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Abstract

The complementary properties of 2D color images and
3D point clouds can potentially improve semantic segmen-
tation compared to using uni-modal data. Multi-modal data
fusion is however challenging due to the heterogeneity, di-
mensionality of the data, the difficulty of aligning differ-
ent modalities to the same reference frame, and the pres-
ence of modality-specific bias. In this regard, we propose
a new model, TransFusion, for semantic segmentation that
fuses images directly with point clouds without the need for
lossy pre-processing of the point clouds. TransFusion out-
performs the baseline FCN model that uses images with
depth maps. Compared to the baseline, our method im-
proved mIoU by 4% and 2% for the Vaihingen and Potsdam
datasets. We demonstrate the capability of our proposed
model to adequately learn the spatial and structural infor-
mation resulting in better inference.

1. Introduction

The utilization of multimodal data has become increas-
ingly vital in the field of Earth Observation due to advance-
ments in sensing technologies. The increasing availability
of remote sensing data, such as high-resolution imagery and
point clouds, has made it possible to gather a wealth of in-
formation about a scene in spectral, textural, and 3D do-
mains. The fusion of these two forms of data potentially
results in a more complete and accurate scene representa-
tion, as each form of data provides unique information that
complements the other.

Semantic segmentation is a key task in computer vision
and image analysis, where the goal is to assign semantic la-
bels to each pixel in an image. This involves dividing an
image into multiple segments, each corresponding to a spe-
cific class. As multi-modal data potentially provides a bet-
ter representation of the scene, semantic segmentation tasks
may benefit from the appropriate use of multi-modal data
when available.

For 3D point cloud semantic segmentation, the input fea-

tures are typically tied to the point cloud, with the segmenta-
tion task being performed on the point cloud itself, resulting
in a segmented 3D point cloud. If a 2D segmentation label
is needed, the segmented point cloud can be projected onto
a plane. Alternatively, a planar representation, such as Dig-
ital Surface Model (DSM), can be generated from the point
cloud in the pre-processing step to be fused with the respec-
tive image [40]. This allows for 2D semantic segmentation
using a common convolutional neural network [10]. On the
other hand, the point cloud and corresponding image-like
features can be fused in the 3D feature space [13], trans-
formed into a grid-shaped 3D feature space using voxeliza-
tion [50], and then segmented in 2D through dimensional-
ity reduction using a suitable model [1]. Therefore in both
cases, subsequent models cannot harness the full potential
of the information present in the point clouds. SPLATNet
demonstrated a novel approach to seamlessly learn joint 2D-
3D features from image and point cloud, respectively. This
approach performs the learning on a higher dimensional
lattice generated from each modality through interpolation
analogous to voxelization.

This research addresses the aforementioned issues by in-
troducing a novel 2D semantic segmentation architecture
to fuse point clouds and images directly. We adapt Trans-
former and FCN-based networks for the fusion. Therefore,
we refer to this proposed network as TransFusion. Our con-
tributions through TransFusion are as follows:

• TransFusion does not require any lossy pre-processing
of the point cloud to generate 3D voxels or 2D projec-
tions

• TransFusion accepts point clouds irrespective of spa-
tial sparsity or variable point density

• TransFusion has no theoretical bounds regarding the
number of points per sample

• TransFusion allows seamless mapping between 3D
and 2D feature space while being end-to-end learnable.
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Figure 1. Important 2D-3D joint representations of point clouds
and image. (a) Point cloud with projected image features,
(b) Voxel with overlayed image features, (c) Depth map or sur-
face model stacked combined with image

2. Related Works
This section will discuss joint 2D-3D feature represen-

tations in relation to mono-images and point clouds and
the corresponding research. This section will be concluded
with a brief discussion of the current state-of-the-art se-
mantic segmentation methods leveraging the direct fusion
of point clouds and mono-imagery. Deep learning based
point cloud and image fusion architectures generally adopt
one or more of the three pronounced representations shown
in Fig. 1 for depicting joint 2D-3D features.

