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Abstract

This paper reports on an exploratory study of the auto-
matic detection of discrete scatterers in the water column
from underwater acoustic data with deep learning (DL)
networks. Underwater acoustic surveys using moored sin-
glebeam multi-frequency echosounders make environmental
monitoring tasks possible in a non-invasive manner. Dis-
crete scatterers, i.e., individual marine organisms, are par-
ticularly challenging to detect automatically due to their
small size, sometimes overlapping tracks, and similarity
with various types of noise. As our interest lies in identify-
ing the presence and general location of discrete scatterers,
we propose the use of a semantic segmentation paradigm
over object detection or instance segmentation, and com-
pare several state-of-the-art DL networks. We also study
the effects of early and late fusion strategies to aggregate
information contained in the multi-frequency data. Experi-
ments on the Okisollo Channel Underwater Discrete Scat-
terers dataset, which also include schools of herring and ju-
venile salmon, air bubbles from wave and fish school activ-
ity, and significant noise bands, show that late fusion yields
higher metrics, with DeepLabV3+ outperforming other net-
works in terms of precision and intersection over union
(IoU) and Attention U-Net offering higher recall. The de-
tection of discrete scatterers is a good example of a prob-
lem for which exact annotations cannot be reached due to
various reasons, in several cases, network outputs seem vi-
sually more adequate than the annotations (which contain
inherent noise). This opens up the way for utilizing actual
detection results to improve the annotations iteratively.

1. Introduction

This paper deals with the automatic detection of un-
derwater discrete scatterers, i.e., single marine organisms,
from multi-frequency echograms, through an exploratory

study of the deep learning (DL)-based semantic segmenta-
tion paradigm.

1.1. Context

Underwater acoustic surveys allow for the collection
of high spatio-temporal resolution data that enable ma-
rine biologists and oceanographers to perform a variety of
non-invasive tasks crucial for environmental monitoring.
Echosounders measure acoustic backscatter from the wa-
ter column. Multi-frequency echosounders ping the water
column by emitting series of acoustic pulses at different fre-
quencies, listening for the echoes from potential targets be-
tween the pulses. The basic idea is that aquatic organisms
with an acoustic impedance different from that of the sur-
rounding body of water, when subjected to a pressure wave,
scatter the wave in a characteristic way [ 16] according to the
pulse frequency. Several factors influence backscatter char-
acteristics, including the acoustic instrument, environment,
and target size, shape, and material properties [16].

Data from moored multi-frequency singlebeam echo-
sounders are typically visualized as sets of single-frequency
2D images called echograms, in which the x axis represents
different pings over time (temporal unit) for one given fre-
quency and the y axis represents the depth or range from
the instrument in the water column (distance unit). The
pixel intensity is color-coded to represent the amplitude
of reflected echoes at that frequency at a given time in a
given (small) volume (although residual echoes from other
frequencies may also be present, appearing as bands of
noise [33]), generally computed as the volume backscat-
tering strength (called S,). Echograms are, to this day,
mostly interpreted with manual or semi-automatic methods
based on statistical characteristics of aggregations of organ-
isms [36] using commercial software (e.g., Echoview [9]),
a time-consuming and error-prone process. There is a crit-
ical need for automatic processing and analysis methods
of echograms with respect to efforts in species abundance
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Figure 1. Sample one-hour multi-frequency echogram illustrating some of the challenges in detecting discrete scatterers. The yellow band
represents the air-water interface, fish schools appear as yellowish vertical aggregations, air bubbles as greenish/cyan aggregations near the
air-water interface or fish schools, and numerous discrete scatterers, more intense here at 125 and 200 kHz, as cyan small objects. Noise
bands, visible mostly at 67 and 125 kHz, also appear in cyan. Volume backscattering strength (.S, ) is displayed in the “parula” colormap.

tracking and environmental monitoring.

