
Few-Shot Depth Completion Using Denoising Diffusion Probabilistic Model

Weihang Ran∗, Wei Yuan∗†, Ryosuke Shibasaki
The University of Tokyo

5-1-5 Kashiwanoha, 277-8568 Chiba, Japan
{ranweihang, miloyw, shiba}@csis.u-tokyo.ac.jp

Abstract

Generating dense depth maps from sparse LiDAR data is
a challenging task, benefiting a lot of computer vision and
photogrammetry tasks including autonomous driving, 3D
point cloud generation, and aerial spatial awareness. Us-
ing RGB images as guidance to generate pixel-wise depth
map is good, but these multi-modal data fusion networks
always need numerous high-quality datasets like KITTI
dataset to train on. Since this may be difficult in some cases,
how to achieve few-shot learning with less train samples is
worth discussing. So in this paper, we firstly proposed a few-
shot learning paradigm for depth completion based on pre-
trained denoising diffusion probabilistic model. To evaluate
our model and other baselines, we constructed a smaller
train set with only 12.5% samples from KITTI depth com-
pletion dataset to test their few-shot learning ability. Our
model achieved the best on all metrics with a 5% improve-
ment in RMSE compared to the second-place model.

1. Introduction

A depth map refers to an image in which the value of
each pixel corresponds to a depth value. Traditional vision-
based methods, such as dense stereo matching, usually suf-
fer from occlusion and illumination to generate fully com-
pleted pixel-wised depth maps [38, 39]. Meanwhile, depth
maps acquired by LiDAR and RGB-D cameras are usually
in a low resolution, and the sensing platform is usually quite
expensive. Thus, how to generate dense pixel-wise depth
maps from sparse and low-resolution depth maps has be-
come a hot research topic in the last decades. It has received
tremendous attention in computer vision and photogram-
metry fields with the potential to achieve high-resolution
dense 3D points cloud generation, autonomous driving, and
aerial spatial awareness [18, 35]. Although there are al-
ready some SLAM (simultaneous Localization and Map-
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ping) approaches, such as infiniTAM can generate dense
depth maps, they are usually not scalable to large scenes,
restricting their applicability in real-world scenarios such as
high-resolution DSM/DOM generation [31]. Depth com-
pletion can compensate for the shortcomings of previous
methods, providing a good foundation for the fully auto-
matic generation of high-precision dense depth maps [40].
With the rapid development of deep learning technology in
recent years, it has shown dominant power in depth com-
pletion field and is worth further exploration.

The problem of depth completion has been discussed for
years. At first, researchers employed convolutional neural
networks to predict dense depth maps from a single sparse
depth map [6], which is called the unguided method. In
order to deal with this particular sparse image data, a num-
ber of variant CNNs were introduced into this field, such
as Sparsity-invariant CNNs [32] and normalized-CNNs [8].
However, due to the lack of semantic information, the per-
formance of unguided methods is limited.

To solve this problem, multi-modal methods were ap-
plied to depth completion. Multi-modal methods aimed to
leverage the complementary strengths of different modal-
ity data to overcome the limitations of individual sensors or
measurements. For example, by combining depth measure-
ments with color or texture information from RGB images,
the multi-modal method, called the image-guided method,
can provide a more complete and accurate depth comple-
tion result. Several studies have investigated the effective-
ness of multi-modal methods in depth completion research.
[22, 25] concatenated the sparse depth map and the corre-
sponding RGB image before inputting them to the model,
while [14, 30] attempted to use dual-encoder networks or
double-branch networks to perform late-fusion. These re-
searches showed that the multi-modal method improves the
accuracy of depth completion models compared to using in-
dividual sparse depth maps alone. Despite their benefits,
multi-modal methods also have some limitations. One chal-
lenge is the integration of multiple modalities, which can be
computationally expensive and require careful data fusion
and alignment. Moreover, the effectiveness of multi-modal
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methods depends on the compatibility and quality of the dif-
ferent types of data. In some cases, certain modalities may
not provide additional information or may even introduce
noise or artifacts into the depth completion.