Point Representation: This type of representation is
common for architectures focusing on point-wise 3D se-
mantic segmentation or 3D object detection tasks. In many
cases, data is available where the image is already projected
on 3D points, i.e., each point in the point cloud has cor-
responding RGB values. Examples of this type of data
are [6,12,20]. Many point cloud segmentation architectures
are designed to work with these point clouds [9, 49]. Mod-
els like [3, 35], originally designed to learn point features,
can be further modified to work with these colored point
clouds with [18]. However, some networks with 3D vision
tasks are designed to take input point clouds and images
separately in their original form [47] and then project 2D
features into 3D feature space for feature fusion and subse-
quent prediction in 3D [42].

Point clouds have a few other specialized representa-
tions, such as index or tree-based representations, graph-
based representations, etc. [8]. A colored point cloud or
point cloud with projected image features preserves all of
its original properties. These alternative representations can
also be generated from such point clouds [8]. Therefore net-

works designed for such representations apply to colored
point clouds [48].

Voxelized Representation: Voxels are a fixed-resolution
volumetric representation of point clouds. This representa-
tion preserves coarser 3D structural information but loses
fine-grained spatial and geometrical information [8]. Its
regular grided structure makes this representation compat-
ible with standard 3D convolutions. The most straightfor-
ward way to merge the voxelized point cloud and image is
by adding the image features as extra channels to the voxel
[38]. The grided structure is also convenient for transform-
ing 3D features into 2D features [50], and vice versa [31]
for easy feature-level fusion. Due to these reasons, voxel
has been a popular choice for 3D and 2D-3D joint learn-
ing tasks [22, 25, 34]. A major issue with voxels is that the
voxel’s space is very sparse by nature, which leads to un-
necessary computation if special care is not taken [19].

Planar Representation: The creation of 2D views from
a point cloud involves projecting the cloud onto 2D planes
and processing the resulting images with standard convolu-
tions and pooling layers. This approach solves permutation
and translation issues but loses 3D geometry information
and struggles with point-wise label predictions [8]. In the
past, these planar representations of point clouds have been
generated in various ways depending on the context and the
task [8]. Ma et al. [27] presented a network that leverages
sparse depth with images. Some networks generate multi-
ple sparse planar views at different depths for better learning
and efficient computation [33]. However, a popular choice
is to generate a dense 2D representation with pixel-wise
depths. This way, the depth image can be stacked with the
image as an additional channel, and any 2D Fully Convolu-
tional Networks (FCN) like [4,5] can subsequently perform
segmentation [10]. Moreover, in the field of earth observa-
tion, it is fairly common to generate digital surface models
(DSM) and digital elevation models (DEM) from various
sources, including point clouds [30]. This makes combin-
ing images and depth features more organic in the context
of remote sensing [23].

Direct Fusion: The integration of point cloud data with
mono-image is a challenging process. Point clouds have
an irregular, orderless, continuous structure, while images
are discrete, ordered, and projective. To the best of our
knowledge, SPLATNet [39] is the only recent seminal work
that has successfully fused raw point cloud and image in an
end-to-end manner for both 3D and 2D semantic segmenta-
tion. In the first step, the raw point cloud and image are
separately interpolated to a respective permutohedral lat-
tice using barycentric interpolation. Subsequently, spatial-
aware learning is performed on the lattices using higher di-
mensional convolution with learnable kernels. Both point
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cloud features and image futures are fused in higher dimen-
sional space. Finally, depending upon the task, segmenta-
tion labels are generated by projecting higher dimensional
fused features into the respective dimensional space using
barycentric interpolation [39]. This network outperformed
various SOTA 3D segmentation networks at the time. This
network’s joint 2D-3D semantic segmentation capability
has been tested on the RueMonge dataset [36]. SPLAT-
Net demonstrated a novel approach to seamlessly learn joint
2D-3D features from image and point cloud. However, this
method still involves interpolation, which is conceptually
very similar to voxelization. Moreover, a density normal-
ization [39] step is applied on the point clouds in order to
deal with variable point density. Although it is better than
discarding points through volumetric sampling, this process
is still lossy and potentially reduces finer structural informa-
tion.