In this paper, we are interested in identifying discrete
scatterers in echograms using DL, in particular semantic
segmentation networks, which assign a class label to each
image pixel. “Discrete scatterers” here refers to individ-
ual organisms, as opposed to aggregations (be they fish
schools or cloud-like aggregations of zooplankton). They
differ on several aspects in terms of their (small) size, mor-
phology, density, and distribution, and thus present spe-
cific challenges. In particular, they tend to yield similar
backscattering strength compared to some types of noise,
such as residual echoes from other frequencies or sidelobe
artifacts (see [2 1] for information on sidelobes), school con-
tours partially enclosed by the echosounder beam, as well
as air bubbles from wave and fish school activity. Fig. |
illustrates this challenge with an example of a noisy multi-
frequency echogram containing discrete scatterers (small
cyan objects) as well as fish schools and air bubbles.

1.2. Usecase: Jellyfish

This study focuses on jellyfish as a usecase for the de-
tection of discrete scatterers. Insights into jellyfish dis-
tribution is of economic and ecological significance, as
they are important consumers in pelagic food webs and in
some cases, pose risks to finfish aquaculture. Measuring
them acoustically is appealing as there are no standardized
methods for sampling them, in part due to the difficulty
of capturing them with nets. Jellyfish are considered as
“weak scatterers” [7] due to their gelatinous bodies sim-
ilar to the surrounding sea-water in density/sound speed.
Their backscattering strength is generally weaker than that
of swim-bladdered fish due to their high water content [26].
Their individual tracks are typically recognizable as long,
thin, and faint, since jellyfish move slowly and remain in the
echosounder beam for a long time. Jellyfish are also typi-
cally entrained in currents, so they follow similar motions
across depths. The opening and closing of their bell during
swimming create a sizable change in their backscattering
strength [7,26]. We hypothesize that (some) semantic seg-
mentation networks can cope with the variability and small
size of jellyfish tracks, given the proper training data.

1.3. Contributions

Our contributions are two-fold: 1) We propose the use of
a semantic segmentation paradigm for the pixel-level detec-
tion of discrete scatterers in noisy echograms and present
an experimental design that compares state-of-the-art DL
architectures, outlining their strengths and weaknesses for
this challenging application. 2) We generate fused inputs
from multi-frequency volume backscattering strength data
and study the effects of early vs. late fusion on the pixel-
level detection of discrete scatterers in echograms.

To the best of the authors’ knowledge, this is the first
work reporting on discrete scatterer detection in echograms
utilizing DL methods. This problem constitutes a good ex-
ample for a class of problems in which exact annotations
cannot be reached for various reasons, such as the discrete
scatterers’ characteristics, significant noise in the data, and
the absence of actual ground truth. Our annotations are
of high enough quality for DL training purposes; however,
during the experimental evaluation, we need to carefully
compare the outputs with their corresponding annotations,
as some divergence may be motivated by errors/noise in the
annotation process. Ongoing work is looking at how to take
advantage of both human expertise and DL to improve upon
the annotation and validation processes.

The remainder of this paper is as follows: Sec. 2 re-
views related works on the detection of marine species from
acoustic data, Sec. 3 presents our proposed methodology in-
cluding details on the dataset, Sec. 4 discusses experimental
results, and Sec. 5 provides concluding remarks.

2. Related works

Traditionally, acoustic classification of (mostly aggrega-
tions of) pelagic species from echograms rely on character-
istics that can be morphometric (i.e., related to the geometry
of the aggregations), bathymetric (i.e., related to the posi-
tion in the water column), and/or energetic (i.e., related to
the signal properties) [15,30,36]. Hand-crafted features de-
rived from a combination of those characteristics are then
fed to machine learning classifiers (e.g., [25,29,33]). Other
conventional multi-frequency approaches focus solely on
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energetic characteristics and rely on the relative or differen-
tial/combined frequency response of different species (e.g.,
[8,34]). Specific to jellyfish, conventional methods include
those of Mutlu [26], whose experiments were designed to
estimate the target strength of the common jellyfish in the
Black Sea with a dual-frequency echosounder, of Brierley et
al. [3], who worked on estimating the target strength of two
species of tethered and free-swimming jellyfish in Namib-
ian waters with single- and multi-frequency echosounders,
respectively, and of Colombo et al. [7], who focused on es-
tablishing a link between four jellyfish species and sound-
scattering layers in echograms.

