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Abstract

The exploitation of visible spectrum datasets has led
deep networks to show remarkable success. However, real-
world tasks include low-lighting conditions which arise
performance bottlenecks for models trained on large-scale
RGB image datasets. Thermal IR cameras are more robust
against such conditions. Therefore, the usage of thermal
imagery in real-world applications can be useful. Unsu-
pervised domain adaptation (UDA) allows transferring in-
formation from a source domain to a fully unlabeled tar-
get domain. Despite substantial improvements in UDA, the
performance gap between UDA and its supervised learning
counterpart remains significant. By picking a small num-
ber of target samples to annotate and using them in train-
ing, active domain adaptation tries to mitigate this gap with
minimum annotation expense. We propose an active do-
main adaptation method in order to examine the efficiency
of combining the visible spectrum and thermal imagery
modalities. When the domain gap is considerably large
as in the visible-to-thermal task, we may conclude that the
methods without explicit domain alignment cannot achieve
their full potential. To this end, we propose a spectral trans-
fer guided active domain adaptation method to select the
most informative unlabeled target samples while aligning
source and target domains. We used the large-scale visible
spectrum dataset MS-COCO as the source domain and the
thermal dataset FLIR ADAS as the target domain to present
the results of our method. Extensive experimental evalu-
ation demonstrates that our proposed method outperforms
the state-of-the-art active domain adaptation methods. The
code and models are publicly available.1

1. Introduction

The latest state-of-the-art deep learning methods have
led to a substantial improvement on computer vision and
pattern recognition tasks such as classification and object

1https://github.com/avaapm/STGADA

detection with the use of RGB images [16, 20, 33, 34].
Deep models trained on massive RGB datasets e.g., Ima-
geNet [9], MS-COCO [26], Pascal-VOC [11], etc. have
shown considerable performance. Despite the progress of
recent deep learning models trained on the visible spec-
trum images, low-lighting conditions prevent the most cur-
rent models from performing competently on several real-
world tasks. Since thermal cameras are more robust against
these conditions, using them is advantageous for real-world
applications such as military operations, security monitor-
ing, autonomous driving, etc. However, large scale thermal
datasets are not easily accessible to the public. Since the
most advanced models require a massive amount of labeled
data, models trained on thermal images struggle to perform
as well as models trained on RGB images. One simple strat-
egy to enhance the effectiveness of systems that use thermal
imaging for classification and detection tasks is to take ad-
vantage of the additional information provided by visible
spectrum images. Unfortunately, the models trained on vis-
ible spectrum datasets may perform poorly when the models
tested on thermal images [3, 10, 18].

In order to overcome the performance drop on target
thermal domain while utilizing the source visible spectrum
domain, the domain shift between the visible and thermal
spectrum images must be taken care of. Domain adaptation
(DA) methods intend to learn a mapping from both domains
to the same feature space. Unsupervised domain adaptation
(UDA) methods are based on the assumption that labels for
target domain are not available [14, 35, 41]. Labeling all
of the data is costly in terms of time and human resources.
However, limitation in semantic annotations is more flex-
ible in real world applications since a reasonable portion
of the target samples can be annotated in consideration of
the labeling costs and budget. In this sense, the concept of
active learning is useful for determining which portion of
the data should be annotated. Most active learning methods
have recently concentrated on developing a query function
that measures how representative and informative a sample
is based primarily on uncertainty [39]. However, domain
shift between source and target samples hinders classical
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Figure 1. An overview of our proposed spectral transfer guided active domain adaptation (STGADA) method. Source samples are subjected
to spectral transfer with target samples. The amplitude component of the Fourier transform of the source samples FA(xs) are exchanged
with that of target samples FA(xt). We train our feature extractor G and classifier C with the transformed source samples xs→t. Then,
we proceed to active sample selection. We use the fixed feature extractor G and the classifier C to sample from the target dataset. In the
feature space representation of the target samples, the query function measures how close a target sample to the decision boundary M . In
addition, our sampling strategy considers how similar the direction of the gradient of the loss term ∇fLm and that of margin term ∇fM .
Oracle annotates target samples of labeling budget B (dashed red box) to use in domain alignment training. Best viewed in color.

active learning query methods from selecting the samples
which could increase the performance. The query meth-
ods that exploit the prediction of the task models trained
only on source domain tend to sample some irrelevant tar-
get samples since most of the target data considered uncer-
tain by the model. Therefore, active learning in consid-
eration of domain shift problem is an important research
area [13, 40, 46].