In order to make full use of the information present in
the original RGB image without destroying the structure of
its contents, spatial propagation network (SPN) [20] was
introduced into depth completion. SPN-based methods uti-
lize an affinity matrix to represent the correlation between
one point and its neighbors, thus it is always used to refine
and gain a fine-grained prediction in computer vision tasks.
[4,5] extended the vanilla SPN for the task of depth comple-
tion and integrated convolutional operations into the spatial
propagation module. Relying on such explicit construction
modules in deep learning models, SPN-based methods im-
proved the performance of traditional multi-modal methods
as a refinement method.

But if we omit this post-processing module, we can find
that the current state-of-the-art models still need a pre-
trained backbone to provide reliable coarse predictions to
the SPN module for further refinement. This can be dif-
ficult under some circumstances because high-quality raw
depth maps with corresponding RGB images and dense an-
notations are quite expensive, not to mention semantic an-
notations. Therefore, how to use fewer training samples to
obtain a backbone network with comparable performance is
worth exploring. [12] developed a generative model named
the denoising diffusion probabilistic model (DDPM) that
achieved image generation by adding noise and reducing
iteratively. This kind of model has been proven powerful in
many computer vision tasks, including image segmentation
[2], change detection [1], and image super-resolution [26].
Since the training process of the diffusion model only needs
RGB image data, which can be seen as self-supervised
training [33, 36], it also has the potential of achieving few-
shot learning (FSL) by generalizing features learned from
abundant RGB data to fewer samples with ground truth.

So in this paper, we first introduced DDPM into the
depth completion tasks and proposed a few-shot learning
paradigm for depth completion by pre-training a diffusion
model on a mass of RGB data without corresponding depth
annotations. Then only a limited number of samples with
corresponding depth maps is needed to fine-tune a fusion
module and achieve good results. We trained our Dif-Depth
model and other baselines on a small subset of the KITTI
depth completion dataset and tested them on the selected
validation set. The main contribution of this paper can be
summarized as follows:

1. We firstly proposed a DDPM-based framework that
can achieve few-shot learning on depth completion
tasks. The robust feature-extracting capability of our
backbone is obtained through a fully unsupervised pro-
cess. So it can be generalized easily to a specific task

after retraining by fewer samples.

2. We constructed a 50-shot train set from the origi-
nal KITTI depth completion dataset by sampling data
from each sequence respectively. This training set con-
tains only 12.5% of the original dataset and can be used
for few-shot learning.

3. We conducted a two-stage pre-training-and-fine-
tuning strategy to train our model and evaluated it
with other baselines on KITTI selected validation set.
Our model achieved the best on all metrics, indicating
its robust feature extracting and data fusion ability on
small training sets.

2. Related Work
Image-guided method. When it became agreement that

image-guided methods worked better than unguided meth-
ods, a lot of research aiming at how to fuse multi-modal
data more effectively sprung up. The simplest way is to
concatenate sparse depth maps and RGB images together
before inputting to a deep learning model [22,25], or to use
different initial convolutional layers at the beginning to ex-
tract features [13, 21, 37]. Another approach is applying a
two-stage network to perform a coarse-to-refinement pre-
diction [3, 7]. However, this kind of method is too straight-
forward, which overlooks the complicated spatial relation
between RGB images and depth maps. To perform data fu-
sion more explicitly, more complex network architectures
were proposed to fuse intermediate features on different
levels. [14, 28] designed dual-branch encoder networks to
process RGB image and raw depth data separately and con-
catenate corresponding features before delivering to the de-
coder. In contrast, [16] further introduced multi-scale skip
connections into a network architecture to merge different
source data. Dual-encoder networks only achieved data
fusion during the encoding process, leaving the decoding
process unconsidered. [27, 30] introduced double encoder-
decoder networks into depth completion. Meanwhile, SPN-
based networks that upsampled the original sparse depth
map with affinity matrix learned from RGB data also de-
veloped gradually, including CSPN [5], CSPN++ [4], and
DySPN [19].