DL-based semantic segmentation has a proven track
record in various applications in the visible spectrum and
beyond, notably in natural and medical image segmenta-
tion [1]. Acoustic classification from echograms using DL-
based semantic segmentation has only recently been gaining
some traction. Brautaset et al. [2] proposed a semantic seg-
mentation network based on the architecture of the popular
U-Net model [31] for the detection of schools of sandeel.
They trained their model with crops from multi-frequency
echograms to classify each pixel as sandeel, background,
or other, improving upon the traditional school classifica-
tion algorithm of Korneliussen et al. [17]. Ordofiez et al.
[28], re-using Brautaset et al.’s model, examined prepara-
tion strategies of echosounder data for DL, and found that
providing the network with auxiliary information related to
the range improved classification performance. Recently,
Choi et al. [6] also focused on the identification of schools
of sandeel with U-Net, however within a semi-supervised
framework. Leveraging a small amount of annotated data
via supervised DL and a large amount of readily available
unannotated data via unsupervised DL, they proposed two
objective functions — an unsupervised clustering objective
and a supervised segmentation objective — to alternately op-
timize the network at the end of the decoder part, achieving
a performance comparable to that of the fully supervised
method with 40% of the annotated data. Slonimer et al. [35]
utilized data from the same acoustic surveys available from
Fisheries and Oceans Canada as our dataset (see Sec. 3.1)
to detect schools of herring and juvenile salmon. Their end
goal was not semantic segmentation of the echograms, but
rather the detection of school instances; as such, they pro-
posed a two-stage approach in which the first stage makes
use of U-Net-like networks to classify pixels. In addition
to four frequency channels, they also input two simulated
channels (water depth and solar elevation angle) to encode
spatial and temporal information, which improve the per-
formance. Marques et al. [23] also tackled the detection of
schools of herring and of juvenile salmon from echograms
(single frequency channel) with a framework based on the
pixel-level instance segmentation Mask R-CNN [13] net-
work. They argued that pixel-level detection, compared to

object detection, opens up possibilities for automatic bio-
logical analyses due to the finer delimitation of schools.

Another relevant work is that of French et al. [11], who
proposed JellyMonitor, a system for detecting jellyfish from
multibeam sonar imagery using an older convolutional neu-
ral network (CNN) architecture that classifies image patches
selected from a blob extraction and tracking mechanism
based on Gaussian and Kalman filters. One important dif-
ference with respect to their data is that their multibeam
sonar yields 2D images with a significantly better resolu-
tion, operating at 3 MHz, but a significantly shorter max
range, compared to our singlebeam echosounder, which op-
erates at frequencies ranging from 67 to 455 kHz and yields
1D images (that we concatenate over time to generate 2D
images). For DL-based acoustic identification of marine
species from multibeam sonar imagery, we refer the inter-
ested reader to the survey paper by Wei et al. [40].

Detecting pixels of interest in echograms using DL-
based semantic segmentation has the advantage, over tradi-
tional methods, of automatically determining the best fea-
tures from the data, alleviating the need for carefully hand-
crafted features. Our main goal is to identify the pres-
ence and general location of discrete scatterers and, due
to the small, varying and sometimes overlapping nature of
their tracks, in particular those of jellyfish, we favor this
paradigm over object detection or instance segmentation.
Existing works on semantic segmentation of echograms fo-
cus on aggregations of marine organisms; by focusing on
discrete scatterers, we explore here a new and relevant ap-
plication of semantic segmentation networks.

3. Methodology

Fig. 2 shows the flowchart of the proposed approach for
discrete scatterer detection. Echograms are fed as input to
a DL semantic segmentation network (three different net-
works are included in the experiments) to produce pixel-
level detections. Two fusion strategies for dealing with the
multi-frequency nature of the data are explored: 1) early fu-
sion (fusion of the inputs, Fig. 2(a)), in which the contents
of all frequency channels are fused into single input images
and the network outputs fused results seamlessly; 2) late
fusion (fusion of the outputs, Fig. 2(b)), in which single-
frequency images (at all frequencies) are directly input to
the network and single-frequency outputs are then fused to
yield the final results. We also test using no fusion at all
(i.e., providing results for each individual frequency). The
remainder of this section details the dataset used in the ex-
periments, the early and late fusion approaches, as well as
the compared semantic segmentation networks.