Recent state-of-the-art active domain adaptation meth-
ods consider the domain gap between the source and target
datasets from two perspectives. Approaches such as [32],
[40], and [45] focus on conducting an explicit domain adap-
tation to align the feature spaces of both domains. On the
other hand, [13] and [46] seek a solution to the problem of
active domain adaptation without concerning explicit align-
ment of feature spaces. When the domain gap is consid-
erably large as in the visible-to-thermal task, we may con-
clude that the methods without domain adaptation cannot
achieve their full potential. In other words, selected tar-
get samples by the query functions become efficient in the
case of a moderate domain shift. In that case, implementing

additional domain adaptation algorithms on top of models
does not yield a significant improvement. On the contrary,
additional reduction of the domain gap may improve the
performance in the RGB-to-thermal task since the domain
gap is considerably large.

In this paper, we propose an active domain adaptation
method to select the most informative samples while align-
ing visible and thermal domains as described in Sec. 3. We
employ Select-by-Distinctive-Margin (SDM) [46] as our
base method. Based on our experimental evaluations in
Sec. 4, SDM is more calibrated and achieves more success-
ful results compared to the state-of-the-art active domain
methods. Although SDM and other domain alignment-free
active domain adaptation methods have achieved success-
ful results, additional reduction of the domain gap may im-
prove the performance in the RGB-to-thermal task since the
domain gap is large compared to the domain gap in classi-
cal domain adaptation problems. In that regard, we apply a
domain adaptation method to the SDM [46] to achieve the
promised performance improvement.

Domain adaptation algorithms come as a module imple-
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mented additionally to a backbone which is used to extract
features. Those modules are generally a few layered deep
networks with complicated loss functions or regularization
terms [14, 27, 35]. Apart from popular domain adaptation
approaches, recently, using frequency domain information
in order to reduce the domain gap has become popular in
terms of the simplicity of manipulating the frequency char-
acteristics of the samples without increasing the complex-
ity of the baseline model [25, 47]. [47] proposes that in-
terchanging the low frequency characteristics of the source
and target samples reduces the domain gap. This method
takes advantage of simplicity by applying the algorithm to
the training samples just before they are input to the base
model. Interchanging the low frequency components of
source and target samples can be implemented as a transfor-
mation to the source samples that are used in the training of
SDM [46]. With these in mind, we propose a spectral trans-
fer guided active domain adaptation (STGADA) method in
order to achieve higher performance in thermal domain via
reducing the domain gap between visible and thermal IR
spectra (Fig. 1). Spectral transfer is applied to the source
domain samples by implementing the Fourier domain adap-
tation (FDA) [47] during training. The low-frequency com-
ponents of the labeled source samples are changed with
those of unlabeled target samples. This transfer reduces
the domain gap between source and target domains. The
transformed source samples are then fed to the backbone
network. We sample from target thermal dataset according
to a query function which uses the output of the fixed clas-
sifier i.e., the prediction scores of the overall model. This
sampling process takes place in the specified epochs during
training. Therefore, the training of the network continues
after the sampling steps.

During training and testing our approach, we exploit the
large scale visible spectrum dataset MS-COCO [26] and
thermal spectrum dataset FLIR ADAS [17]. Moreover, our
method does not require paired samples of RGB and ther-
mal images. We conduct extensive qualitative and quantita-
tive analysis in order to evaluate our method. Sec. 4 demon-
strates that our approach outperforms the state-of-the-art
methods with improving our base model. Fig. 3 depicts that
given a model without domain alignment or active sampling
i.e, the source only model, the calibration line is far from
ideal. The union of predicted samples within a confidence
interval does not yield proportionate accuracy. In contrast,
our proposed model STGADA obtains more calibrated re-
sults leading to a narrower gap in the reliability diagram.
Moreover, class imbalance is important to address since real
world applications include imbalanced classes [23]. Ex-
perimental studies in Sec. 4 show that our model obtains
more balanced performance than the state-of-the-art meth-
ods since those active domain adaptation methods tend to
over-classify the majority category.

Our contributions are summarized as follows:

• We propose a simple yet efficient spectral transfer
guided active domain adaptation approach for thermal
IR spectrum. In order to efficiently reduce the domain
gap between source and target domains, we employ a
spectral transfer algorithm.

