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Abstract

Bundle adjustment (BA) is the standard way to opti-
mise camera poses and to produce sparse representations
of a scene. However, as the number of camera poses
and features grows, refinement through bundle adjustment
becomes inefficient. Inspired by global motion averag-
ing methods, we propose a new bundle adjustment objec-
tive which does not rely on image features’ reprojection
errors yet maintains precision on par with classical BA.
Our method averages over relative motions while implic-
itly incorporating the contribution of the structure in the
adjustment. To that end, we weight the objective func-
tion by local hessian matrices – a by-product of local bun-
dle adjustments performed on relative motions (e.g., pairs
or triplets) during the pose initialisation step. Such hes-
sians are extremely rich as they encapsulate both the fea-
tures’ random errors and the geometric configuration be-
tween the cameras. These pieces of information propa-
gated to the global frame help to guide the final optimisa-
tion in a more rigorous way. We argue that this approach
is an upgraded version of the motion averaging approach
and demonstrate its effectiveness on both photogrammet-
ric datasets and computer vision benchmarks. The code is
available at https://github.com/erupnik/pointlessGBA

1. Introduction

Photogrammetry and computer vision are nowadays
widely used to produce up-to-date 2D and 3D maps of ter-
ritories on a national scale as well as at the level of a city,
for cultural heritage documentation, in agriculture, geology,
gaming and many other domains [28]. To generate convinc-
ing 3D representations of a scene, hundreds or thousands
of images are usually involved. More importantly, quality
of the reconstructed 3D scene relies heavily on the quality
of the camera positions and rotations, the so-called camera
poses.

Our work focuses on bundle adjustement (BA) [37] –

Figure 1. Pointless BA pipeline. We refine global camera poses
(and thus the 3D structure) in global bundle adjustment by rigor-
ously taking into account the stochastics of the relative motions.
Our inputs are S relative motions {rk, ck}s (a), their initial 3D
similarity transformations {λ, α, β}s relating them to the global
frame, and initial global poses {R,C}0 (b). We first run in paral-
lel S local bundle adjustments to retrieve camera reduced matrices
hs which encapsulate the rich stochastic information. We then find
the optimal camera poses (c) by combining all our inputs, includ-
ing the hs matrices. Concretely, our refinement minimises an error
metric defined as the difference between the observed (–,–,–) and
predicted relative motions (- -,- -,- -) (a), where the predictions are
obtained by applying a 3D similarity to the initial global camera
poses. Additionally, the error is weighted by the hs matrix which
virtually incorporates the effect of feature points in the adjustment.
In this example k ∈< 1, 3 >, and S ∈< 1, 3 >.

a refinement step advantageous for finding the most opti-
mal camera poses by taking simultaneously into account
all available observations relative to a set of images (i.e.,
image features, ground control points, a priori knowledge
on perspective centers or rotations, etc.). Such refinement
can occur twice during an SfM (Structure from Motion)
pipeline [32]: (1) as a systematic phase to avoid error accu-
mulation and the subsequent drift effect when incrementally
building the initial solution, and (2) as a final adjustment
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once all images have been initialised.
As the numbers of images grow, BA routines quickly be-

come inefficient. Solving the arising systems of equations
with exact methods such as Levenberg-Marquadt implies
growing space and time complexities by the second and
third power in the number of BA parameters [2]. The com-
mon way to address the high computational cost is to ex-
ploit the particular structure of BA equations. The strategy
known as the Schur trick involves rearranging the equations
such that the unknowns corresponding to the (few) camera
parameters form an independent block, thus can be solved
without intervention of 3D points. This said, for very large
problems matrix rearranging and construction of the Schur
complement also becomes prohibitive [32].