3.1. OCUDS Dataset

The Okisollo Channel Underwater Discrete Scatterers
(OCUDS) dataset is composed of 125 one-hour multi-
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Figure 2. Flowchart of the proposed method. In (a), single-frequency images are fed to a DL semantic segmentation model, yielding
frequency-specific results that are aggregated in a late fusion mode to obtain the final detections. In (b), in an early fusion mode, fused
inputs combining the contents of all frequencies are fed to a DL semantic segmentation model, directly yielding the final detections. We
also test the case of no fusion, with frequency-wise detections marked by an asterisk (*) in the upper branch used as final results.

frequency echograms generated from a moored upward-
looking autonomous echosounder at the Venture point in the
Okisollo Channel, a sheltered body of water separating the
islands of Sonora and Quadra in the Discovery Passage of
Vancouver Island, BC, Canada in 2015. The mooring em-
bodied a bottom-mounted Acoustic Zooplankton Fish Pro-
filer (AZFP) [18] echosounder that measured data at four
frequencies (67, 125, 200, and 455 kHz) from the bottom
depth of 55 m. Prior to deployment, the echosounder was
calibrated by the manufacturer. Primarily deployed to study
the migration timing and dynamics of juvenile salmon in
the area [32], the AZFP collected data for their migration
period, which typically extends from early May to July. The
collected data are visualized as 571 x 1200-pixel echograms,
where each pixel represents approximately 10 cm depth res-
olution (height-wise) through 3 s of time (width-wise).

The echograms display the standard volume backscatter-
ing strength (S,,), calculated from the raw acoustic data. .S,
reflecting the sum of all the acoustic response within a vol-
ume scaled to 1 m?, can be calculated from the deployment
metadata and is given by the following [18]:
la'

2.5 N
v 26214a7SL+2010gR+2aR71010g(T).

(1)

Here, E L., expresses the echo level (in dB re 1uPa)
necessary to saturate the 16-bit A/D converter; N is the
instrument-provided “counts” from the raw data which is
linearly related to the logarithm of the received voltage that
is amplified, band-pass filtered and “detector” passed; a is
the gradient of the detector response (volts/dB); o is the sea-
water absorption coefficient (dB/m); R represents the range
from the instrument (m); SL is the source level of the in-
strument (dB re 1pPa at 1m); c is the sound speed (m/s);

Sv = ELmax -

7 gives the length of the transmit pulse (s); and W is the
two-way solid angle of the beam.

In order to visualize the echograms, S, values, typi-
cally ranging from around -125 to O dB in this case, are
converted to red-green-blue (RGB) integers using a proper
color map. The popular “jet” color map is appealing for its
full visual spectrum showing large changes in chroma and
luminance [37]. However, jet highlights even the smallest
existing image features with high contrast and may accentu-
ate unwanted information (e.g., noise); thus, we instead use
“parula”, a perceptually uniform designed multi-hue color
map [37] (see Fig. | for examples). Since parula has less
color contrast, it helps focus on salient information. It is
also perceptually free from ambiguity, color-blind friendly,
and overall offers a better understanding of the echograms.

The echograms in OCUDS contain many schools of her-
ring and salmon; moreover, they strongly indicate the pres-
ence of a large number of discrete scatterers consistent
with individual tracks of marine organisms such as jellyfish.
They also contain significant noise in the form of horizontal
bands (residual echoes from other frequencies or sidelobe)
and sometimes vertical bands (most likely electric noise, see
Fig. 3). We discard the 455 kHz data to focus on the lower
frequency channels (67, 125, and 200 kHz) as the 455 kHz
channel does not provide reliable measurements past 30-
40 m, and the acoustic response of the discrete scatterers
is inconspicuous at that frequency. The following biologi-
cal cues, native to our data, were considered in the annota-
tion process: 1) discrete scatterers are small objects with a
relatively weak backscattering strength; 2) they can appear
at any depth in the water column; 3) their backscattering
strength can be similar to that of air bubbles, which can be
differentiated as typically forming a cloud-like structure of
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even smaller objects near the surface or near schools; 4)
jellyfish have a specific behavior described in Sec. 1.2, i.e.,
they may appear elongated (but not purely vertically) as due
to their slow movement, they tend to stay a long time in the
echosounder beam; 5) jellyfish tend to be entrained by in-
ternal waves, therefore several individuals in close proxim-
ity may appear to follow similar trajectories; 6) schools of
herring and salmon (not discrete scatterers) present vertical
elongated shapes and have a strong backscattering strength.