• We conduct extensive analysis in order to demonstrate
the efficiency of our method in the domain adaptation
setting where MS-COCO [26] is RGB source dataset
and FLIR ADAS [17] is thermal target dataset. The
results show that our method outperforms state-of-the-
art active domain adaptation models by selecting more
informative target thermal samples.

2. Related Work
Deep learning methods have achieved promising results

on computer vision tasks by using RGB images. However,
real-world conditions such as low-lighting challenge these
models. Therefore, recent studies [3,19,21,22,36,42] inves-
tigated performance on the classification and object detec-
tion tasks in relation to the consequences of combining vis-
ible spectrum and thermal image modalities. Motivated by
these studies, in this work, we take advantage of supplemen-
tary information provided by visible spectrum images to en-
hance classification performance on thermal imagery with-
out requiring RGB-to-thermal image pairings since large-
scale thermal datasets are not publicly available. To eval-
uate the effectiveness of combining RGB and thermal im-
ages, we propose an active domain adaption approach.

Active learning algorithms choose the samples to anno-
tate with the semantic annotations rather than having ac-
cess to the labels beforehand [38]. In order to choose the
most disagreeing samples, query by committee approaches
exploited many classifiers and measure their discrepancy
on the task on unlabeled data using methods like low-
dimension projections [15]. Query by uncertainty methods
employed classification margin as a selection criteria [4],
multi-class classification margin [24], learning loss [48],
number of false-positive or false-negative pixels in images
[2], discrepancy between two auxiliary classifiers [7]. To
choose a collection of unique samples, representativeness
approaches often utilized clustering or core-set selection
[1, 37, 39]. Although, these methods achieved successful
results on active learning problem , none of them considers
the potential domain shift between labeled and unlabeled
data.

Domain adaptation, in other words, the transfer of mod-
els trained on labeled source domains to unlabeled or par-
tially labeled target domains, has drawn a lot of interest
[5, 8, 14, 28]. Ganin et al. [14] proposed a gradient rever-
sal layer to align source and target domains using the feature
encoder which is trained to maximize the loss of the domain
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discriminator while minimizing the loss of the classifier.
Saito et al. [35] proposed to reduce the gap by employing
adversarial learning with two task-specific classifiers and a
feature extractor to align source and target domains. Be-
sides from popular adversarial domain adaptation methods,
using frequency information has gained interest to achieve
distribution alignment. Yang et al. [47] proposed Frequency
Domain Adaptation (FDA) method to overcome domain
shift problem by simply replacing the low frequency com-
ponent of a source sample with a target sample since the low
frequency component of the samples provides the domain
invariant properties. Therefore [47] introduces Frequency
Domain Adaptation (FDA). Recently, Akkaya et al. [3] pro-
posed a pseudo-labeling guided unsupervised domain adap-
tation method by using large-scale RGB dataset MS-COCO
as source domain and thermal dataset FLIR ADAS as target
domain. Although adversarial and frequency-level domain
adaptation methods have achieved successful experimental
results, active domain adaptation can boost the performance
of domain adaptation by labeling small portion of unlabeled
target dataset. Since a reasonable portion of the target sam-
ples can be annotated in consideration of the labeling costs
and budget, domain adaptation can be combined with ac-
tive learning to improve performance on RGB-to-thermal
domain adaptation problem.

Active domain adaptation has gained increasing atten-
tion in recent years due to its potential to improve model
performance in real-world scenarios. Su et al. [40] proposed
active adversarial domain adaptation (AADA) method to
employ adversarial training of a feature generator and a
domain discriminator for domain alignment and present a
sample selection approach based on variety and uncertainty
of target samples. Using a new sample selection method-
ology known as CLUE, Prabhu et al. [31] suggested clus-
tering target data embeddings weighted by uncertainty and
choosing nearest neighbors to the cluster centroids for anno-
tation while aligning domains using [14]. Fu et al. [13] pro-
posed transferable query selection (TQS) method in their
sample selection strategy which consists of three factors:
discrepancy among a group of five classifiers, margin of
projected class probabilities for a target sample, and sam-
ple diversity from the source domain via a domain discrim-
inator. To choose the most informative subset from the
target domain to annotate, Rangwani et al. [32] proposed
S3VAADA, which provides a submodular set-based infor-
mation criterion that consists of three scores: virtual adver-
sarial pairwise score, diversity score, and representativeness
score. Based on energy-based models, Xie et al. [45] find
target samples which are particularly distinctive to the tar-
get distribution by taking use of free energy biases. More
recently, Xie et al. proposed Select-by-Distinctive-Margin
(SDM) method which comprises of a maximum margin loss
and a margin sampling algorithm. Using greatest margin

loss, SDM chooses target samples based on their relation-
ship to a few hard instances from the source domain which
are near to the decision boundary between source and target
domain. Although SDM presents remarkable results, there
is still room for improving performance on the tasks which
have large domain gap by applying domain alignment.

