslide segmentation on Earth. With the cur-
rent capabilities in technology and data availability, repli-
cating a similar task on other planets, such as Mars, does
not seem an impossible task anymore. In this research, we
present C-PLES (Contextual Progressive Layer Expansion
with Self-attention), a deep learning architecture for multi-
class landslide segmentation in the Valles Marineris (VM)
on Mars. Even though the challenges could be different
from on-Earth landslide segmentation, due to the nature of
the environment and data characteristics, the outcomes of
this research lead to a better understanding of the geology
and terrain of the planet, in addition, to providing valuable
insights regarding the importance of image modality for this
task. The proposed architecture combines the merits of the
progressive neuron expansion with attention mechanisms in
an encoder-decoder-based framework, delivering competi-
tive performance in comparison with state-of-the-art deep
learning architectures for landslide segmentation. In ad-
dition to the new multi-class segmentation architecture, we
introduce a new multi-modal multi-class Martian landslide
segmentation dataset for the first time. The dataset will be
available at https://github.com/MAIN-Lab/C-
PLES

1. Introduction

Landslides are a movement of terrain caused by differ-
ent factors, including earthquakes, volcanic activity, and
heavy rainfalls [17]. Therefore, understanding the cause
that triggers their formations help us to unravel the mor-

Figure 1. Location of Valles Marineris (VM) on Mars used for
landslide mapping in this study. (a) The multi-modality imagery
used to train the (b) proposed segmentation model. (c) The output
landslide segmentation map.

phological changes in a planet. The study of extraterres-
trial terrains has been limited. The current availability of
satellite imagery and cutting-edge deep learning (DL) al-
gorithms opens the opportunity to exploit their capabili-
ties for landslide detection outside of Earth. Since Mars
has shown evidence that presumes a similar past that the
current conditions on Earth, the study of the Martian ter-
rain could have a potential contribution to estimating the
transitions related to climate change that could be faced on
Earth in a near future [13, 31]. The vast presence of land-
slides on the surface of Mars brings us the possibility to
obtain valuable insights from their analysis. With the use
of aerial imagery, a typical method to identify landslides
on Mars requires the visual interpretation of optical images
by geomorphologist analysis [5], a time-consuming proce-
dure that could highly get bias the expertise of the ana-
lyst expert. In addition, this procedure based the criteria
on similarities with terrestrial landslide [6], which includes
shape, size, tone, mottling, texture, pattern of objects, and
site topography [3, 21]. However, new studies suggested
the inclusion of an additional set of criteria to recognize
landslides in areas such as the Valles Marineris (VM) re-
gion [12], which is considered as a museum of landslides
on Mars [38]. Characteristics such as length, width, relative
relief, slope statistics, slope of the scarps, and geology are
mentioned in addition to an empirical relationship between
the volume and the area of the slides. The aforementioned
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methods rely upon the use of traditional machine learning
algorithms, (i.e. logistic regression), to develop a landslide
classifier based on the extracted features. With recent ad-
vancements in DL algorithms, several studies have achieved
state-of-the-art results in computer vision tasks such as im-
age classification [14, 49], object detection [18, 33], and se-
mantic segmentation [11, 39]. However, there is still a gap
between the implementation of cutting-edge techniques and
the adoption of those techniques for specific tasks such as
landslide segmentation. The use of automated feature ex-
traction, provided by a DL architecture, eliminates any hu-
man bias during the feature extraction process and grants an
end-to-end framework for landslide analysis, as it is shown
in the adoption of Vision Transformers [15] for landslide
classification task [27].

In this research work, as shown in Figure 1, we propose
an end-to-end DL architecture to facilitate the task of iden-
tifying different types of landslides. To this end, the VM re-
gion is selected to build a dataset for landslide segmentation
and to develop a model to automate this task efficiently. The
proposed end-to-end Martian multi-class landslide segmen-
tation model fuses heterogeneous multi-modality imagery
data in a contextually aware manner. The main contribu-
tions of this research are summarized as follows:

• A new multi-modal multi-class dataset for the Mar-
tian landslide segmentation is introduced. The dataset
is composed of three different versions, each version
with a different image size, which will be publicly
available to the research community.