Guided Filtering. [11] proposed a new filter that calcu-
lates output by considering the contents of the guide image,
which can be the input image itself or a different image.
It’s called joint/guided image filtering and can be useful in
image denoising, image defogging, and detail augmenta-
tion. [17] introduced joint filtering into depth completion,
and [34] proposed a joint filtering layer to perform joint up-
sampling. But the original guided filter is unsuitable for
sparse data like LiDAR data. [15] originally published dy-
namic filtering network (DFN) where the network gener-
ates filter kernels dynamically based on the input image to
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Figure 1. The entire architecture of our model. The left part is the DDPM backbone, which will be pre-trained with all RGB data. The
right part is the multi-modal fusion network based on guided convolution. It will be trained on a small dataset with a backbone frozen. Our
model takes an RGB image and a sparse depth map as input and predicts a dense depth map.

enable operations like local spatial transformation on the in-
put features. But the computational consumption of kernels
generated by DFN is too large, which limits its application
on multi-scale levels. To address this problem, [30] sug-
gested learning more general and powerful kernels from the
guidance image and apply the kernels to fuse multi-scale
features for depth completion. Inspired by these works, we
also applied similar operations in our network to make full
use of multi-scale features extracted by the diffusion model.

Diffusion model. Diffusion model represents one kind
of generative model that can learn from two reversed pro-
cesses: adding noise and denoising. The first denoising dif-
fusion probabilistic model (DDPM) was proposed by [12],
and has been found to have potential with semantic seg-
mentation [2], image super-resolution [26], and image de-
noising [36]. Then a lot of variants were proposed. [24]
came up with an improved DDPM which changed the la-
tent sampling schedule from linear to cosine and made vari-
ance learnable. [29] further improved the inference speed
of DDPM by making the diffusion process a non-Markov

Chain process. A diffusion model takes a single RGB im-
age as input and adds Gaussian noise into it step by step
until it becomes an entire isotropic Gaussian noise image.
Then it removes noise gradually and recovers the original
image. They are called the forward process and the reverse
process, respectively. This kind of model has many advan-
tages, including the self-supervised training process and the
strong capability of extracting multi-scale features. Thus
it provides favorable conditions for few-shot multi-modal
data fusion. By pre-training a diffusion model on one kind
of data and fine-tuning the fusion module after the back-
bone, the cost of collecting high-quality data can be greatly
reduced.

3. Methodology
In this paper, we propose a two-stage pre-training-and-

fine-tuning strategy to achieve the few-shot learning of
depth completion. First, we designed a backbone network
based on the diffusion model to achieve pre-training on
RGB data. This step does not require the involvement of
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any depth-relevant data and can therefore be viewed as a
self-supervised learning process. Then we proposed a fu-
sion module based on guided convolution operation, which
can predict a dense depth map with multi-scale features ex-
tracted from the backbone network and a sparse depth map
as input. In order to improve the performance of guided
convolution on sparse data, the original sparse depth map
was first refined by the nearest neighbor interpolation. The
training target is set to the masked MSE loss The entire ar-
chitecture of our model is shown in Fig. 1.

3.1. Self-supervised pre-training

Given an RGB image I0 ∈ R3×H×W , where H and W
represent the height and width of the image, respectively. In
order to learn the texture, outline, and structure features in
this image, the denoising diffusion model is applied to infer
the distribution of RGB feature representation. The forward
process of the diffusion model is adding Gaussian noise to
the original image during the time step T until it becomes
an isotropic Gaussian distribution. This can be seen as a
Markov process because the status under time step It only
depends on the previous status It−1. At time step t the noisy
data It can be defined as follows:

P (It|It−1) = N (It;
√
αtIt−1, (1− αt)Z ), (1)

where N (0,Z ) denotes the Gaussian distribution, and
(I0, I1, ..., IT ) denotes the T -step Markov chain. α1:T =
(α1, ..., αT ) represents the noise schedule that controls the
variance of noise added at each step. In our research, we
adopted the cosine schedule which was proposed in [24].

Since the forward process of original DDPM is per-
formed step by step, which is very slow. [29] speeds up this
process by calculating the marginal distribution of It given
I0 using the following formula:

P (It|I0) = N (It;
√
ᾱtI0, (1− ᾱt)Z ), (2)

where ᾱt =
∏t

i=1 αi. So the status under time steps t can
be derived easily when given the original status I0 and time
step t.