Our approach differs from the past approaches that it
manages the domain shift reduction, which is crucial in the
case of the transfer of information from visible to thermal
spectrum, without being overly complicated. To the best of
our knowledge, there is no active domain adaptation study
in the literature of thermal image classification. While the
SDM [46] employs no extra classifiers for query by commit-
tee or complex architectures for aligning the distribution for
the source and target domains, this lack of alignment leaves
a space for improvement by reducing the domain gap. In ad-
dition, our choice of FDA [47] introduces no extra learnable
parameters although it shows proper capability on dealing
with the domain shift problem.

3. Proposed Method
Our proposed spectral transfer guided active domain

adaptation method is illustrated in Fig. 1.
First, we change low-frequency components of the la-

beled source samples with those of unlabeled target sam-
ples. We take Fourier transform F of source and target
samples. The output of the Fourier transform divides into
two; phase and amplitude components. Then, the ampli-
tude component of the target sample is multiplied with a
mask Mβ whereas that of the source sample is multiplied
with the complement of that mask (1−Mβ). These ampli-
tude components are summed to generate the new amplitude
component. With this process, we control the portion size
of the low frequency part that is exchanged. The phase com-
ponent of the source sample and the newly generated mixed
amplitude component are subjected to inverse Fourier trans-
form F−1. In this way, a spectral transfer which aids to re-
duce the domain gap between two datasets occurs between
source and target samples. The transformed source samples
are then fed to the feature extractor G. A linear classifier C
is trained along with the G.

We sample from the target dataset according to a query
function Q(·) which uses the output of the fixed C in other
words, the prediction scores of the overall model. The query
function Q(·) also uses the backward gradient of the loss
function of the backbone network. Since target samples
have no labels, this gradient is estimated for target samples.
Once the selected target samples are labeled by oracle, we
utilize the selected target samples in training of G and C
with their labels. This sampling process takes place in the
specified epochs during training. Therefore, the training of
the network continues after the sampling steps.

In the inference, the target samples pass through the
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backbone network which consists of the feature extractor
G and the classifier C. Thus, inference with our proposed
approach is remarkably simple.

A general definition of active domain adaptation, spec-
tral transfer, and spectral transfer guided active domain
adaptation procedures of our proposed approach are de-
scribed in Sec. 3.1, Sec. 3.2, and Sec. 3.3, respectively.

3.1. Active Domain Adaptation

In active domain adaptation, the source domain has
ns labeled samples which is represented as Ds =
{(xi

s, y
i
s)}

ns
i=1 with samples xi

s and their semantic annota-
tions yis ∈ {1, 2, . . .K} where K is the number of classes.
The target domain has nt unlabeled samples which is de-
noted as Dt = {(xj

t )}
nt
j=1. In addition, we describe a la-

beled target set which is initially an empty set ∅, as D̂t.
The unlabeled target data is sampled several times. The
annotators assign their labels to the selected target data,
x̂t ∈ Dt \ D̂t. The model can be trained with the new
labeled set, D̂t ∪Ds, and then it will be exploited to sample
new unlabeled data from the set Dt \ D̂t. Given a budget
B, this procedure continues until the annotated number of
target samples achieves the predefined budget |D̂t| = B.

3.2. Spectral Transfer

In this subsection, we elaborate the spectral transfer pro-
cedure exploited in our proposed method (dashed box in the
upper part of Fig. 1).