• To the best of our knowledge, this study is the first
attempt to propose an end-to-end DL framework for
multi-class Martian landslide segmentation from satel-
lite images. We named our proposed model C-PLES
(Contextual Progressive Layer Expansion with Self-
attention). Experimental results reveal effectiveness in
the performance of C-PLES when compared to state-
of-the-art DL architectures. In addition, the ablation
study is conducted to support the significance of differ-
ent components of C-PLES to reach this performance.

• The impact of different image modalities on the contri-
bution of landslide segmentation accuracy is systemat-
ically analyzed. Experimental results indicate that im-
agery modalities, such as the Thermal Emission Imag-
ing System (THEMIS) and Digital Elevation Model
(DEM), have the most significant contribution to the
segmentation accuracy in terms of Intersection over
Union (IoU).

The rest of this paper is organized as follows. Section
2 reviews the landslide detection algorithms. Section 3 de-
scribes the proposed C-PLES architecture in detail. Section
4 introduces newly built datasets used in this study. Section

5 provides the experimental results. Section 6 summarizes
the component contribution of the model throughout the ab-
lation study. Section 7 concludes our findings in this study
along with future research.

2. Related Work
To the best of our knowledge, we have not come across

any published research that uses an end-to-end DL frame-
work for multi-class Martian landslide segmentation. As a
result, in this section, we discuss the most pertinent machine
learning techniques for on-Earth landslides segmentation.

Traditional machine learning algorithms have been
widely used in combination with DL and object-based im-
age analysis (OBIA) techniques for landslide segmentation
tasks [1, 28, 44]. For instance, Tavakkoli et al. [44] ex-
perimented OBIA with a set of machine learning meth-
ods to perform landslide detection, within a stacking ma-
chine learning framework. This method utilized random
forest, logistic regression, and multilayer perceptron neu-
ral network as the set of selected machine learning algo-
rithms (Level 0 of the stacking model), and logistic regres-
sion as the meta-learner (Level 1 of the stacking model) to
make the final prediction. Overall, they reported the ap-
proach resulted in appropriate landslide detection. Keyport
et al. [28] reported a comparative analysis for pixel-based
landslide detection with the use of very high-resolution
(VHR) remote sensing aerial imagery. They performed both
a pixel-based and object-oriented analysis (OOA) for land-
slide mapping, in which the OOA method yielded better re-
sults with the presence of less number of false positives.
Achariyaviriya et al. [1] utilized a DL approach by com-
bining three versions of the ResNet [22] models, in which
each model take a single data modality as an input, such as
RGB color image, normalized difference vegetation index
(NDVI), and slope factor (SP). Initially, Each ResNet model
and the corresponding data modality are trained to generate
a set of features per modality. Then, those sets of features
are combined to train a final decision tree classifier model.
As a result, the use of different modalities, rather than just
RGB or gray-scale, helped to improve the performance of
their proposed classifier.

The study conducted by Prakash et al. [37] used CNN as
a semantic segmentation problem to map landslides. The
researchers utilized high-resolution Lidar DEM and cloud-
free optical images from Sentinel-2 for mapping. Pixel-
based, object-based, and DL methods were used for gen-
erating landslide susceptibility maps. The study introduced
CNN-based U-Net [40] and ResNet architectures for map-
ping landslides. The U-Net architecture was used for se-
mantic segmentation, and ResNet was used for feature iden-
tification. The authors demonstrated that the U-Net with
ResNet strategy outperforms pixel-based and object-based
machine learning algorithms on a regional scale for map-
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Figure 2. Detailed illustration of the proposed C-PLES architecture

ping larger landslides. However, all three approaches were
unsuccessful in detecting minor landslides, and they had
difficulty distinguishing individual landslides when they
were close together. In summary, there is evidence that sup-
ports the use of multimodal inputs to improve the perfor-
mance of landslide segmentation on Earth. However, it is
worth mentioning that the contrast of the terrain and vege-
tation provides visual characteristics that eventually help to
detect a landslide. In addition, another limitation lies in the
presence of minor landslides, in which the models tend to
fail to separate among individual landslides.

3. Methodology

The proposed C-PLES architecture for multi-class Mar-
tian landslides segmentation is illustrated in Figure 2.
This architecture follows the pattern of an encoder-decoder
structure, in which several components are incorporated to
effectively extract pertinent features for multi-class land-
slide segmentation. Detailed explanations of different com-
ponents in the C-PLES are described as follows.