Multi-modal learning and Transformer: Perceiver [17]
is a deep learning model based on the Transformer architec-
ture that can handle multiple modalities. It uses an asym-
metric attention mechanism to iteratively distill inputs into
a compact representation, allowing it to handle large inputs.
It makes a few architectural assumptions about the input
data, making it more versatile and applicable to a broader
range of tasks.

The PerceiverIO [16] architecture is an extension of the
Perceiver [17]. Perceiver has flexibility regarding the in-
puts. PerceiverIO adds the same level of flexibility and
generalizability to the outputs. These properties of the Per-
ceiverIO make it highly suitable for our direct point cloud
and image fusion task.

3. Proposed Method
We aim to design a unified 2D semantic segmentation

model capable of directly fusing point clouds and mono-
images. Our model is agnostic to the source of the point
cloud, such as LiDAR or stereo matching. However, in
this work, we will focus on fusing aerial imagery and corre-
sponding point cloud pairs. We adopt a feature-level fusion
of the modalities with a late fusion strategy. First, the model
derives from each modality separately in their respective
feature extractor branches. These features are subsequently
fused for final dense prediction using a segmentation head.
We will refer to our proposed fusion network as TransFu-
sion. The comprehensive architecture of TransFusion is pre-
sented in Fig. 2.

Image Branch: For dense feature extraction from im-
ages, we use an off-the-shelf FCN backbone. Over the
years, FCNs have proven highly effective for dense predic-
tion tasks. Current SOTA transfomer based image segmen-
tation networks are relatively computationally expensive

[46]. Moreover, recent research has demonstrated that com-
putationally expensive attention layers might not provide
significant additional benefits for various vision tasks, in-
cluding segmentations [7, 41]. We adopt a typical encoder-
decoder FCN network for image feature extraction. Here
we use a lightweight ResNet [11] backbone as the encoder
and DeepLabV3+ [5] without the final prediction head as
our decoder. The encoder is responsible for extracting fea-
tures from the input image.

Point Cloud Branch: The Design of our point cloud
branch is inspired by PerceiverIO [16]. However, unlike
PerceiverIO, we do not combine multi-modal data with vari-
able embedding padded with learnable modality vectors.
There are two main reasons for this. First, modality learn-
ing puts an additional burden on the model to learn and infer
the source modality of each sample. Secondly, concatenat-
ing the inputs from the different modalities vastly increases
the effective number of samples fed into the initial trans-
former block. Considering the O(n2) complexity of the at-
tention layers, this can get prohibitively expensive to com-
pute for our use cases. Here we leverage the unique ability
of the transformers to query higher dimensional latent to
predict features in lower dimensions. Unlike PerceiverIO,
we use separate branches for each modality eliminating the
need for modality learning. We transform the point cloud
P ∈ RN×C to latent space Z ∈ RA×B . Subsequently,
n transformer blocks are applied on Z to obtain more re-
fined latent features Ẑ . Finally, a cross-attention is applied
to query Ẑ ∈ RA′×B′

to predict features P̂ ∈ RM×G at
the dense pixel locations. Relative 2D pixel coordinates are
encoded using the same positional encoding scheme as the
point cloud and use the encoded coordinates as the query
(X ) for this cross-attention module. Here, N is the number
of points in the point cloud, and C represents each point’s
feature vector size. A, A′, B, and B′ are properties of the
model which control the size of the latent spaces. M repre-
sents the total number of pixels in the corresponding image,
and G is the desired feature size. The parameter n indicates
the number of attention blocks to apply on the initial la-
tent space sequentially. Thus the purpose of the point cloud
branch is to derive point cloud features at each pixel loca-
tion of the corresponding image.