For the Fourier transform F of an RGB image, FA,FP :
RH×W×3 → RH×W×3 represent the amplitude and phase
components, respectively. For simplicity of explanation,
Fourier transform F of a single channel image x is:

F(x)(u, v) =

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v). (1)

This can be efficiently implemented by FFT algorithm
proposed in [12]. In order to map frequency domain signals
back to image space, we perform inverse Fourier transform
F−1. A mask Mβ is defined whose value is zero except
for the region in the center (h,w) ∈ [−βH : βH,−βW :
βW ] where β ∈ (0, 1) with the assumption that the center
is (0, 0). We can define the spectral transfer from xt ∈ Dt

to xs ∈ Ds as:
x̂s = F−1([Mβ ◦FA(xt)+ (1−Mβ)◦FA(xs),FP (xs)])

(2)
where the low-frequency component of the amplitude of the
source sample is replaced by that of the target sample. The
operation ◦ denotes the point-wise multiplication of the im-
age and the mask matrices. The phase component of the
source image is unchanged. This altered spectral signal is
then mapped back to the image domain. The image x̂s has
the same content as xs while it constitutes the style and ap-
pearance of the sample xt from Dt.

3.3. Spectral Transfer Guided Active Domain
Adaptation

In the task of active domain adaptation, all labeled data
Ds ∪ D̂t is used. This situation arises the problem of bias
towards areas in the source domain where data samples are
densely placed. Class imbalance problem in real-world ap-
plications amplifies this bias. Therefore, a network which
is trained using all of the training data may be overfit to the
abundant class. Moreover, this bias prevents the Q(·) from
selecting informative target samples. Arising from this fact,
a categorical-wise margin loss with its selective property
can be employed to supervise the network. The proportional
contribution of the source samples to the backward gradient
concerning their margin size helps the network to focus on
samples that have different difficulties. The consideration
of uncertain source samples helps network to prevent the
overfitting to the abundant class. Furthermore, we employ
a max-logit regularizer to ensure that the network always
assigns large scores to the prediction on ground truth class.
Assigning large scores to the prediction on the ground truth
class is important for calibration. We expect that the accu-
racy of the union of samples within a confidence level is
similar with that confidence for a calibrated model. Con-
cerning calibration, confidence score needs to be as large
as accuracy. Hence, considering the spectral transfer in
Sec. 3.2 and adaptive margin loss, the overall loss function
can be denoted as:
Lm(x̂s, ys) =

∑
i ̸=j

[γi[m−C(G(x̂s))j +C(G(x̂s))i]+

−C(G(x̂s))j ] (3)

γi = 1− C(G(x̂s))j −C(G(x̂s))i
m

where [x]+ is the operation max(0, x), the subscripts i and
j denotes the i-th and j-th entry of vectors, respectively.
m is a hyper-parameter to control the margin width. Here,
only the samples which have a confidence score of ground-
truth class close to the classification scores of other classes
can contribute to the backward gradient. In addition, we
control the contribution by using γi which is proportional
to the similarity between scores of the ground truth class
and those of other classes.

While this loss function enhances the spaces between
different categorical clusters, we can focus on the target
samples that are placed near smaller gaps between categor-
ical clusters in the feature space. Furthermore, ensuring the
gradient from loss and the margin sampling term present
similar orientations in the feature space will guarantee fast
convergence to a robust state. Let the margin term be de-
fined as:

M(xt) = (1− (p1∗ − p2∗)) (4)

where;
p = softmax(C(G(xt))) (5)
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and subscript 1∗ and 2∗ denotes the maximum and second
maximum prediction scores.

By considering these, the overall query function for a
sample x can be denoted as:

Q(x) = M(x) + λ ⟨∇fLm(x, y),∇fM(x)⟩ (6)

where f = G(x). In Eq. (6), λ is a hyper-parameter and
operation ⟨·, ·⟩ defines the Cosine Similarity. Since we do
not have access to the label of the target samples, the gra-
dient from the loss term cannot be calculated, but can be
estimated:

∇f L̂m(x, y) = p1∗∇fLm(x, 1∗)+p2∗∇fLm(x, 2∗). (7)

With the query function Q(x), we can select the most in-
formative target samples that are placed near confused deci-
sion boundaries and ensure fast convergence. Similar with
the categorical margin loss in Eq. (3), the query function
Q(x) considers the uncertain samples.

4. Experiments
We carry out comprehensive analyses and compare our

proposed method with a number of state-of-the-art unsuper-
vised domain adaption techniques.

4.1. Datasets
We employed the RGB-to-thermal domain adaptation

setting which is recently proposed by Akkaya et al. [3]. The
setting consists of two datasets, namely, FLIR ADAS [17]
as a thermal dataset and MS-COCO [26] as an RGB dataset.