3.1. Encoder-decoder network

An encoder-decoder architecture is a common approach
used in semantic segmentation tasks [4,8,50]. This structure
exploits multi-scale visual features extracted in the encoder
side and recovers the spatial resolution in the decoder side
[10]. However, this arrangement by itself tends to lose a
certain range of contextual information. The encoder com-
presses the input into a lower-dimensional representation,
which discards some of the spatial information of the orig-
inal input [29], thus producing segmentation outputs with a
lack of details.

3.2. Progressive Neuron Expansion

The concept of Progressive Neuron Expansion (PNE) is
adopted from the work presented in [36, 42], in which each
neuron from the input is progressively expanded following
a Maclaurin series expansion of a nonlinear function. Ev-
ery node, denoted as Su, produced by the expansion is the
result of the addition of the u subsequent component in the
expansion. u represents a hyperparameter that controls the
length (i.e., the number of terms in the Maclaurin series)
of the expansion. The series expansion is mathematically
expressed as follows:

Su =

u∑
n=1

cnx
pn = c1x

p1 + c2x
p2 + ...+ cux

pu (1)

where x represents the input neuron to be expanded, c ∈
{1, 1/2, 1/3} and p ∈ {1, 2, 3} are the non-trainable coef-
ficients and powers in the Maclaurin series expansion of a
nonlinear function, respectively.

3.3. Attention mechanisms

Attention mechanism in DL refers to a family of tech-
niques that allow a neural network to focus on relevant
parts of the input data, which is achieved by enabling the
model to selectively attend to certain regions of an image,
sequence, or another type of input while ignoring the re-
maining [20,24,34]. In this research, we explore the benefit
of two particular attention mechanisms: dot-product atten-
tion and multi-head self-attention.

Dot-product attention, also known as Luong-style atten-
tion [32], is utilized, in this study, to leverage the produc-
tion of enriched features from the PNE layer. This atten-
tion mechanism is typically used for neural machine transla-
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tion [23,41,48]. The Luong-style attention involves a global
attention model that considers all the sources in the input
when generating the alignment scores and the context vec-
tor. To compute the alignment scores, an alignment model
a(.) is used, expressed as:

at(s) = align(hs,Si) (2)

where hs represents the current state to compute the align-
ment scores, and it is replaced by the S1 term from the PNE
expansion. Meanwhile, the Si term, i ∈ [2 : u], represents
the remaining terms on the expansion to be aligned with the
source. The dot-product-based alignment model is mathe-
matically expressed as

at(hs, Si) = hT
s WaSi (3)

where Wa is a trainable weight matrix. The computed
alignment annotations are used to generate a context vec-
tor, expressed as

ct =
∑

atSi (4)

And finally, the attention is computed based on a weighted
concatenation as follows

S̃i = tanh(Wc[ct;Si]) (5)

where Wc is the trainable concatenation weight matrix.
On the other hand, the multi-head self-attention [46]

is characterized by using the scaled dot-product attention
mechanism for similarity estimations between the Key,
Query, and Value matrices. In our proposed model, they
are replaced by the expansion terms S1, S2, and S3, respec-
tively, as described below

Attention(S1,S2,S3) = softmax(
S1ST

2√
dS2

)S3 (6)

where d is the dimension of S2 used to properly scale the
dot product between S1 and S2 In addition, the multi-head
self-attention can be summarized as a generalized version
of the aforementioned self-attention mechanism repeated in
parallel h times, in which h represent the number of heads
with different learned projections. This is mathematically
formulated as follows:

MultiHead(S1,S2,S3) = Concat(head1, ..., headh)WO

(7)
where WO is the learnable weight matrix for the output, and

headi = Attention(S1WS1
i ,S2WS2

i ,S3WS3
i ) (8)

where WS1
i , WS2

i , WS3
i represent the learned projections

for S1, S2, and S3, respectively.