Our semi-automatic annotation process, based on stan-
dard image processing techniques and the above cues, is
as follows. 1) RGB echograms are converted to grayscale
images and thresholded with a manually selected thresh-
old to segment potential marine organisms (which will in-
clude the boundaries of aggregations, discrete scatterers,
and sometimes air bubbles) from the background. 2) The
area of each segmented object is computed, and all seg-
ments smaller than a manually selected value are kept as an-
notation candidates. 3) To deal with noise, some of which
is typically included in the annotation candidates, a post-
processing step is applied in a process similar to that of the
noise removal in [10]. For each particularly noisy region
in a given echogram, the .S, values are summed across all
frequencies and thresholded to obtain a noise mask. This
process allows us to roughly separate returned echoes that
appear in all frequencies from those typically appearing in
only one or two, such as horizontal noise bands. 4) The fi-
nal annotations are obtained by removing any likely noise
pixels from the annotation candidates using the noise mask.
Due to the discrete scatterers’ characteristics and the noise
in the echograms, in addition to some uncertainty in the
absence of actual ground truth, these annotations are im-
perfect, yet still useful for training and for comparing the
performance of semantic segmentation networks. The top
rows of the echograms are excluded to remove the water-air
interface (yellow band) and anything above it.

OCUDS follows a standard 80%/20% partitioning for
training/testing, which corresponds to 100 and 25 multi-
frequency echograms for training and testing, respectively.

3.2. Early fusion vs. late fusion

Multi-frequency echosounders capture complementary
information coming from each frequency, as marine organ-
isms and physical phenomena respond differently to each
one according to their acoustic properties and size. Each
frequency-specific image represents the same set of scatter-
ers (in range and time), but looks different from images at
other frequencies. There are two main explicit strategies for
dealing with multi-frequency data: early data fusion, i.e.,
merging the input data as a pre-processing step prior to any
analysis, or late data fusion, i.e., as a post-processing step
to merge single-frequency results. We experiment with both
strategies, along with no fusion at all (i.e., providing re-

sults for each individual frequency), to determine which one
yields the best performance in our application. An implicit
strategy would involve letting the network deal with all fre-
quency channels at once; this has been done for instance
n [35], which mapped the .S, values from four frequencies
to four grayscale images to form a 4-channel input.

Fused input image

125 kHz 200 kHz
Figure 3. Sample fused input image generated from three single-
frequency images.

Early fusion (Fig. 2(a)) is akin here to pixel-level image
fusion, which combines multiple input images into a fused
image. A fused image is expected to be more informative
for human or machine perception in comparison to any of
the single images [19]. Considering how single-frequency
RGB images are created from S, values using the parula
color map (see Sec. 3.1) and that we are interested in re-
turned echoes at all frequencies, we use a simple fusion
method that sums the S, values pixel-wise and then con-
verts the summed S, values to the parula color map. The
conversion process is thus carried out on a larger .S, value
range of about -375 to 0 dB (compared to single-frequency
images), which effectively averages the responses from all
frequencies. Fig. 3 shows an example of a fused echogram
obtained from the 67, 125, and 200 kHz images, in which
we can see the returned echoes from all frequencies (mostly
visible in the enlarged region). One downside of the fused
input images is that since a larger range of S, values is
mapped to the same RGB range, the loss of precision in
the conversion process is greater than for single-frequency
images. One advantage is that the fusion tends to lessen
the noise (horizontal and vertical bands in Fig. 3), which
is often amplified at narrow frequency ranges. Annotations
are obtained following a similar process: single-frequency
annotations are fused using a bit-wise OR operation.