Feature Fusion: The purpose of this module is to fuse
the features generated by each feature extractor branch of
the respective modality. Our approach is to first refine the
features from each modality with the weights derived from
the other modality and then fuse them. In this regard, pop-
ular activation functions have been used in various studies
for context modeling of the image features [2,44]. We adopt
the principle of context modeling and use softmax to derive
modality refinement weights. Initially, the M ×G features
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Figure 2. Overview of the proposed model. The architecture consists of two branches. The image branch includes an FCN network, and
the point cloud branch comprises an attention-based architecture. Here the [+] represents the feature fusion module.

from the point cloud are reshaped into H ×W ×G for di-
mensional compatibility with the image features (Î) of the
same shape. The image height and width are H and W .

F = Î · σ(P̂) + P̂ · σ(Î) (1)

We fuse the features as shown in Eq. (1), where [·] repre-
sents Hadamard product, and σ denotes softmax operation
along the feature dimension. Here the Hadamard product
with softmax weights from the other modality refines the re-
spective features before being summed to generate the fused
features. Finally, for dense prediction, a residual layer with
1× 1 convolution is applied on the fused feature F .

4. Experiments

We design the experiments to compare our proposed fu-
sion method with conventional methods of predicting 2D
dense semantic labels using mono-images and depth maps.
We train the proposed model with images and raw point
clouds as inputs. We do not use the nDSMs in our fu-
sion method. However, the baseline FCN segmentation
model is trained on images that include nDSMs. We use the
DeepLabV3+ as our baseline and FCN image branch of our
fusion model. Finally, we compare the results of the pro-
posed model with the baseline performance. In this section,
we first introduce the benchmark datasets we will use for the
experiments. Subsequently, we present the data preparation
and model training strategies.

4.1. Datasets

For all of our experiments, we use two open benchmark
datasets for 2D semantic segmentation released by ISPRS.
These datasets are the Potsdam dataset [14] and the Vaihin-
gen dataset [15]. Both datasets contain very high-resolution
airborne images, DSMs, and point clouds.

Potsdam Dataset: The Potsdam dataset [14] contains
ortho-rectified imagery. Dense urban features typically
dominate scenes. Each image has a near-infrared (NIR)
band and three visible bands Red-Green-Blue (RGB). Cor-
responding point clouds generated from stereo-matching
and derived normalized DSM (nDSM) are available with
the data. The semantic labels are available as images where
each class is represented with a unique value. The images,
nDSMs, and labels have a spatial resolution of 5 cm. There
are 38 tiles of 6000 × 6000 images with corresponding la-
bels. We use the officially designated 24 images set for
training. We evaluate our models on 14 tiles designated for
the test in the initial dataset release.

Vaihingen Dataset The Vaihingen dataset contains 33
tiles of different sizes with labels. This dataset also contains
predominantly urban scenes. However, the images have
3 bands NIR-R-G with an approximate spatial resolution
of 8 cm. The corresponding point clouds are acquired us-
ing airborne LiDAR. Associated nDSMs derived from these
point clouds are also available with the data. Like the Pots-
dam dataset, we follow the officially designated training set
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of 16 images for model training and a designated test set of
17 for model validation.

4.2. Data Preparation

Although our method does not require any projection or
aggregation, the point clouds must be prepared appropri-
ately before passing them into the model. For both datasets,
point clouds are available with absolute heights. Therefore
we first classify the points into the ground and non-ground
points using the SMRF filter [32]. Then we normalize the
point cloud by deducting the height of the ground points,
preserving the relative height above ground. We consider
points within a quarter of the image pixel distance from
each other as duplicates and remove them to reduce unnec-
essary computations.

Transformers are order-agnostic. Therefore appropriate
positional encoding of the inputs is required to preserve the
spatial relationships. First, the 3D coordinates are normal-
ized in the closed range of [−1, 1]. we apply the Fourier
feature positional encoding similar to [29]. Then frequency
is linearly varied from the lowest sampling frequency to the
Nyquist sampling frequency. We also concatenate the abso-
lution position with the Fourier encoding to obtain the final
positional encoding. The positional encoding (X) of a sin-
gle dimension is shown in Eq. (2). Here, x is the absolute
position. Lowest and Nyquist frequencies are denoted by f0
and fn, respectively.