FLIR ADAS [17] contains both RGB images and ther-
mal images. We utilized only the thermal images in our
experiments. As in [3], we used three classes from FLIR
ADAS dataset: bicycle, car, and person. MS-COCO [26] is
a publicly available large-scale visible spectrum dataset that
contains the same classes as FLIR ADAS [17]. Therefore,
MS-COCO [26] is considered visible spectrum dataset in
our experiments in parallel with [3].

The images in both datasets originate from the square
bounding box annotations of the objects i.e, bicycle, car,
person. The extracted object images are resized to 224 ×
224. Consequently, the thermal dataset includes 4,137 sam-
ples of bicycles, 43,734 samples of cars, and 26,294 sam-
ples of person images. The RGB dataset consists of 5,732
samples of bicycles, 38,453 samples of cars, and 209,162
samples of person images.

4.2. Implementation Details

We followed the training procedure of [46] in our experi-
ments. We used ResNet-50 pre-trained on ImageNet feature
extractor G for all approaches. The FDA [47] method is
implemented on top of our backbone as a spectral transfor-
mation. During the training of our method, we set the batch
size to 32. The number of epochs was determined to be 50.

Table 1. Per-class classification performance comparison.

Method B
ic

yc
le

C
ar

Pe
rs

on

Av
er

ag
e

Source only 69.89 83.89 86.52 80.10

Random 63.91 96.73 97.87 86.17

Entropy [44] 72.41 97.38 96.49 88.76

S3VAADA [32] 56.78 72.13 98.77 75.89

EADA [45] 74.18 94.41 96.52 88.37

AADA [40] 81.15 97.81 94.65 91.20

CLUE [31] 86.21 96.95 91.75 92.30

SDM [46] 88.05 98.35 96.51 94.30

TQS [13] 90.34 97.93 96.41 94.89

STGADA (Ours) 90.57 98.96 96.53 95.35

AdaDelta optimization algorithm is employed to update the
parameters. The learning rate was set to 0.5. The parame-
ters λ and β were chosen as 0.001 and 0.033, respectively.
The margin size m was selected as 1. Throughout the ex-
periments, we perform 5 rounds of active sampling. 2% of
target samples are labeled at every round. Following the
standard active domain adaptation approaches [13, 40, 46],
we simulate oracle annotations by using the ground truth.
Labeled target data are extracted from unlabeled target set
and added to source set. For the first 10 epochs, the training
proceeded with the initial source data. In epochs 10, 12, 14,
16, and 18, we perform our sample selection strategy.

We implemented our proposed method using Py-
Torch framework [30]. Implementation details, mod-
els, and the code were made publicly available at
https://github.com/avaapm/STGADA.
4.3. Results

In the experiments, the visible spectrum is chosen as the
source domain, and the thermal IR spectrum is chosen as the
target domain. As a general practice in domain adaptation,
we denote source only as the target dataset performance of
a model trained with only the source dataset. Performance
of source only model serve as baseline for the lower bound
performance.

Quantitative Analysis. We compare our proposed
method STGADA with several state-of-the-art active do-
main adaptation methods, namely Active Adversarial Do-
main Adaptation (AADA) [40], Clustering Uncertainty-
weighted Embeddings (CLUE) [31], Energy-based Active
Domain Adaptation (EADA) [45], Submodular Subset Se-
lection for Virtual Adversarial Active Domain Adapta-
tion (S3VAADA) [32], Transferable Query Selection (TQS)
[13], and Select by Distinctive Margin (SDM) [46]. More-
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(d) STGADA (Ours)(c) TQS
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(b) SDM(a) Source Only

Figure 2. The t-SNE [43] visualization of network activations on target thermal domain generated by source only model (a), our base
method SDM [46] (b), TQS [13] (c), and our proposed method STGADA (d). We visualize one sample per each class selected by our
proposed method STGADA. Best viewed in color.

over, we compare our proposed method with baseline ac-
tive learning sampling strategies: random sampling and en-
tropy sampling [44]. There are no published findings for our
dataset in these studies since these approaches do not take
domain adaptation into account for thermal datasets. As a
result, we trained and evaluated each of these approaches
using our dataset. We also conduct an analysis on the cali-
bration of the source only model, SDM [46], TQS [13] and
our proposed model STGADA. The Expected Calibration
Error (ECE) [29] values are reported in Tab. 2 and Fig. 3
depicts the reliability diagram of the models.