Late fusion (Fig. 2(b)), which happens at the results
stage, has the advantage of providing more training data to
the networks, as each single-frequency image is a distinct
input. However, each input image is less informative. A
fused output is generated from the single-frequency results
with a bit-wise OR operation, similarly to how annotations
are created in the early fusion strategy, as both annotations
and outputs are binary (discrete scatterers vs. background).
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3.3. Semantic segmentation networks

The goal of semantic segmentation is to partition an im-
age into mutually exclusive subsets representing a mean-
ingful region of the original image [!2]. Semantic seg-
mentation networks thus perform a dense prediction, i.e.,
a pixel-level classification, yielding an output segmentation
map of the same dimensions as the input image. In this
study, we experiment with several popular DL-based se-
mantic segmentation networks with a proven track record
in various applications: U-Net [31], Attention U-Net [27],
and DeepLabV3+ [5]. We also explored a very different
network, YOLOV7 [39] (the latest in the popular object de-
tection series which includes provisions for pixel-level clas-
sification), but segmentation architectures that use an initial
bounding-box detection phase like YOLO have difficulty
with small objects (the bounding box regression will ex-
perience gradient explosions and the loss going to infinity).
Given the size of the discrete scatterers, we encountered this
issue and removed YOLOV7 from the final experiments.

U-Net [31] was first proposed for medical image seg-
mentation. Building upon Fully Convolutional Networks
(FCNs) [22], it aims to require fewer training images and
yield more precise segmentations. Following an encoder-
decoder architecture, it has three main parts: 1) the encod-
ing/contracting path, a typical CNN with repeated appli-
cations of convolutions followed by a rectified linear unit
(ReLU), batch normalization and max pooling, which pro-
gressively reduces the spatial information while increasing
the feature information; 2) the bottleneck, used for dimen-
sion reduction; 3) the decoding/expanding path, comple-
mentary to the contracting path, which combines spatial and
feature information through a series of upsampling trans-
posed convolutions, concatenated with the corresponding
feature maps from the contracting path via skip connec-
tions. This allows the network to make local predictions
that respect the global structure of the image content.

Attention U-Net [27] adds an attention gate mechanism
to U-Net to focus on specific elements of interest. Skip con-
nections in U-Net may propagate redundant low-level in-
formation due to a poor feature representation in the initial
layers. Attention gates filter features propagated through
the skip connections to actively suppress activations in ir-
relevant regions, thus reducing redundant features and high-
lighting useful salient features. Attention U-Net utilizes ad-
ditive soft attention and applies weights to different regions
of the image; which regions get larger weights (and thus
more attention) is learned as the model is trained.

DeepLabV3+ [5] is a semantic segmentation encoder-
decoder architecture using the Atrous Spatial Pyramid Pool-
ing (ASPP) module that incorporates cascading atrous con-
volutions to model multi-scale context after the downsam-
pling backbone (i.e., ResNet-50 [14]). It improves over
DeepLabV3 [4] by adding a decoder module after the ASPP.

To reduce the model’s size, bilinear interpolation is used to
adjust the output size instead of transposed convolutions as
in U-Net. This architecture allows for accurate segmenta-
tions with a smaller number of parameters.

4. Experimental results

This section discusses experimental results for the detec-
tion of discrete scatterers from multi-frequency echograms
for all three compared semantic segmentation networks,
which were implemented in Python using the PyTorch [38]
framework and trained and tested on the OCUDS dataset.

For each model, we train from scratch (without the use of
any pre-trained weights) for 500 epochs with an Adam op-
timizer, a learning rate of 1e~° and no weight decay. Ran-
dom horizontal flipping and ImageNet normalization aug-
mentations are used, after which the images are resized
to 400 x 800 pixels. Batch sizes of 2 and 4 are used for
U-Net/Attention U-Net and for DeepLabV3+, respectively.
Given the minute nature of the discrete scatterers and un-
balanced class distribution, we use Dice Loss [24] (with Bi-
nary Cross Entropy) and Focal Loss [20] functions for train-
ing U-Net/Attention U-Net and DeepLabV3+, respectively,
which we empirically found to perform best.

