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Abstract

The paper discusses the need for a reliable and effi-
cient computer vision system to inspect utility networks with
minimal human involvement, due to the aging infrastruc-
ture of these networks. We propose a deep learning tech-
nique, Fusion-Semantic Utility Network (Fusion-SUNet), to
classify the dense and irregular point clouds obtained from
the airborne laser terrain mapping (ALTM) system used
for data collection. The proposed network combines two
networks to achieve voxel-based semantic segmentation of
the point clouds at multi-resolution with object categories
in three dimensions and predict two-dimensional regional
labels distinguishing corridor regions from non-corridors.
The network imposes spatial layout consistency on the fea-
tures of the voxel-based 3D network using regional segmen-
tation features. The authors demonstrate the effectiveness
of the proposed technique by testing it on 67km2 of utility
corridor data with average density of 5pp/m2, achieving
significantly better performance compared to the state-of-
the-art baseline network, with an F1 score of 93% for pylon
class, 99% for ground class, 99% for vegetation class, and
98% for powerline class.

1. Introduction
The paper focuses on the development of a computer vi-

sion system that can inspect utility networks with minimal
human involvement. The aging infrastructure of these net-
works has made it essential to have an efficient system for
inspecting and managing them [17]. Although unmanned
aerial vehicles (UAVs) have been used for utility inspec-
tions, there are still challenges in using them to collect data
across entire utility corridors. As a result, Airborne Laser
Terrain Mapping (ALTM) has become the primary data col-
lection platform [41] [28]. However, labeling semantic fea-
tures in point clouds using visual perception tasks is still a
challenging and expensive task that often requires manual
labor and is prone to errors. As a result, there is a signif-
icant need to automate post-data acquisition procedures to

Figure 1. SUNet is a multi-dimensional and multi-resolution net-
work that imposes the spatial layout consistency (1a) through a
2D bird’s-eye view (BEV) of utility regions on the outcomes of
3D segmentation network via loss-based late fusion (1b).

reduce the level of user involvement and improve efficiency
[16] [37]. Deep Convolutional Neural Networks (DCNNs)
have recently shown significant improvements in computer
vision, particularly for semantic segmentation using point
clouds [35] [29] [30]. However, existing networks have not
fully exploited the spatial arrangement of infrastructure, es-
pecially for utility corridors, nor have they embedded spa-
tial layout consistency for global context. This limitation
motivated the authors to propose a network with hierar-
chical spatial regularity that can be generalized for stan-
dard layout segmentation problems. The proposed network,
called Fusion-Semantic Utility Network (Fusion-SUNet),
is a multi-dimensional and multi-resolution network that
combines two networks to classify point clouds at multi-
resolution with object categories in three dimensions and
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predict two-dimensional regional labels distinguishing cor-
ridor regions from non-corridors, as shown in Figure 1.
The network imposes spatial layout consistency on the
features of voxel-based 3D network through a multi-
dimensional feature fusion module using regional segmen-
tation features. The authors tested the performance of the
Fusion-SUNet using utility corridor data and demonstrated
that it significantly improves performance compared to the
state-of-the-art baseline network, achieving high F1 scores
for various classes. The following sections of the paper dis-
cuss related work, the proposed methodology, experiments,
and results.

2. Literature Review

This section aims to explore the spatial regularities
and layout consistency present in various semantic scenes.
These regularities can provide important information for
identifying and understanding objects of interest in a scene.
However, these regularities have not been fully utilized for
visual perception tasks. In this research, we investigate the
potential of leveraging spatial layout consistency in utility
corridors to perform semantic segmentation of the utility
network.

2.1. Spatial Layout

The concept of spatial layout and the relationship be-
tween objects in a scene has been explored in cognitive sci-
ence, architectural design, and civil engineering [1]. The
relationship between objects provides context and aids in
classification. Convolution neural networks have been de-
signed to extract these spatial relationships, but embedding
spatial regularities is necessary to learn global context. The
railway lane extractions, road lane detection, and 3D build-
ing modeling are prime examples of utilizing spatial reg-
ularities to improve results [6, 13]. Previous studies have
demonstrated the importance of spatial relationships in de-
tecting small objects that may be overlooked [32]. This mo-
tivates our study to use the spatial layout and object relation-
ships in utility corridor regions to highlight the importance
of embedding spatial layout consistency in our network.