Table 2. Expected Calibration Error (ECE) [29] results. The lower
the better.

Method ECE

Source only 0.0856

TQS [13] 0.0122

SDM [46] 0.0041

STGADA (Ours) 0.0044

Per-class classification accuracy results are reported in
Tab. 1. The results show that our proposed method outper-
forms the state-of-the-art models. According to per-class
accuracy, our method achieves the best performances on the
classes bicycle and car. Although S3VAADA [32] performs

well for the person class, the accuracy of that model on the
other classes shows that the model overfits to person class,
which is an abundant class in the source domain dataset.
On the other hand, our approach achieves balanced perfor-
mance for all classes despite the fact that the source dataset
is imbalanced. Our method also increases the performance
of the base method SDM [46] in the bicycle class, which
has very few samples in the source dataset. It is important
to underline this situation because real-world applications
usually include imbalanced classes [6, 23].

Tab. 2 shows the Expected Calibration Error (ECE) [29]
results. If a classifier’s observed accuracy matches with
its mean confidence, the classifier is considered to be cal-
ibrated [29]. From the results, we can conclude that the
source only model has the highest ECE, which states that
the source only model is not calibrated well. In terms of
calibration, our model STGADA and SDM [46] outper-
forms TQS [13] by obtaining much less ECE. In parallel
to ECE results, Fig. 3 demonstrates how far the source only
model is from the perfect calibration line. In other words,
the source only model cannot achieve the expected accuracy
concerning obtained confidence scores. TQS [13] also ex-
hibits unwanted peaks and gaps stating that the model is not
calibrated enough. On the other hand, our proposed model
STGADA and SDM [46] manage to achieve proportional
accuracy to confidence scores that the gaps in the reliability
diagrams are smaller than those of the source only model
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(d) Our method
Figure 3. Visualization of reliability diagrams [29] of source only model (a), SDM [46] (b), TQS [13] (c), and our proposed method
STGADA (d). Given target domain images, our proposed method STGADA obtains more calibrated results compared to the source only
model and TQS [13] while showing comparable calibration gap with SDM [46].

and TQS [13]. Since the calibration of the SDM [46] is bet-
ter than that of the TQS [13], we have chosen the SDM [46]
as the base model for our approach. Furthermore, the fact
that TQS [13] has a high level of complexity with multiple
classifiers and a discriminator underlines our base method
decision of SDM [46]. Consequently, our model is more
calibrated than TQS [13] and comparable with SDM [46] in
addition to achieving higher accuracy.

Qualitative Analysis We present the visualization of the
feature representation on the target thermal IR domain with
t-SNE [43] for qualitative analysis in Fig. 2. The features
originating from the source only model cannot be discrimi-
nated, while our base method SDM [46] and TQS [13] dis-
criminate the samples from different classes. On the other
hand, our proposed model STGADA can isolate the sam-
ples from the bicycle better than those models. The im-
provement in the discrimination of the samples from bicy-
cle reflects itself in the fact that our model achieved the best
accuracy in bicycle class. Furthermore, we visualized one
selected sample from each class, bicycle, car, and person
in Fig. 2. Our proposed approach tends to select the most
uncertain samples that rely upon near the decision bound-
aries. As we can see from the Fig. 2, samples, which are
close to different categorical clusters are selected. The vi-

sualized examples also confirm this criteria. We can see that
the samples from the classes bicycle and car contain a per-
son object, and the sample from the class person contains
a bicycle object. This situation makes those samples am-
biguous for the trained network, hence, the query function
selects those samples.

5. Conclusion
In this study, we propose a spectral transfer guided ac-

tive domain adaptation method in order to examine the effi-
ciency of combining visible spectrum and thermal imagery
modalities by taking advantage of active domain adapta-
tion. We perform spectral transfer to the source samples
with the target samples for additional alignment of two do-
mains. The low frequency component of source samples are
exchanged with those of target samples. This extra align-
ment leads our model to achieve improved performance
since the domain shift in RGB-to-thermal task is consider-
ably large. To present our results, we employed the large
scale RGB dataset MS-COCO as the source domain and
thermal dataset FLIR ADAS as the target domain. Quan-
titative and qualitative analyses demonstrate that our pro-
posed approach performs better than state-of-the-art active
domain adaptation methods by reducing the domain gap be-
tween RGB and thermal domains.
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