To further reduce this burden, one can exploit the struc-
ture of the camera graph (i.e., viewgraph), divide a large
problem in many smaller sub-problems and treat them sep-
arately, as is done in hierarchical or hybrid [4, 6, 36] SfMs.
The splitting is typically carried out via graph partitioning,
then each small problem is solved independently with direct
methods (i.e., space resection, F-Matrix, etc.), and aggre-
gated in a common frame (e.g., with global or structure-less
approaches, or 3D similarity transformation). This proto-
col is interleaved with bundle adjustments as the solution
is progressively built which assures optimal results but im-
poses a certain processing cost. Similar in concept but dif-
ferent in execution is the consensus based bundle adjust-
ment (CBA) [11, 25]. Unlike previous approaches, CBA
breaks an SfM’s objective function into parts and solves it in
a distributed way while preserving a consensus at the break
points.

The new global motion averaging [14, 24] and structure-
less [19] approaches to camera pose estimation both factor
out the structure from the estimation problem and leverage
the geometric constraints between cameras. While this ma-
noeuvre reduces the computation times significantly, there
remains a trade off in the precision of the recovered poses.
Global motion methods are thus very good at initialisating
an SfM but never considered optimal.

Contributions of this paper Our work on bundle adjust-
ment extends the global motion averaging methods and is
presented in Fig. 1. We address their compromised preci-
sion while maintaining their computational efficiency, ul-
timately transforming them into optimal solutions, as op-
posed to being merely initialisation methods. We achieve
this goal by indirectly incorporating information about the
removed structure. More precisely, we define our pointless
global bundle adjustment as a function of local Hessians
(i.e., the inverse of the covariance) constructed during the
relative motions computation (i.e., pairs, triplets). In doing
so, the quality of the relative motions, including the random
errors related to features and the correlations between cam-

era parameters, is propagated to the global solution. This
approach is similar in philosophy to [31] where the authors
attempt to propagate the structure information per relative
motion at a low cost by compressing it to 5 points. Here,
in contrast, we rigorously propagate equivalent informa-
tion while supplanting entirely the points from the equa-
tion. We also note that our approach is not restrained to
motion averaging methods. It can be similarly adopted in
any SfM method that builds a consistent 3D structure and
camera poses from many independent sub-problems. We
evaluate our approach on several datasets: a typical aerial
photogrammatric dataset, two computer vision benchmarks
(ETH3D [33], Tanks & Temples [21]), and a challeng-
ing, very long focal length terrestrial acquisition [20]. Our
method is compared against global motion averaging SfM
implemented in openMVG [27], incremental SfM in Mic-
Mac [30], 5-Point bundle adjustment [31] and in-house im-
plementation of the IRLS motion averaging [7].

This paper is organized as follows. In the next sec-
tion a brief review of the global motion averaging methods
is given, including a discussion on robustness. In Sec. 3
derivation of the proposed method is outlined, followed by
a description of the adjustment pipeline implementation de-
tails in Sec. 3. Finally, experiments are presented in Sec. 4.

2. Related work
Global motion averaging Motion averaging methods use
elementary relative motions, typically pairs or triplets of
images, to resolve the camera poses in a global and fast
manner. Because the poses are computed all at once, mo-
tion averaging surmounts the pitfall of incremental meth-
ods [32] where errors accumulate all along the initialisation
step, and lead to trajectory drift. However, such methods
give rise to new challenges. First, by relying exclusively on
pairs or triplets of images, motion averaging methods ulti-
mately renounce higher observation redundancy (i.e., long
feature tracks), which we know negatively impacts both the
camera pose estimation robustness and precision [22]. Sec-
ond, once the relative poses computed, the structure used in
the calculation is discarded, and all relative relationships,
whether derived from erroneous observations or not, are
treated equally.

As a result, there have been many works addressing the
precision as well as the mechanisms of handling low quality
and outlier relative relationships in motion averaging. For
instance, [15] proposed sampling random spanning trees
and RANSAC on the pose viewgraph (i.e., a graph where
the nodes and edges represent the images and relative re-
lationships), while [35, 39] explored the viewgraph’s struc-
ture to prune inconsistent loops or optimise the initial rel-
ative constraints. Moulon et al. [26] leverage the trifocal
tensor to strengthen the relative translation retrieval. In-
stead, 1DSfM [38] casts translations as 1D problems and
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recovers inconsistencies through 1D graph ordering of pair-
wise constraints. A complete two-stage robust pipeline was
introduced in [9]. The authors embed the cameras rela-
tive relationships and 3D points within a Markov Random
Field graph, then simultaneously solve for initial camera
poses using discrete belief propagation. The rotations pa-
rameterised by a set of discrete 3D rotations provide only
a coarse result, which serves to eliminate outliers and ini-
tialise the subsequent continuous optimisation.