Table 1. Detailed structure of the proposed C-PLES architecture

Unit
Level

Conv
Layer Filter Dilation

rate
Output

size
Input H x W x 7

E
nc

od
in

g

Level1 Conv 1
Conv 2

3 × 3, 64
3 × 3, 64

2
2

H x W x 64
H x W x 64

Level2 Conv 3
Conv 4

3 × 3, 128
3 × 3, 128

2
2

H/2 x W/2 x 128
H/2 x W/2 x 128

Level3 Conv 5
Conv 6

3 × 3, 256
3 × 3, 256

2
2

H/4 x W/4 x 256
H/4 x W/4 x 256

Level4 Conv 7
Conv 8

3 × 3, 512
3 × 3, 512

2
2

H/8 x W/8 x 512
H/8 x W/8 x 512

Bridge Level5 Conv 9
Conv 10

3 × 3, 1024
3 × 3, 1024

2
2

H/16 x W/16 x 1024
H/16 x W/16 x 1024

C-PLES
Block

Level1 Conv 11 1 × 1, 64 2 H x W x 64
Level2 Conv 12 1 × 1, 128 2 H/2 x W/2 x 128
Level3 Conv 13 1 × 1, 256 2 H/4 x W/4 x 256
Level4 Conv 14 1 × 1, 512 2 H/8 x W/8 x 512

D
ec

od
in

g

Level4 Conv 15
Conv 16

3 × 3, 512
3 × 3, 512

(-)
(-)

H/8 x W/8 x 512
H/8 x W/8 x 512

Level3 Conv 17
Conv 18

3 × 3, 256
3 × 3, 256

(-)
(-)

H/4 x W/4 x 256
H/4 x W/4 x 256

Level2 Conv 19
Conv 20

3 × 3, 128
3 × 3, 128

(-)
(-)

H/2 x W/2 x 128
H/2 x W/2 x 128

Level1 Conv 21
Conv 22

3 × 3, 64
3 × 3, 64

(-)
(-)

H x W x 64
H x W x 64

Output Conv 23 1 × 1 H x W x 4

3.4. C-PLES: The Contextual Progressive Layer
Expansion

The proposed DL architecture for multi-class land-
slide segmentation introduces a context enrichment Block,
named C-PLES, that leverages the merits of the extracted
features through the use of the PNE layers and the combi-
nation of global attention and local context, given by the dot
attention mechanism and the dilated convolution, respec-
tively. By the use of the C-PLES, we aimed to address the
issue of context loss inherent in the encoder-decoder archi-
tectures. The C-PLES block is detailed and illustrated in
Figure 2, and it is composed of an initial 2D dilated convo-
lution. A dilated convolution increases the receptive field of
the visual feature extractor and provides more contextual in-
formation from the encoder to map it with the decoder [47].
Then, a PNE layer takes the output of the dilated convolu-
tion to produce the expansion of each hidden neuron (i.e.,
S1,S2, and S3 as we used three terms in Maclaurin series
expansion). This expansion enriches the visual feature rep-
resentation, and the different numerical characteristics com-
prised by each term from the expansion generate a suitable
scenario for the usage of attention mechanisms. Accord-
ingly, the three nodes from the expansion are fed as the in-
puts for the attention layer (either dot-product attention or
MHA). This attention layer helps the architecture to focus
on a relevant part of the input. Considering computational
efficiency, we select dot-product attention in our C-PLES
block. In the end, the attention layer produced an attention
mask that is multiplied by the original input of the C-PLES
block. The output is then sent to the respective decoder.
Mathematically, the C-PLES block can be represented as

357



Figure 3. Illustration of the feature maps generated by the use of
the proposed C-PLES over one of the samples in the Mars multi-
class landslide dataset. The sample (a), the feature maps (b) from
the proposed C-PLES, and feature maps (c) from a regular 2D con-
volution.

follow:

C9PLES(X) = attention(PNE(X̂))X (9)

where X̂ is a 2D dilated convolution of the input X, this is
used to generate a triple from the PNE (i.e. S1, S2 and
S3) to be used as the key, query and value matrices in the
attention function. Figure 3 illustrates visual evidence of the
capabilities of the C-PLES to extract more relevant features
compared to regular convolution operations.