In the reverse process, a neural network ϵθ is applied to
perform denoising operation step by step, e.g. from Ix to
Ix−1, until getting back to the original image I0. In this
process the model is trained to learn the parameters of the
reverse distribution, which can be represented as follows:

Q(It−1|It) = N (It−1;µθ(It, t), σ
2
tZ ), (3)

where σ2 is the variance of the conditional distribution
Q(It−1|It), which can be derived from:

σ2
t =

1− ᾱt−1

1− ᾱt
βt, (4)

where βt = 1− αt. And the mean µθ(It, t) of the distribu-
tion Q(It−1|It) can be formulated as:

µθ(It, t) =
1

√
αt

(It −
βt√
1− ᾱt

ϵθ(It, t)) (5)

The optimization target of the diffusion model is the dif-
ference between network prediction and the noise of the
sample γ:

Ldiff = ||γ − ϵθ(It, t)||2 (6)

3.2. Few-shot data fusion

When the diffusion backbone is well pre-trained, it will
be capable of extracting robust and refined features from the
original image. These features can be generalized to spe-
cific tasks like depth completion with only a few training
samples. We can sample a noisy image from a random time
step, e.g. 50, and extract features as guidance for depth com-
pletion. When performing data fusion, an ordinary method
concatenates features extracted from different modalities to-
gether. This kind of method overlooked the complicated
structure of each modality data, thus resulting in low effec-
tive data fusion. To take full advantage of the fine-extracted
features, we proposed a decoder based on guided filtering.
The concept of guided filtering is to learn a changeable ker-
nel from a guided image and use it to guide the processing
of another image, such as smoothing, denoising or refine-
ment. We adopt the guided convolution operation proposed
by [30].

Figure 2. The entire process of Guided convolution. Depth feature
S is filtered by kernels generated from image feature I and get
D. Here ”AvePooling” and ”Conv” refer to average pooling and
convolution operations, respectively.

Given a sparse depth map S and a guidance image I, we
first use a convolutional neural network to extract features
S and I with M and N channels, respectively. Then a two-
stage convolution is performed. In the first stage, a standard
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convolutional layer f
′

is applied to generate a spatially-
variant kernel W

′
with the same resolution as depth feature

S from the guidance image feature I. Then the m-th chan-
nel of the kernel weights W

′

m will be used to calculate with
corresponding depth feature Sm through convolution to get
D′

m:
D

′

m = W
′

m(I; Θ
′
)⊗ Sm, (7)

where Θ
′

is the parameters of f
′
, and ⊗ refers to the convo-

lution operation. Then the second stage will perform cross-
channel convolution. First of all an average pooling layer
is applied to the guidance image feature I at each channel
individually to obtain a latent feature I ′

with size M×1×1.
Then I ′

is fed to a fully-connected layer f
′′

and projected
to M × N × 1 × 1 to get W

′′
. We use W

′′
to perform 1 × 1

convolution and output the process depth map D:

D = W
′′
(I

′
; Θ

′′
)⊗D

′
, (8)

where Θ
′′

is the parameters of the fully-connected layer.
By doing this two-stage guided filtering, the latent infor-
mation about objects and scenes in the original image is
used to guide the generation of depth features. Since the
filtering kernel is related to the guidance image, it would be
better than simply training a standard convolutional kernel
through a back-propagation process. Besides, the gradient
of a normal convolution kernel is calculated as the summa-
tion over entire feature maps, which means global optimal.
But it may not be the optimal status for every position be-
cause the gradients at each spatial position may not share
the same descent direction. Learning a spatial-variant filter-
ing kernel from the guidance image can address this prob-
lem and output better results. The whole process can be
seen in Fig. 2.

4. Experiments
4.1. Dataset

To test the performance of our model, we conduct com-
prehensive experiments on the KITTI depth completion
dataset [32]. It’s a large outdoor dataset for autonomous
vehicles, containing 86,898 RGB images with correspond-
ing LiDAR data and depth annotation for training, 1,000
for validating, and 1,000 for testing. The original depth
data is collected by using LiDAR HDL-64, which pro-
vides valid depth values on only 5.9% of all pixels. To
achieve Velodyne-to-Camera calibration, the laser scanner
and the cameras are firstly registered by using the fully
automatic method of [10]. Then the number of disparity
outliers with respect to the top performing methods in [9]
jointly with the reprojection errors of a few manually se-
lected correspondences between the laser point cloud and
the images. As correspondences, edges which can be eas-
ily located by humans in both images and point clouds are

selected. And optimization is carried out by drawing sam-
ples using Metropolis-Hastings and selecting the solution
with the lowest energy. The ground truth is generated by
accumulating LiDAR and stereo estimation of the scenes,
increasing valid depth values to 16% of all pixels. To evalu-
ate the capability of few-shot learning, we sampled around
50 data from each sequence and formed a 50-shot train set
with around 11,000 data. All of the models are trained on
this small training set and validated on the selected valida-
tion set.