Others suggest to build-in the robustness in the estima-
tion step itself. Arrigoni et al. [3] represents the rotation
averaging as a matrix decomposition problem. A measure-
ment matrix decomposed into a sum of low-rank and sparse
terms naturally groups the gross errors in the latter. Hav-
ing identified the gross errors, they participate in a modified
l2 rotation averaging that follows, with minimal impact on
the output. Nevertheless, storing all relative motions in the
measurement matrix might turn prohibitive for very large
scale SfMs. Instead of resorting to the non-robust l2 rota-
tion distance averaging, Hartley et al. [17] rigorously aver-
age rotations in the orthogonal SO(3) group through appli-
cation of the l1 Weiszfeld algorithm. Such formulation is
equivalent of computing a geometric median over multiple
rotations, and its major merit is its simplicity. To its dis-
advantage, the one-by-one rotation update makes it a slow
convergence optimisation [8]. The golden standard for ro-
bust motion averaging in the presence of outliers is unar-
guably the iteratively reweighted least squares (IRLS) in-
troduced in [7, 8]. Given a set of reliable initial estimates
of the global rotations (e.g., obtained with robust l1 opti-
misation), IRLS simultaneously finds their optimal values
through iterative regression. The influence of individual
errors on the solution is governed by a suitable loss func-
tion. IRLS demonstrated superior performance with respect
to the state-of-the-art in speed and accuracy.

Unlike the state-of-the-art approaches which discard en-
tirely any information related to feature points from the
global averaging, our pipeline retains and conveys the fea-
tures in a compact form via local hessians. Our local hes-
sians propagated to the global frame rigorously guide the
global camera pose refinement. Outliers are handled im-
plicitly by a robust cost function, however, we assume that
the majority of gross errors has been removed prior to the
adjustment.

Exploiting hessian matrices. The hessian matrix (or its
inverse – the covariance) resulting from a bundle adjustment
encapsulate information about random observation errors,
and inter-dependencies between estimated parameters, i.e.,
in our case the cameras and 3D points. These information-
rich matrices have been long used in photogrammetry for
theoretical accuracy analyses. For instance, the a poste-
riori retrieved variances and co-variances have been used

(i) as a quality measure of 3D intersections [12, 25], (ii) as
a tool to design optimal imaging network [13] or for next-
best view selection [16], (iii) to analyse correlation between
camera intrinsic and extrinsic parameters [40], as well as
(iv) in airborne laser strip adjustment when GNSS/IMU tra-
jectory is not available [29]. Other common uses of the
covariances include Kalman filtering in recursive pose es-
timations or visual SLAM [10]. There, each new camera
pose predictions are made from a product of covariance-
weighted current state and available new measurements. To
the best of our knowledge, this paper is the first to exploit
hessian/covariance matrices in global motion averaging.

3. Global optimisation with local Hessians
Problem formulation Building a global orientation of a
block of images involves two steps: recovery of the initial
global orientation of all images through incremental, global
or hybrid SfM; followed by a final bundle adjustment that
refines simultaneously all poses and the 3D structure. Our
goal is to refine initial poses {R,C}0j of a number of images
where R is a rotation matrix and C is a perspective center
defined in the global reference frame. However, unlike in
the classical BA that minimises the point’s re-projection er-
rors, our pointless BA’s objective function relies exclusively
on three ingredients (cf. Fig. 1):

• the relative motions,

• per-motion hessian matrices – a by product of the rel-
ative motions’ estimation (i.e., the local bundle adjust-
ment), and

• the initial 3D similarity transformations relating the
global and the local frame of the relative motion.