3.5. Implementation details

The C-PLES architecture is depicted in Figure 2. Details
of the composite architecture are provided in Table 1. The
C-PLES architecture combines the merits of an encoder-
decoder architecture with the addition of a C-PLES block
which serves to join each level of the encoder side with the
corresponding level at the decoder side. The architecture
takes a H×W×C input, in which H and W could be either
64, 128, or 256 (The patch sizes), and C is the total num-
ber of bands (7 by default). This input data is processed
to produce H × W × 1 segmentation mask. Each side of
the architecture contains 4 levels in total. On each level, a
set of two dilated 2D convolutions with a fixed kernel size
(3 × 3) is performed with a down-sample operation at the
end of the level on the encoder side. A set of two regular 2D
convolutions with scaled-down feature maps and the same
fixed kernel size with an up-sample operation at the end of
each level on the decoder side. A bridge is connecting the
encoder and decoder sides, transfers the enriched feature ex-
tracted in the encoder side, and starts up-sample the image
until reaches the original input size. The C-PLES blocks are
placed in the middle of each level as a link between the en-

coder and the decoder side, sharing the same feature maps
as the corresponding level in the dilated 2D convolution op-
eration which is followed by the PNE layer and the attention
module to enhance the feature representation and the global
context sent to the decoder side. It is worth mentioning a
ReLU activation function is added after each convolution
operation. In addition, a dropout layer is also added to each
set of convolutions to alleviate overfitting issues and stabi-
lize the learning process during training.

In order to maximize the performance of the proposed C-
PLES architecture, extensive experiments are performed to
determine the best suitable loss function for the multi-class
segmentation task. Since the dataset used in this study con-
tains a significantly larger ratio of pixels belonging to the
background, which makes the dataset heavily unbalanced,
and thus we propose to fuse the focal loss and dice coeffi-
cient loss to effectively address this issue.

The focal loss [30] helps the model to effectively penal-
ize easy and hard examples from imbalanced classes during
the training process in a task such as image segmentation.
Focal loss applies a modulating term ((1− pt)

γ) to the reg-
ular cross-entropy loss. This modulating factor reduces the
loss contribution from easy examples and focuses the learn-
ing on hard-miss classified examples. Mathematically, the
focal loss function is expressed as follows

LFocalLoss = −
i=n∑
i=1

(1− pi)
γ logb(pi) (10)

where n is the number of samples and p is predicted prob-
ability. In order to address the class imbalance problem of
positive and negative examples, a weighted parameter (α)
is added as the inverse class frequency, extending the math-
ematical representation of the focal loss as:

LFocalLoss = −
i=n∑
i=1

αi(1− pi)
γ logb(pi) (11)

In addition, dice coefficient loss (DCL) [26,43] was also
explored, considering that the dice coefficient is a popular
metric to calculate similarities between images. The DCL
is mathematically expressed as

LDCL = 1−
2
∑N

i pigi + 1∑N
i p2i +

∑N
i g2i + 1

(12)

where 1 is added to the numerator and denominator to avoid
undefined cases for scenarios in which p = g = 0.

We finally fuse both loss functions, denoted as LTotal,
in which a weight coefficient factor β is added to the focal
loss to force the model to adjust the penalization for class
imbalance cases. The LTotal can be formuated as

LTotal = (1− β)LDCL + βLFocalLoss (13)
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Figure 4. Images show the Valles Marineris regions on Mars. All
the different modalities included in the dataset are stacked and
aligned with the annotated landslides within the Valles Marineris
region.

Figure 5. Samples from the Mars multi-class landslide dataset.
This figure illustrates the different modalities: RGB (a), DEM (b),
Thermal (c), Slope (d), GS (e), and the respective annotated seg-
mentation outputs (f).

4. Dataset

The multi-class Mars landslide segmentation dataset is
an imagery inventory for the Valles Marineris region, a vast
system canyon that runs along the Martian equator surface.
The dataset comprises a total of 682 manually annotated
landslides, distributed as follows: 133 debris flow (DF), 275
rock avalanches (RA), and 274 slumps (S).

The image data used are the RGB, greyscale, DEM,
slope, and thermal data. RGB data used is the Mars Viking
Colorized Global Mosaic, which has a spatial resolution of
approximately 232 meters. It is a derivative of NASA’s
Viking Mission to Mars 1. The grey scale data is Con-
text Camera (CTX) imagery of the Mars Reconnaissance
Orbiter (MRO) mission, having a spatial resolution of 5
m and bandwidth of 600-800 nm. The elevation data of
the study area, which is the DEM, is Mars MGS MOLA -
MEX HRSC Blended DEM with a spatial resolution of 200
m [16]. The slope information is derived from the DEM
using ESRI ArcGIS software and has a spatial resolution
of 200 m. Thermal data is the thermal inertia of the Mar-
tian surface, generated from the Thermal Emission Imaging

1https://nssdc.gsfc.nasa.gov/planetary/viking.html

System (THEMIS) with a spatial resolution of 100 m. Fig-
ure 4 shows the composition of the multi-modal Martian
imagery and the distribution of the multi-class landslides in
the Valles Marineris region.
Landslides annotation.