4.1. Quantitative evaluation

Table 1 compares the quantitative performance of the
three semantic segmentation networks evaluated on the test
set of OCUDS, for the early, late, and no fusion (with
single-frequency results) strategies. As this is a pixel-level
binary classification problem, we report the following stan-
dard evaluation metrics: precision, recall, and intersection
over union (IoU). Precision showcases the proportion of de-
tections that are actual discrete scatterers, while recall em-
phasizes the proportion of actual discrete scatterers that are
detected. Precision and recall are often a trade-off between
the two, and which one is favored depends on the context.
For instance, precision can be favored when the extraction
of definite discrete scatterers needs to be accurate or noise
needs to be eliminated, even at the expense of the exclusion
of low-confidence scatterers. In cases where noise in the re-
sults (false positives) does not have a significant impact but
detecting each and every discrete scatterer is of importance,
recall is the most relevant metric. IoU complements preci-
sion and recall by measuring the similarity between the set
of detected pixels and the set of annotated pixels, compar-
ing the size of the intersection with that of the union of the
two sets. Here, these metrics are computed echogram-wise
then averaged over the entire test set.

From Table 1, across all strategies, DeepLabV3+ outper-
forms both U-Net and Attention U-Net in terms of preci-
sion and IoU, and Attention U-Net yields the best recall.
The best precision (0.685 £ 0.070 for DeepLabV3+) and re-
call (0.381 = 0.063 for Attention U-Net) are obtained for
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Network
Stragegy Metric U-Net Attention U-Net DeepLabV3+
Early Fusion | Precision | 0.553 +0.059 0.449 £ 0.077 0.651 = 0.085
Recall 0.276 + 0.039 0.380 + 0.042 0.315 +0.085
IoU 0.223 + 0.059 0.256 + 0.029 0.265 + 0.060
Late Fusion Precision 0.649 +0.061 0.529 £ 0.072 0.685 + 0.070
Recall 0.253 £0.072 0.381 + 0.063 0.334 £ 0.083
ToU 0.219 £ 0.053 0.281 £ 0.037 0.285 + 0.058
No Fusion Precision | 0.548 +0.100 0.456 +0.108 0.603 + 0.135
67 kHz Recall 0.216 + 0.081 0.322 + 0.084 0.237 +0.085
ToU 0.180 + 0.058 0.227 £ 0.053 0.205 + 0.074
No Fusion Precision | 0.299 +0.100 0.457 £ 0.100 0.605 +0.115
125 kHz Recall 0.219 £ 0.082 0.323 +0.084 0.310+0.134
ToU 0.179 £ 0.059 0.228 +0.049 0.243 +0.082
No Fusion Precision | 0.546 +0.100 0.449 + 0.097 0.585 +0.057
200 kHz Recall 0.216 + 0.082 0.322 +0.085 0.310 + 0.084
IoU 0.179 + 0.059 0.225 + 0.049 0.250 + 0.055

Table 1. Performance (mean + standard deviation) of compared se-
mantic segmentation networks, computed echogram-wise, on the
OCUDS test set for early, late, and no fusion (best results in bold).

the late fusion strategy. This seems to indicate that having
additional training images (one for each frequency), each
displaying less information, is beneficial in this case. For
the no fusion strategy, there is no clear tendency in terms of
one frequency outperforming others; compared to early and
late fusion, no fusion yields lower metric values. Looking
at the standard deviation values, there is again no clear ten-
dency in terms of which network is more consistent from
one echogram to the next. All networks yield higher pre-
cision and lower recall, being more selective in predicting
pixels that are discrete scatterers. This is appealing for our
goal of focusing on the presence and general location of the
discrete scatterers: the networks do not detect all of them,
but what they detect is in accordance with the annotations.
One caveat is that due to the annotations not being 100%
accurate, these metrics alone cannot completely capture the
quality of the results, which we evaluate visually next.