X = [x, sin (2πf0x), cos (2πf0x), · · · , cos (2πfnx)] (2)

We encode each dimension of the point cloud and con-
catenate them to obtain a combined positional embedding.
Considering the compatibility with images, we use the di-
mensions of the image patches as the sampling frequency
in their respective dimensions. We pre-calculate the global
maximum for the Z - axis and use that as our sampling fre-
quency. Subsequently, Nyquist frequencies are calculated
as half of the respective sampling frequencies following the
sampling theory.

We use the image patch size of 512 × 512 for all ex-
periments. For the 2D query, we first extract the relative
pixel coordinates from the images and normalize them in
the [−1, 1] range. We then apply the same positional en-
coding on the normalized pixel coordinates.

4.3. Implementation Details

For our experiments, we use 6 self-attention blocks in
the point cloud branch to refine the latent space. Following
a series of preliminary experiments, we set the number of
latents to 512 with 480 latent channels. For all multi-head
attention modules, we use 4 heads. We do not use feature
widening using the MLP layers. The number of channels
of the features generated by the point cloud branch is set to

64. For regularization, we set the dropout rate to 0.2. We
initialize the latent space gaussian distribution with 0 mean
and 0.02 standard deviation.

We use ResNet-34 as the feature extractor for our
DeepLabv3+ based image branch. We do not use pre-
trained weights and train the models from scratch for each
experiment. We adjust the number of input channels ac-
cepted by the image branch depending on the number of
channels present in the images of the respective dataset. We
use the same model used in the image branch as our base-
line. However, unlike the baseline, the final segmentation
head is not used in TransFusion.

4.4. Training Strategy

The proposed model contains multiple input branches
where each branch deals with a specific modality. In prac-
tice, it is challenging to train such models appropriately
with a conventional end-to-end training strategy. There-
fore we adopt a two-step training strategy. First, for a few
epochs, we only train the point cloud branch on the point
clouds as an auto-encoder with an ad-hoc decoder. Subse-
quently, we train the entire model end-to-end, mapping im-
ages and point clouds to the 2D labels. Since the learning
progression of CNNs and transformers are quite different,
we employ two different optimizers for each branch cater-
ing to their individual learning. We use AdaBound opti-
mizer [26] for the image branch and LAMB optimizer [45]
with a low initial learning rate for the point cloud branch.

For the baseline, we follow the normal training strategy.
For fairness, we use the same AdaBound optimizer [26] ap-
plied on the image branch of our proposed network. We
use OneCycleLR [37] learning rate scheduling strategy in
all the experiments. To find the approximate optimal initial
learning rate, we use a fast grid search with exponentially
varying the learning rate. We use Stochastic Weight Aver-
aging for the last few epochs during the training to attain
better generalizability.

5. Results and Discussion

Surf. Bld Veg. Tree Car mIoU

Baseline 73.70 81.44 56.75 72.27 57.16 68.26
Ours 80.47 87.74 63.22 73.51 58.46 72.68

Table 1. Metrics from the Vaihingen experiment. Here class wise
IoUs are reported along with the mIoU. The best values are marked
in bold. Surf.: Impervious Surface, Bld: Building, Veg.: Low
Vegetation.

Quantitative Analysis: We use mean intersection-over-
union (mIoU) as the overall indicator of performance. Ad-
ditionally, we compare the quantitative results using class-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Qualitative comparison of a pair of images from the Vaihingen experiment. (a) and (e) represent images of two different
subregions, wherein (b) and (f) are the respective ground truths (labels). (c) and (g) depict the baseline prediction, whereas (d) and (h) are
the predictions from our proposed method, TransFusion.

wise IoU. We start our evaluation by analyzing the metrics
from the Vaihigen experiments shown in Tab. 1.

Our proposed method improves the mIoU by more than
4% over the baseline. Significant improvements in IoU are
observed in all the classes. The highest improvement of
6.76% in IoU is observed in the Impervious Surface class
followed by Building, Low Vegetation classes with more
than 6% improvement in respective IoUs. The IoU of the
Tree and Cars class improved slightly more than 1%, which
is the lowest among all the classes.