The landslides were classified based on visual interpre-
tation using satellite imagery in a Geographic Information
System (GIS) environment, which was based on typical
morphological features like flow direction, the shape of
scarp [38, 45], area of depletion, and accumulation [19], ir-
regular and jumbled terrain, hummocks, and lateral levees.
These landslides were digitized as polygons.
Patch Sample landslides. The multi-modal composited
image is available as a TIF file, with a dimension of 10,245
by 4,098 pixels with a total of 7 channels. In addition,
the dataset is also available as a set of patches in sev-
eral resolutions (without overlapping), distributed as fol-
lows: 122, 240, and 955 patches of 256 × 256, 128 × 128,
and 64 × 64 respectively with the corresponding segmen-
tation mask. Figure 5 illustrates a set of 256 × 256 sam-
ples from the proposed multi-class Martian landslide multi-
modal dataset with the respective manually annotated seg-
mentation mask.

5. Results and discussion

5.1. Experimental setup

We empirically demonstrate the effectiveness of the pro-
posed C-PLES architecture using the multimodal Martian
multi-class landslide segmentation dataset and compare its
performance with several state-of-the-art deep network ar-
chitectures, including U-Net [40], Attention U-Net [35],
TransUNet [9], R2UNet [2], UNet3+ [25], UNet++ [51],
and SwinUNet [7]. The performance of all models is eval-
uated in terms of the four standard assessment metrics: a)
mean intersection over union (mIoU), b) precision, c) recall,
and d) F1-score, all of which are typically used for landslide
detection studies. All the experiments, including competing
models, are run for a total of 150 epochs, with a batch size
of 4, 8, and 16 samples for an input patch size of 256×256,
128×128, and 64×64, respectively. The Ltotal is used as a
loss function in all the experiments as well, with β set as 0.7
after a grid search. The training process is optimized with
the Adam algorithm using a scheduled learning rate, which
is initially set to 0.001 and reduced by a factor of 0.01 in
every epoch. As part of the pipeline in the training process,
a data augmentation stage is added with a rotation range of
90 degrees, horizontal and vertical flip activated with zoom
and reflect fill mode. The number of steps per batch size
is computed as the ratio between the number of samples by
the corresponding batch size. In addition, the validation loss
was monitored to save checkpoints of the models with the
best performance during the training process. In our exper-
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iments, the dataset was randomly split in a ratio of 8:2 for
training and testing purposes, respectively. All models are
trained using an NVIDIA A100 GPU.

5.2. Segmentation output performance comparison

For each image in the testing dataset, our model pro-
duced a segmentation mask that delineates the regions of
interest of each type of landslide. The quantitative result
to evaluate the performance of our C-PLES architecture
and compare it with the aforementioned stare-of-the-art is
shown in Table 2. As can be observed, the proposed C-
PLES outperforms all the competing models in terms of
mIoU and F1 scores for all three different patch sizes. The
best mIoU (0.5764) is achieved by our proposed C-PLES
method. In addition, the highest F1 score is also achieved by
the C-PLES (0.6948). This is a promising indicator that our
C-PLES model has the ability to effectively balance preci-
sion and recall across all classes, thereby achieving an over-
all superior landslide segmentation performance, identify-
ing pixels that belong to a particular landslide class while
minimizing the presence of misclassification.

Although our proposed C-PLES achieved competitive
results in terms of recall among all the models evaluated,
it is important to note that the precision metric is slightly
lower compared to some state-of-the-art. This indicates a
higher rate of false positives in the segmentation, as the
model trade-off the performance of recall over precision to
reduce missing important features in landslide segmenta-
tion. Future work may focus on improving the precision
of C-PLES while maintaining a high recall rate, to achieve
more accurate and complete segmentation of landslide ar-
eas. Figure 6 shows a visual comparison of the segmenta-
tion outputs of the proposed C-PLES and competing meth-
ods.