2.2. Utility Network Layout

The global guidelines for electric hydro companies re-
quire the establishment of utility transmission zones that
ensure the safety of infrastructure, prevent vegetation en-
croachment, and consider residential areas [23]. These
transmission zones’ size and shape are dictated by voltage
and specific regulations of each country, with three primary
zones being the utility zone, corridor zone, and non-corridor
zone. The utility zone can only have low vegetation, while
the corridor zone has trees up to 3-5 meters high, and the
non-corridor zone can have tall trees [3] [10]. In this paper,

we combined the utility and corridor zones to create a sin-
gle corridor zone to explore the spatial layout consistency of
these zones and address the semantic segmentation problem
for utility networks. We reviewed existing literature on uti-
lizing hierarchical relationships for visual perception, such
as detecting human motion, to understand the limitations
and benefits of various semantic segmentation networks and
establish a baseline for their deep neural network [36] [25].

2.3. Semantic Segmentation

In recent years, significant advancements have been
made in the area of semantic segmentation for 3D point
clouds, mainly due to the widespread use of deep learning
in computer vision and artificial intelligence. A lot of re-
search has focused on utilizing intrinsic, extrinsic, and deep
features to classify each point in the point cloud with an en-
closing object that is relevant [9]. In prior sections, we have
identified that enforcing spatial layout consistency based on
real-world context is a significant challenge in semantic seg-
mentation networks, as well as global context embedding.
Despite this, we will discuss current semantic segmentation
approaches which fall into three categories: statistical seg-
mentation, classification networks based on machine learn-
ing, and segmentation networks based on deep learning.

2.3.1 Geometrical Segmentation

Traditionally, segmentation of utility corridors has been
viewed as a purely geometric problem. As a result, algo-
rithms were designed to extract lines, group point clouds,
and categorize them using features such as neighborhood
votes, density, and elevation-based attributes [20]. How-
ever, these methods have several limitations, including the
need for extensive preprocessing, feature engineering, and
domain expertise. Additionally, these systems require mul-
tiple filtering steps to segment the objects [14]. Further-
more, these techniques are not robust for raw, large-scale,
dense 3D point clouds [16].

2.3.2 Machine Learning based Utility Classification

Previous studies have successfully classified utility ob-
jects, reconstructed transmission lines, and extracted fea-
tures with various machine learning algorithms like ran-
dom forest [17], support vector machines [37], decision
trees [19], and balanced/unbalanced learning [15]. These
models mainly rely on handcrafted features based on ge-
ometric characteristics and either 3D voxels or 2D projec-
tions to improve classification accuracy. However, they face
limitations when applied to 3D large-scale datasets.
In contrast, deep learning has the potential to automati-
cally learn features and interpret data for any computer vi-
sion task, making it a promising approach for utility net-
work management. Deep learning has enabled researchers
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to work across different domains without extensive domain
knowledge, and it has allowed the development of general-
izable solutions that can be applied across various datasets
and sensors.

2.3.3 Deep Learning-based Segmentation Networks

Various input representations have been used to train deep
neural networks for semantic segmentation of point clouds,
including 3D voxels and 2D multiview projections. While
these representations offer an effective performance boost,
they also introduce quantization errors. In the last decade,
a new batch of methods that use raw point clouds as input
have been introduced, starting with PointNet [29]. These
methods, including PointNet++ [30], KPConv with contin-
uous kernels [35], and the state-of-the-art network RandLA
[9], have demonstrated comparable performance on most
segmentation benchmarks, such as Semantic3D [5], Sensat-
Urban [8], and DublinCity [42]. However, as previously
discussed, none of these methods have taken advantage of
the spatial regularity found in utility infrastructure. This
limitation inspired us to propose Fusion-SUNet, which is
an extension of SUNet [12] that utilizes regional results to
impose spatial layout consistency. The Fusion-SUNet ap-
proach fuses features from the regional network at every
layer of the decoder, providing spatial guidelines to improve
performance on a deeper level.

3. Methodology
Fusion-SUNet is a multi-dimensional and multi-

resolution network that incorporates spatial layout consis-
tency between the layout and objects of a scene. It com-
prises two networks: a two-dimensional regional predic-
tion network [31] that constrains the predictions of a three-
dimensional network through multi-dimensional deep fea-
ture fusion based module and loss-based late fusion. The
network architecture enables multi-dimensional fusion at
different depths, allowing it to incorporate regional infor-
mation from the 2D network to improve the 3D network’s
prediction accuracy [7] [38].