4.2. Evaluation metrics

Following the KITTI benchmark and previous depth
completion research, we employ four commonly used met-
rics to evaluate the performance of our model: root mean
squared error (RMSE), mean absolute error (MAE), root
mean squared error of the inverse depth (iRMSE) and mean
absolute error of the inverse depth (iMAE). Since RMSE
and MAE measure the depth accuracy directly and RMSE
is more sensitive, it’s selected as the primary evaluation cri-
terion on the KITTI leaderboard. iRMSE and iMAR com-
pute the mean error of inverse depth by giving less weight
to far-away points. All the metrics for evaluation are shown
as follows:

RMSE(mm) :

√
1

v

∑
x

(ĥx − hx)2

MAE(mm) :
1

v

∑
x

|ĥx − hx|

iRMSE(1/km) :

√
1

v

∑
x

(
1

ĥx

− 1

hx
)2

iMAE(1/km) :
1

v

∑
x

| 1
ĥx

− 1

hx
|

(9)

4.3. Implementation details

All of the experiments were conducted on 3 NVIDIA
GeForce RTX 3090 24-GB GPUs. The experimental en-
vironment is Python 3.6 and PyTorch 1.10.1 with CUDA
11.1. For the first-stage training, we used a diffusion model
pre-trained on the ImageNet dataset with a resolution of
256×256. We continue to train it on the KITTI depth com-
pletion dataset for around 40,000 iterations to enhance its
performance on outdoor scene images. The training target
is set to L1, and we use an Adam optimizer for training.
The initial learning rate is 1e-3, and the batch size is 3 in
this process.

When the pre-training is finished, the diffusion model
will be very powerful in extracting latent features from in-
put images. Then we freeze the backbone and continue to
train the guide filter part. The training target of this stage is
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Figure 3. Qualitative results on KITTI selected validation set. From top to bottom: (a) original RGB images; (b) sparse LiDAR data; (c)
ground truth; (d) Sparse-to-Dense taking RGB and sparse LiDAR data as input; (e) GuideNet; (f) SemAttNet taking RGB, LiDAR and
semantic annotations as input; (g) Our model.

masked MSE loss, which can be defined as follows:

Lmasked = argmin||Dgt
p − Dp||2 (10)

where Dgt
p and Dp are the ground truth depth and the pre-

dicted depth value at pixel p. Since the ground truth con-

tains a lot of pixels without depth value, we only take pixels
with valid depth value into consideration. An Adam opti-
mizer with a weight decay of 1e-6 is employed for optimiz-
ing. The initial learning rate is set to 1e-4, and the batch
size is 3.

6564



Method Pre-Trained RMSE(mm) MAE(mm) iRMSE(1/km) iMAE(1/km)

SemAttNet (bb)* [23] None 1344.371 796.255 7.075 4.962
Sparse-to-Dense (gd) [21] ImageNet 1298.242 524.353 6.836 3.193

SemAttNet* [23] None 1254.914 651.044 5.381 3.485
Sparse-to-Dense (rgbd) [21] ImageNet 1247.484 501.211 6.141 2.912

GuideNet [30] None 1016.314 297.465 7.937 1.539
Dif-Depth (Ours) ImageNet + KITTI (RGB) 965.861 290.761 3.625 1.475

Table 1. Quantitative results on KITTI selected validation set. All evaluation metrics are lower the better. Different methods are ranked
according to RMSE. * denotes extra semantic annotation data. ”gb” means taking gray images and LiDAR data as input, and ”rgbd” means
taking RGB images and LiDAR data as input. ”bb” means only three-branches backbone was used.