Figure 7 provides the segmentation output of C-PLES for
the Martian Valles Marineris region. Four random samples
are zoomed in and compared to the predicted segmentation
with the corresponding ground truth. In the comparison,
it is noticeable that the highest IoU (each class IoU) is for
the Slump landslide class, while the lowest one is for the
Rock Avalanches landslide class. Another visible aspect in
Figure 7, is the lack of confidence in the model to identify
the boundaries of the landslide, especially when different
classes of landslides are very close among them. In some
cases, the model tends to generalize the prediction of all
the landslides within a patch input towards the class of the
biggest landslide. This limitation may be linked to the quan-
titative results in terms of precision.

6. Ablation study
Contribution of image modality. Several image modal-
ities were merged in the Martian multi-class landslide
segmentation dataset. As mentioned before, the dataset

Figure 6. Visual comparison of multi-class Martian landslide seg-
mentation outputs. (a) Input RGB image, (b) the segmentation
mask (ground truth), (c) - (i) the segmentation outputs of experi-
mented DL architectures: U-Net [40], Attention U-Net [35], Tran-
sUNet [9], R2UNet [2], UNet 3+ [50], UNet++ [51], and Swin-
Unet [7], (j) the proposed C-PLES, respectively.

Table 2. Performance comparison of the proposed C-PLES against
the state-of-the-art architecture for segmentation over the Mar-
tian multi-class landslide multimodal dataset. key: [Best, Second
Best]

Method mIoU F1 score Recall Precision

25
6

x
25

6

U-Net [40] 0.5111 0.6322 0.6447 0.6332
Att. U-Net [35] 0.5387 0.6511 0.6514 0.6817
TransUNet [9] 0.5605 0.6835 0.6517 0.7502
R2UNet [2] 0.5449 0.5521 0.5514 0.6954
UNet 3+ [25] 0.5491 0.6594 0.6992 0.6657
UNet ++ [51] 0.4977 0.5963 0.6099 0.6005
Swin-Unet [7] 0.4219 0.5122 0.5258 0.5288
C-PLES (ours) 0.5764 0.6948 0.6881 0.7165

12
8

x
12

8

U-Net [40] 0.5128 0.6341 0.6312 0.6342
Att. U-Net [35] 0.5089 0.6233 0.6190 0.6435
TransUNet [9] 0.4986 0.6104 0.6154 0.6325
R2UNet [2] 0.5098 0.6326 0.6406 0.6412
UNet 3+ [25] 0.5121 0.6317 0.6484 0.6508
UNet ++ [51] 0.4511 0.5460 0.5524 0.6192
Swin-Unet [7] 0.4631 0.5703 0.5747 0.5761
C-PLES (ours) 0.5166 0.6471 0.6485 0.6454

64
x

64

U-Net [40] 0.5384 0.6552 0.6503 0.6693
Att. U-Net [35] 0.5550 0.6702 0.6672 0.7039
TransUNet [9] 0.5354 0.6547 0.6448 0.6842
R2UNet [2] 0.5243 0.6387 0.6476 0.6408
UNet 3+ [25] 0.5596 0.6691 0.6911 0.7038
UNet ++ [51] 0.4813 0.5713 0.6309 0.6095
Swin-Unet [7] 0.4524 0.5455 0.5590 0.6245
C-PLES (ours) 0.5597 0.6894 0.6754 0.7025

contains a total of seven bands: RGB (3 bands), Gray-scale
imagery, DEM, THEMIS, and Slope. In order to analyze
the contribution of each modality to the performance of the
proposed C-PLES, extensive experiments are conducted.
The experimental results are detailed in Table 3, which is
the result of testing on unseen 256× 256 patches data sam-
ples from the dataset. The training hyperparameters are set
as similar to the ones reported in Section 5, however, only
mIoU and IoU (IoUDF : Debris Flow, IoUS : Slumps, and
IoURA : Rock Avalanches) are considered as evaluation
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Table 3. Importance of different image modalities to the prediction
accuracy.