Surf. Bld Veg. Tree Cars mIoU

Baseline 78.92 87.11 68.12 70.03 74.49 75.73
Ours 79.01 89.18 69.38 71.29 78.51 77.47

Table 2. Metrics from the Potsdam experiment. Here class wise
IoUs are reported along with the mIoU. The best values are marked
in bold. Surf.: Impervious Surface, Bld: Building, Veg.: Low
Vegetation.

We also observe overall and class-wise improvements in
the IoU score for the Potsdam dataset in Tab. 2. In this
case, we observe approximately 2% improvement in the
mIoU. The improvement in IoU is also evident in each of
the classes. The highest IoU improvement of approximately
4% is observed for the car class, followed by the building
class with 2% improvement in the IoU. The least improve-
ment is observed for the Impervious Surface class. The IoU

improvement of approximately 1% is observed for both The
Low Vegetation and Tree classes.

Qualitative Analysis: we found that classified images
with and without fusion using our proposed framework re-
semble well with the original labels. The fusion of point
clouds and optical imagery improved class prediction com-
pared to the baseline with optical bands with nDSM. The
improvements in quantitative metrics are well reflected in
the model predictions. In the case of Vaihingen, we observe
that our proposed model better preserves building shapes
and edges compared to the baseline. Despite learning from
the nDSMs, the baseline tends to prioritize visual features
resulting in misclassifications in the presence of rooftop
gardens. Our proposed model does not suffer from such an
issue. This also emphasizes the added benefits of learning
from the point cloud along with the image features. Sim-
ilar improvements to the building inferences can also be
observed in the Potsdam dataset. Generally, the building
shapes and edges from the fusion model closely resemble
the ground truth compared to the baseline. We observe sig-
nificantly fewer visual artifacts from the fusion model than
the baseline. Significant improvement of IoU in the car
class is well reflected in the Figs. 4e to 4h.

Evidently, point clouds are comparatively more benefi-
cial than interpolated depth maps. We suspect this can be
attributed to two main reasons. Primarily, the structural in-
formation point cloud in the vertical direction is lost due to

6542



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Qualitative comparison of a pair of images from Potsdam experiment. (a) and (e) represent images of two different subregions,
Here (b) and (f) are the respective ground truths (labels). (c) and (g) depict the baseline prediction, and (d) and (h) are the predictions from
our proposed method, TransFusion.

planar projection. Secondly, applying spatial interpolation
to eliminate sparsity from the depth maps introduces addi-
tional uncertainty and noise. In contrast, our fusion model
leverages the complete information of the point clouds with-
out synthetic data and associated noise.

It is worth noting that the overall improvement ob-
served in the Potsdam dataset is lower than in the Vaihingen
dataset. We suspect that the main reason is the source of the
point clouds. The point clouds in Potsdam dataset are gen-
erated using stereo matching. However, the point cloud in
the Vaihingen dataset was acquired using airborne LiDAR
with potentially better vertical accuracy and comparatively
less noise. The points generated from stereo matching rep-
resent mainly the outer surfaces of objects such as trees and
low vegetation, whereas the LiDAR point clouds capture
the 3D nature of those objects better. The superiority of the
LiDAR point cloud has been observed in past studies [28].

Point Cloud Feature Learning: We investigate the learn-
ing capability of the point cloud branch of our fusion model.
We generate the saliency maps from the features gener-
ated by the points cloud branch. The saliency maps for
two patches of the Vaihingen dataset are shown in Figs. 5e
and 5f. We also show nadir views of the corresponding
point clouds in the Figs. 5c and 5d respectively. We observe
that the point cloud branch generally pays more attention
to the regions with high elevation. The planar and linear
structures are quite prominent in the saliency maps. In both

scenes, waterbodies are present on the left side of the tiles.
There are no points present in these large regions. How-
ever, the model learns the spatial relationship despite the
apparently missing information. There are missing points
corresponding to a building Fig. 5c, possibly due to due to
surface characteristics of the roof material. The predicted
boundary of that building from TransFusion is overlayed in
black on Fig. 5e. Although the point cloud branch fails to
highlight the missing building like the other buildings in the
saliency maps the features from the image branch comple-
ment this resulting in a relatively precise delineation of the
building footprint. This dynamic feature importance can be
attributed to our feature fusion module.