3.1. 3D Semantic Segmentation Pipeline

Figure 2 shows an overview of the network architec-
ture of Fusion-SUNet. The 3D pipeline consists of a U-
shaped multiresolution encoder-decoder network that learns
features from a three-dimensional voxel grid to assign se-
mantic labels for 3D object classes. The 3D network has
four encoded feature maps E1, E2, E3, and E4, which
are used to create four decoded feature maps D1, D2,
D3, and D4 through serial operations that include addi-
tive attention applied on Dn−1 and En. These output fea-
ture maps PA

3D from additive attention modules are then
fused using a feature-based fusion module with 2D features

PA
2D 3D from the regional segmentation layer. The fused

features PA”
3D are passed through two 3x3x3 convolutions,

followed by batch normalization and rectified linear activa-
tion, resulting in four decoded feature maps of dimensions
H
2l ×

W
2l ×

D
2l × 32l for output D at level l. These feature

maps represent the deep multi-resolution output that pro-
vides a multi-receptive field for segmenting objects and ar-
eas of different sizes. The feature maps are then passed
through a multi-resolution feature aggregation module to in-
corporate knowledge and context from all levels. It delivers
a confidence score against each class. This is then passed
through a loss-based late fusion module to refine and con-
strain the predictions using spatial layout consistency and
back-propagate the loss to better learn deep features.

3.1.1 Additive Attention Module

The module creates multiple attention coefficients for each
class, which helps to filter out irrelevant information from
the feature maps [24]. These attention gates take input from
the previous layer of the decoder (D1) and the encoder fea-
ture map (E2) at the same level, and generate attention co-
efficients (α) to combine with the feature map (E2) using
element-wise summation.

3.1.2 Multi-resolution Feature Aggregation Module

This module which combines the feature maps from four
different levels of the decoder (D1, D2, D3, D4) by upsam-
pling and concatenating them. The resulting aggregated fea-
ture map is then passed through a 1x1x1 convolution. This
module is useful for producing a feature map that corrects
any errors introduced during the upsampling process in the
decoder, especially for predicting minority classes.

3.2. 2D BEV Pipeline

Incorporating global context and a larger receptive field
into a semantic segmentation network is a challenging task
for making accurate spatial predictions. Humans rely heav-
ily on understanding the global context when perceiving
scene semantics. However, our 3D segmentation network
only considers the local context and misses important de-
tails of the scene that are needed to encode the spatial ar-
rangement and overall correlation of objects. To overcome
this limitation, we employ a two-dimensional (2D) bird’s-
eye-view (BEV) pipeline that uses a feature-based fusion
module and a loss-based late fusion to combine the miss-
ing global contextual information. The 2D network is a
multi-resolution encoder-decoder shown in Figure 2 as a
2D BEV pipeline [31]. It consists of four feature maps E′

1,
E′

2, E′
3, E′

4, which are used to construct four output maps
D′

1, D′
2, D′

3, D′
4. This network takes in a Bird’s Eye View

(BEV) representation of a complete 3D point cloud scene
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Figure 2. The Overall architecture of Fusion-SUNet: Point cloud is preprocessed into voxel grid and BEV. These are separately processed
by a multi-resolution 3D semantic segmentation pipeline and 2D BEV pipeline for regional prediction to impose the spatial layout consis-
tency on 3D objects through feature-based fusion and loss-based late fusion.

and predicts a regional classes probability tensor of shape
W ×H × Cp.

3.3. Fusion

Fusion pipeline have two key modules, Feature based
middle fusion and loss based late fusion. SUNet have
proved the importance of loss based late fusion already. We
will discussed feature based fusion in this section.

3.3.1 Feature Interpolation Module

It is a simple module that takes the projection matrix be-
tween 3D voxels and 2D BEV and converts the 2D features
map for regional network’s layers of shape H

2l ×
W
2l × 32l

into a 3D representation of shape H
2l ×

W
2l ×

D
2l × 32l rep-

resented as P2D 3D by exploring the one-to-many relation-
ship between the two representations.

3.3.2 Attention Fusion Module

The module is divided into two attention modules: spatial
attention and channel-based attention as shown in Figure
3. The spatial attention mechanism generates an attention-
focused feature map by interpolating a 2D regional network

to a 3D feature map and concatenating it with the 3D feature
map from the additive attention map output to provide a
feature map for a decoder level in the 3D network. The
spatial attention mechanism imposes layout constraints on
the features to facilitate the learning of objects of interest by
taking advantage of spatial consistency at deeper levels.