4.2. Qualitative evaluation

Fig. 4 shows representative results from all compared se-
mantic segmentation networks, taken at different times in
the day (10 am and 8 pm) on different days, for the two
best fusion strategies, i.e., early and late. Additional vi-
sual results can be found in the supplementary material.
From Fig. 4(a) and (b), it is clear that Attention U-Net tends
to yield a larger number of detected pixels (in black) with
many smaller detections. This observation is supported by
the higher recall of Attention U-Net (see Table 1). The dif-
ference between U-Net and DeepLabV3+ is not as clear, as
both tend to yield less detections. There is a tendency across
all networks to yield additional and smaller detections in the
late fusion case. Generally, all three networks generate less
detections compared to the annotations, except in the case
of late fusion Attention U-Net, which detects additional dis-
crete scatterers in the noisy middle region. From a visual in-

spection, we can see that on several occasions, the networks
outperform the annotations. On one hand, annotated pixels
that likely correspond to noise (e.g., in Fig. 4(b), the anno-
tations include parts of the vertical noise band near the left
border) or to a small fish school (e.g., in Fig. 4(a) the 67 kHz
annotations include a vertical aggregation near the top about
1/5 from the left side, which is most likely an aggregation
of juvenile salmon) are not detected as such by the networks
(e.g., by DeepLabV3+ in these two cases). A possible ex-
planation is that semantic segmentation networks tend to
have trouble with very small objects; the deeper into the
network, the larger the receptive field and thus the less in-
fluence a single pixel has on later filters. Also, networks
learn the probability of certain local patterns; as such, noise
present in the annotations is less likely to be modelled as
it has no known distribution/pattern. Another consideration
is that outliers (like the juvenile salmon aggregation case)
are insufficient in numbers for the networks to model their
distribution properly, and are thus not learned. On the other
hand, some unannotated pixels in the middle region that are
obscured by noise (and are thus too aggressively removed
in steps 3 and 4 of the annotation process, see Sec. 3.1),
are detected as discrete scatterers, especially in the late fu-
sion strategy; such detections make sense from a biological
viewpoint. This can be explained in part by the fact that in
the late fusion case, some discrete scatterers may be more
visible at one frequency compared to their fainted version
present in the fused input echograms, and are thus detected
more easily in the single-frequency inputs. These results,
while useful as is for biologists to speed up their analysis
tasks, open up the possibility of improving the annotations
in an iterative manner using actual detection results.

5. Conclusion

This study explores the use of semantic segmentation
networks for the pixel-level detection of discrete scatter-
ers in noisy multi-frequency echograms. Several state-of-
the-art DL architectures are compared on the challenging
OCUDS dataset for the jellyfish usecase, which contain
echograms that are particularly difficult to correctly anno-
tate on a pixel level. Experiments with early and late fusion
strategies, along with no fusion at all, reveal that, quanti-
tatively, late fusion is preferable in terms of precision, re-
call, and IoU. They also show that DeepLabV3+ tends to
have more precise detections, while Attention U-Net tends
to miss less detections. Interestingly, the networks appear
to qualitatively outperform the annotations on several occa-
sions, being able to detect some discrete scatterers in noisy
region while at the same time not detecting annotated scat-
terers that are more in line with noise or small aggregations
of fish. The problem that we are trying to solve is a good
example of a class of problems where perfect ground truth
(expressed via annotations) cannot be reached due to mul-
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Figure 4. Sample results for two echograms from the OCUDS test set, for the best performing strategies (early and late fusion): 26-JUL-
2015 20:00-21:00 (a), and 31-JUL-2015 10:00-11:00 (b). All results should be compared to the fused annotations (with green bounding
box). In the annotations and results, black pixels represent discrete scatterers.

tiple reasons. Ongoing work focuses on how to integrate
annotation, testing, and validation into an iterative, conver-
gent loop which takes advantage of both human expertise
and DL. Future work will look into conducting extensive
surveys among marine biologists to assess their preferred
outputs in terms of usefulness for environmental monitoring
tasks, as well as exploring the use of soft labels to account

for the uncertainty in the annotations.
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