6. Ablation Study
We carried out various ablation studies to test the robust-

ness of our proposed fusion model. First, we compared our
fusion module with two common approaches, addition and
concatenation. Tab. 3 shows the observations from this ex-
periment. We use six self-attention layers in the point cloud
branch for this experiment.

First, we vary the number of self-attention layers to de-
termine the optimal number. We iteratively increase the
number of self-attention blocks and measure the respective
performance in terms of mIoU. Our observations are pre-
sented in Tab. 4. Interestingly, the model performance does
not monotonically increase with the number of layers. This
can be potentially attributed to depth inefficiency of self-
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Figure 5. Learning capability of the point cloud branch. (a) and (b)
represent images of two different subregions. (c) and (d) are the
nadir view of respective point clouds. The corresponding saliency
maps are depicted in (e) and (f). The boundary of the missing
building in (c) is denoted in black in (e). This is extracted from the
prediction of TransFusion.

Fusion Vaihingen Potsdam

Î + P̂ 69.03 73.21

Î | P̂ 70.14 73.57
Ours 72.68 77.47

Table 3. Performance of TransFusion with respect to different fea-
ture fusion strategies. The best score is highlighted in bold. Î, P̂
are image feature and point cloud feature respectively. Element-
wise addition and concatenation along feature dimension are re-
spectively denoted by +, | symbols.

attention [21], subject to further research.

In our experiments, we observed that our model overfits
quickly if the dataset is relatively small. This observation is
in accordance with previous studies concerning the training
of transformer based networks on small datasets [24, 43].
In the case of the Vaihingen dataset, this issue is particu-

Layers Vaihingen Potsdam

1 67.12 71.27
2 69.43 69.89
3 68.89 75.51
4 70.92 76.83
5 71.19 77.47
6 72.68 77.39
7 72.17 73.32

Table 4. Performance of TransFusion with respect to a varying
number of self-attention layers. The best score is in bold, and the
next best score is underlined

larly noticeable. Data augmentation during model training
partly mitigates this. We used common pixel-level trans-
forms along with various spatial transforms for image aug-
mentation during the training of the baseline. Along with
augmentation, we addressed the issue of overfitting by pre-
training the point cloud branch and subsequently using an
adequate warm start strategy during the joint training, as
previously discussed in the training strategy section.

7. Conclusion

In this study, we introduce a novel architecture to fuse
images directly with point clouds and perform semantic
segmentation in the 2D domain. One of the key advan-
tages of our proposed model is that it does not require pre-
processing of point clouds to make elevation maps. Thus
the initial data will not be subject to lossy projection or
interpolation. Our proposed model evidently outperforms
the FCN baseline, which performs segmentation on images
combined with depth maps. Our experiments also high-
light that, for our proposed model, LiDAR point clouds are
more beneficial than those generated from dense matching.
As part of our model performance, the mIoU is improved
by 4% and 2% for the Vaihingen and Potsdam datasets,
respectively. Particularly, our method improved the IoUs
more than 6% for the Impervious Surface, Building, and
Low Vegetation classes in the Vaihingen data. In the Pots-
dam dataset, we see an improvement of 4% and 2% for
the Car and Building classes, respectively. There are two
main reasons for such improvements: a) structural informa-
tion is fully retained without any loss in the vertical direc-
tion during planar projection, and b) no spatial interpolation
is applied in point clouds. In addition, the saliency maps
demonstrate that our point cloud branch adequately learns
spatial and structural information, thus significantly helping
in better inference. Compared to the common feature fusion
schemes, the proposed feature fusion strategy adopts cross-
modality feature refinement, which contributes toward bet-
ter prediction.
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