• The attention fusion module takes input from the fea-
ture interpolation module P2D 3Dl

and the output of
the additive attention module from the 3D segmenta-
tion pipeline PA

3Dl
.

• The attention fusion module performs spatial attention
using both feature maps, using element-wise summa-
tion and ReLU activation as the final step, followed by
element-wise multiplication with the additive attention
map output.

• The channel attention map is generated from the in-
terpolated 2D to 3D regional feature map using max-
pooling and average pooling operations, followed by a
shared MLP and element-wise summation to generate
a 1D channel attention map of size 1 x 1 x 1 x 32l after
a sigmoid operation.

• The output of the channel attention mechanism
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Figure 3. Attention fusion module to impose spatial layout consis-
tency through fusion of features also known as middle fusion.

PC
2D 3Dl

is multiplied element-wise with the output of
the spatial attention map PA

2D 3Dl
and later concate-

nated with the feature map PA
3Dl

from the 3D network.

• The final output of the feature fusion module is de-
noted as PA”

3Dl
and is sent to the 3D network for

decoder operations involving two 3x3x3 convolution
batch normalization, ReLU, and upsampling.

3.3.3 Loss based Late Fusion:

It uses the hierarchical layout consistency loss function as
used in SUNet as shown in equation 1 to impose the spatial
layout consistency on outcome. M is total number of sam-
ples, C total number 3D classes and P is total number of
2D classes.

L =
1

M

P∑
p=1

C∑
c=1

M∑
m=1

(wpwc)×(yPc
m ×(log(hΘ(xm, c, p))))

(1)

3.4. Voxelization and BEV Projection

The input representation for our segmentation network
is a voxel grid, which is created by pre-processing the raw
point cloud and calculating a mean value for all the points
that fall within each 3D voxel. This voxel grid provides
a balance between efficiency and effectiveness, depending
on the selected voxel size. Additionally, the network main-
tains a projection matrix from the voxel grid to the raw point
cloud to enable easy projection.
In contrast, a bird’s eye view (BEV) is a 2D representation

of a 3D point cloud. Our 2D BEV pipeline utilizes the XY-
projection of a 3D scene, where each pixel represents the
residing points. The XY-projection yields the most optimal
BEV for extracting global context for regional and object
prediction. Our projection matrix between the BEV and 3D
voxel grid provides projection compatibility between fea-
ture spaces to combine the 2D and 3D predictions, resulting
in better utilization of spatial layout consistency.

4. Experiments and Results
Our research involved a comparative analysis to demon-

strate the significance of the multi-dimensional feature fu-
sion module. We evaluated the performance of our pro-
posed approach on a test set, which included four key
classes that are highly relevant to the utility industry:
ground, pylon, powerline, and vegetation. These classes
play a critical role in predictive maintenance of utility net-
works.

4.1. Dataset

In our experimental setup, we used a Riegl Q560 laser
scanner to capture data from an area of 67km2 in Steam-
boat Springs, Colorado, USA. The collected data was di-
vided into two sets, training and testing as shown in figure 4.
The first 8km2 of the dataset was used for testing while the
remaining data was used to train the network. The dataset
contained 67 non-overlapping scenes, with each scene con-
taining over two million points and an average density of
5ppc/m2. We manually labeled the data using Terrasolid
point cloud processing software to generate the ground truth
labels. The training dataset consisted of five classes: power-
line, pylon, low vegetation, ground, and medium-high veg-
etation. To simplify the ground class, we merged the low
vegetation class with the ground class as most of the ground
was covered by low vegetation. Moreover, we named our
regional classes based on existing utility community litera-
ture [3, 10]. The corridor region comprised of powerlines
and pylons located within a 3-10 meter range from the py-
lon, while the non-corridor region was located outside this
range.

4.2. Experimental Configuration

To conduct our experiments, we pre-trained our 2D re-
gional prediction network on half of the scenes for global
regional prediction of spatial layout. Each scene was split
into four subscenes based on GPS time of flight line and
projected onto a 2D BEV grid of size 640× 640 with a pixel
size of 1m2. The network was trained with a batch size of 1
and 100 epochs using K-cross validation to prevent overfit-
ting, and data augmentation was performed using horizon-
tal flip, vertical flip, and random rotation. The input size
for the 2D network was 640× 640× 2, and the output was
640× 640× 3 representing confidence scores for regional
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Figure 4. Visualization of Data from Google Maps and 3D point cloud acquired from Steamboat Springs, Coloardo, USA

classes. Training was performed on two GPU RTX 6000,
taking 4-5 hours, with inference taking about 30 seconds.