Image modality mIoU IoUDF IoUS IoURA

RGB 0.3938 0.0001 0.5779 0.0001
RGB + DEM 0.5429 0.4127 0.5973 0.1627
RGB + THEMIS 0.4043 0.0091 0.5206 0.0917
RGB + Slope 0.4322 0.0099 0.5616 0.1587
RGB + GS 0.4089 0.0023 0.5619 0.0743
RGB + DEM + THEMIS 0.5215 0.3454 0.5854 0.1557
RGB + DEM + Slope 0.5355 0.4419 0.4827 0.2202
RGB + DEM + GS 0.4233 0.0064 0.6143 0.0730
RGB + DEM + THEMIS + Slope 0.5698 0.4840 0.5485 0.2485
RGB + DEM + THEMIS + GS 0.3937 0.0025 0.5773 0.0002
RGB + DEM +THEMIS + Slope + GS 0.5764 0.4953 0.6153 0.2052

Table 4. Model performance by varying components of the pro-
posed C-PLES architecture. key: [Best, Second Best]

Model mIoU F1 score Recall Precision
C-PLES w/ dot self-attention 0.5597 0.6894 0.6754 0.7025
C-PLES w/ MHA 0.5951 0.7150 0.7153 0.7175
C-PLES w/o Attention 0.5479 0.6670 0.6590 0.6859
C-PLES w/o PNE 0.5513 0.6703 0.6657 0.6822

Figure 7. Segmentation map of the landslides in the Martian -
Valles Marineris region. Four random regions are zoomed in to
show in detail a comparison between the ground truth and the pre-
dicted segmentation. The IoU scores for each class are shown on
the bottom right side of the figure.

metrics. On every round of training, a different set of
modalities is used with the RGB modality as a baseline.
According to the quantitative results, the best performance
is reached by the full set of modalities. However, the best
performance to segment the Rock Avalanches ( IoURA of
0.2485) is given under the absence of the gray-scale image
(RGB+DEM+THEMIS+Slope). For segmenting Debris
Flow landslides, the absence of slopes reduces the ability of
the network to discriminate this landslide from the others
considerably. It is worth mentioning that, on the other
hand, the presence of the gray-scale imagery improves
the performance to identify Slumps landslides. Overall,
our results suggest that the combination of the full set of
modalities is beneficial to achieve better performance in
general.

Importance of model components. To understand the in-
ner working of the proposed C-PLES architecture, we eval-

uate the performance of the architecture with a different set
of components that are present or absent. For instance, a
major emphasis is on the overall impact of the inclusion or
absence of the C-PLES block within the architecture. Ta-
ble 4 summarizes the results obtained in this ablation study.
Due to computational constraints, this experiment is per-
formed with a 64× 64 patch size dataset, allowing us to ef-
ficiently compare the performance of the proposed architec-
ture but varying the attention mechanism. The best perfor-
mance is reached with C-PLES architecture using the multi-
head self-attention (MHA) mechanism. In this approach,
the C-PLES block internally takes the output from the PNE
layer as the query, key, and value matrices for the multi-
head self-attention. The computation of multiple heads al-
lows the model to capture a larger range of trained weights
(a set of weights by each head) and thus capture different
types of relationships between the different parts of the in-
put sequence in comparison to a regular attention mecha-
nism. In addition, as we hypothesized, the C-PLES archi-
tecture using the dot product attention mechanism, which
is the version used in the majority of the experiments re-
ported in this paper, provides better performance when it is
compared with the version of the C-PLES without attention
mechanism and without the PNE. Additionally, the C-PLES
block under the absence of the PNE performed slightly bet-
ter than its counterpart without an attention mechanism.
This indicates the importance of the attention mechanism
to selectively focus on relevant parts of the image and cap-
ture spatial relationships between objects and their context.
Finally, the combination of attention with enriched feature
representation by PNE provides a harmonically improved
performance for Martian landslide segmentation.

7. Conclusions

In this research work, we proposed the C-PLES archi-
tecture for Martian multi-class landslide segmentation. The
presented research opens the door not only to the analysis
of the Martian landslides but also to the same task on Earth.
The C-PLES block is introduced as a plug-and-play module
that leverages the merits of two main components: the pro-
gressive expansion neurons and the attention mechanism. In
addition, a Martian multimodal multi-class landslide dataset
is introduced and used to evaluate the performance of the
proposed method. Our experiments showed that the pro-
posed C-PLES achieved state-of-the-art results for the Mar-
tian landslide segmentation task, which proves the impor-
tance of the C-PLES block that consists of progressive neu-
ron expansion and attention mechanism to capture perti-
nent visual features from the different image modalities.
The aforementioned dataset will be available to the research
community.
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