4.4. Experiment results on KITTI validation set

Tab. 1 shows the experimental results on KITTI selected
validation set. Our model achieved the best performance on
all metrics, proving its powerful feature-extracting and gen-
eralizing ability to learn from very few train samples. We
can see that compared with concatenating data fusion meth-
ods, guided convolution-based methods such as GuideNet
and our model show stronger learning capability on smaller
datasets. This indicates guided convolution is easier to train
than the standard convolution layer when conducting multi-
modal features fusion. And compared with GuideNet, we
can see that the pre-trained backbone improved the per-
formance of network by a large margin. This confirmed
the effectiveness of our strategy to improve the few-shot
learning ability by collecting general features from a large
amount of samples in a self-supervised way. When com-
paring with models taking extra data like semantic annota-
tions for inputting like SemAttNet(bb) or models employing
post-processing modules like SemAttNet, our model still
performed better than them. This showed that the features
learned by our model also contain semantic information and
rich in detail.

Visualization results of our model and other baselines
are in Fig. 3. It can be seen that our model performed better
in both overall accuracy and detail refinement, especially
the identification of objects from a very long distance. For
example, for the bus in sample 1, our model painted a more
clear outline than the other models. And for the two riders in
sample 3, our model also successfully separated them into
two different objects in the prediction results. It’s also capa-
ble of dealing with transparent objects, such as car windows
in sample 2. Another obvious advantage of the predictions
generated by our model is the top part of the image, where
the sky is. Intuitively the sky should be infinitely far. How-
ever, due to the absence of depth values in the ground truth,
most previous models always predict badly in this part and
generate irregular boundaries for the sky. Our model pre-
dicts better results in this part and draws a clear outline of
the sky. This demonstrated the geometric correctness and

content validity of features extracted by the pre-trained dif-
fusion model.

4.5. Comparison of different time steps

According to previous research [1,2], since the diffusion
model is trained to rebuild original images from noisy im-
ages, the difficulty varies with different degrees of added
noise. And the features extracted by diffusion model vary
with the input time step as well. So in our experiments, we
further explored the performance of our model under differ-
ent time steps. Results are shown in Tab. 2.

From the results under different time steps we can see
that the performance of our model increased first and then
decreased with the increase of time step. When time step is
very small, e.g. t = 5, features output by diffusion model
capture less semantic information than when t = 50. How-
ever, when time step is very large, e.g. t = 400, they can
be uninformative as well. And the characteristic of feature
representation under different time step can also influence
the result of multi-modal data fusion. We believe that this is
related to the training and learning methods of the diffusion
model. Because the time step is randomly selected during
the training process, the probability of selecting very small
or very large time steps is low, which results in the model
having limited opportunities to learn in these two scenarios.
On the other hand, within the range of moderately sized
time steps, more noise can lead to excessive damage to the
structure of the original image, thereby increasing the diffi-
culty of learning. Therefore, the model performs best at a
slightly smaller but not-close-to-zero time step.

time step RMSE MAE iRMSE iMAE

t=5 968.330 292.060 5.039 1.452
t=50 965.861 290.761 3.625 1.475

t=150 997.471 305.883 3.711 1.499
t=400 1003.739 304.426 3.446 1.433

Table 2. Quantitative results of different time steps on KITTI se-
lected validation set.
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5. Conclusion
In this paper we proposed a new paradigm for few-shot

depth completion. We firstly introduced diffusion model
into depth completion field and regarded it as a solution
when there are not a lot of high-quality data with ground
truth. Then we designed a two-stage pre-training-and-fine-
tuning strategy to extract general features from plenty of
RGB data and fuse them with LiDAR data effectively. To
evaluate the performance of our model and compare it with
other baselines, we constructed a 50-shot train set from
KITTI depth completion dataset containing only 12.5% of
the original data. Expensive experiments were conducted
and we proved that our model can achieve state-of-the-art
performance in few-shot depth completion with a 5% im-
provement in RMSE compared to the second-place model.
This indicates the effectiveness of our strategy to learn gen-
eral features in self-supervised way and fine-tuned to spe-
cific tasks. In the future we would like to test our model on
more different datasets and think of the possibility to com-
bine different datasets for pre-training.
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