For the voxel grid, we generated it over each subscene
with a size of 640× 640× 448 and a voxel size of 1m3.
Each batch 32× 32× 448× 4 contained the maximum el-
evation of the entire scene to provide the network with a
complete view and better handle vertical context. Feature
channels included absolute and relative elevation, the num-
ber of occupancy points, and the number of returns, se-
lected based on a feature engineering study discussed in
SUNet [12]. Fusion-SUNet fuses features on all four levels
of decoder from the 2D regional network to the 3D voxel-
based network. It outputs 32× 32× 448× 5, representing
confidence scores against 3D classes (background, pylon,
powerline, vegetation, and ground). The final prediction as-
signs a true label based on the highest confidence score and
projects voxel labels onto points using the projection ma-
trix. Fusion-SUNet was trained on two GPU RTX 6000 for
100 epochs, taking 48-60 hours, with inference taking about
2-3 minutes.

4.3. Evaluation Matrices

The paper reports the evaluation metrics in terms of F1
score for each of the four classes: ground, pylon, power-
line, and vegetation. The F1 score is calculated as the har-
monic mean of precision and recall. The precision measures
how many of the predicted positive classes are actually pos-
itive, while recall measures how many of the actual positive
classes are correctly predicted as positive. The F1 score
provides an overall measure of the model’s performance,
taking both precision and recall into account.

4.4. Results

We conducted experiments to compare Fusion-SUNet
with various versions of SUNet [12], Attention 3D [24], and
pre-trained RandLA [9]. The results showed that the feature
fusion module in Fusion-SUNet provides significant advan-
tages, as demonstrated by the higher recall and F1 score in
the pylon class as shown in figure 5. This indicates that

incorporating global scale spatial layout context on the fea-
ture level is beneficial. Our findings also suggest that point-
based RandLA has difficulty generalizing over the veg and
pylon classes due to a lack of spatial context. To improve
RandLA’s results, we could integrate spatial layout consis-
tency through middle and loss-based fusion in the future.
We chose a voxel-based network due to its comparable qual-
ity and performance in a shorter time frame, and our infer-
ence is 10 times faster than point-based networks such as
RandLA.

We also concluded that our network outperforms existing
commercial software products, such as Terrasolid [34] and
Cobravision [33] , which require manual labeling of pow-
erlines and pylons or need additional information of utility
network maps to perform predictive analysis.

5. Conclusion
In our study, we have shown that the Fusion-SUNet

model, which incorporates a middle fusion module for
multi-dimensional feature fusion and a late fusion module
based on loss, can effectively embed spatial layout. Our ex-
periments have confirmed that the integration of hierarchi-
cal layout spatial consistency with a coarse-to-fine strategy
can improve the performance of deep semantic segmenta-
tion models for predictive analysis. Moving forward, our
research will aim to test the generalizability of this network
across different sensors, and to conduct a detailed ablation
study.
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Table 1. Comparative study of Fusion-SUNet to SUNet + MFA (multi feature aggregation) module, SUNet + MFA + FS (feature smooth-
ing), Atention UNet and RandLA on recall (Rec), precision (Prec) and F1 score (F1).

Methods Pylon Ground Veg Powerline

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

3D AUNet (baseline) 72.0 84.0 77.0 93.0 94.0 93.0 97.0 97.0 97.0 84.0 98.0 91.0

RandLA 75.0 92.0 83.5 95.0 96.0 95.5 76.0 87.0 81.5 86.5 98.0 91.3

SUNet+MFA+FS 78.0 97.0 87.0 100.0 99.0 100.0 99.0 99.0 99.0 99.0 97.0 98.0

SUNet+MFA 82.0 96.0 89.0 99.0 99.0 99.0 99.0 99.0 99.0 98.0 99.0 99.0

Fusion-SUNet 94.0 92.0 93.0 99.0 99.0 99.0 99.0 99.0 99.0 98.0 99.0 99.0

Groundtruth

SUNet + ARE Module + MFA

Fusion-SUNet

Figure 5. Visualization of results; Groundtruth, SUNet + ARE + Multiresolution feature aggregation module and Fusion-SUNet (ours).
Blue: pylon, red: powerline, green: high vegetation and dark-green: ground
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Cummins, Rogério Eduardo da Silva, Morteza Rahbar, and
Aljosa Smolic. Dublincity: Annotated lidar point cloud and
its applications. CoRR, abs/1909.03613, 2019. 3

6576