Differently to the standard IRLS approach which con-
siders all relative motions as static, our motions come with
unique uncertainty signatures contained in the hessian ma-
trices. Those are subsequently integrated in the global cost
function minimising over all camera poses.

For the sake of completeness of this derivation, in the
coming section we lay out the local bundle adjustment step
and hessian retrieval. We then follow up with global to local
frame propagation and the derivation of our pointless global
bundle adjustment cost function.

Local bundle adjustment. For every relative motion
composed of N views and M features, we can write the cost
function expressed in local frame of the relative motion as:

El
BA =

N∑
k=0

M∑
i=0

(F (pi))
2

=

N∑
k=0

M∑
i=0

ρki (f(pi)− oki)
2
,

(1)
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where oik are the observations corresponding to image fea-
tures in kth view, and pi are their respective 3D coordinates
expressed in the local frame of the relative motion. The
function f(·) relates a 3D point pi with its predicted image
observation ōki and follows the known projection function
with J as the intrinsic parameters, and {rk, ck} as the ex-
trinsic parameters: f(pi) = ōki = Jk (πk (rk (pi − ck))).
The loss function ρ reduces the impact of outliers on the
solution.

By minimising the quadratic form in Eq. (1) we obtain
δx updates to all unknowns (i.e., extrinsic parameters and
the 3D coordinates of feature points):

δx∗ = argmin
δx

(Jδx+ F0)
2 =

argmin
δx

δxT JTJ︸︷︷︸
H

δx+ 2FT
0 J︸ ︷︷ ︸
G

δx+ F 2
0


≡ −H−1 ·G,

(2)

where J is a (2MN × 6N + 3M) Jacobian matrix, H and
G are the hessian (aka the normal equations) and the gradi-
ent of the cost function, F0 is the value of the cost evaluated
at current estimate of the unknowns, and δx is the differ-
ence between the current x and initial x0 estimate of the
unknowns.

The hessian matrix in Eq. (2) describes all unknowns
while we are only interested in the unknowns correspond-
ing to the extrinsic parameters. Thus, we re-write it with the
help of the Schur complement, and note h the 6N×6N cam-
era reduced matrix. We then transcribe the cost in Eq. (2)
to a cost relying only on the relative camera extrinsics:

δx∗ = argmin
δx

(
δxT · h · δx+ gT δx+m

)
. (3)

Global to local frame propagation. Note that the lo-
cal extrinsic parameters {ck, rk} are related to their global
equivalents {C, R} by a 3D similarity transformation d:

xk = {
ck︷ ︸︸ ︷

λ · α ·C+ β,

rk︷ ︸︸ ︷
α ·R} = d ({C, R}) , (4)

where xk is a 6 × 1 vector of the local extrinsics of kth

view within some relative motion; λ, α and β are the scale
factor, 3 × 3 rotation matrix and 3 × 1 translation vector
between the local and global frames. By injecting Eq. (4)
in Eq. (3) we can express our cost function in terms of the
global camera extrinsic parameters. Observe that optimis-
ing the cost written in this way will change the initial global
poses by rigorously taking into account the stochastic prop-
erties of the parameters computed in the relative frame and
encapsulated within the camera reduced matrix h.

Pointless global bundle adjustment. Our objective is
to compute refined camera extrinsics by integrating three
pieces of information in a global bundle adjustment: rel-
ative motions, their local hessians, and the transformation
relating local and global frames. For convenience, we trans-
form the quadratic cost in Eq. (3) to a sum of linear terms
which can then be readily used in any least squares solver.
To do that, we decompose the small hessian into 6N × 6N
matrix V of eigenvectors and the corresponding eigenval-
ues matrix D. Furthermore, we integrate the global poses
in the cost function by predicting the current estimate of the
relative motion from its corresponding current global values
(see Eq. (4) and Fig. 1). With this, our global bundle adjust-
ment cost function defined over S relative motions takes the
following form:

Eg
BA =

S∑
s=0

Eg
s =

S∑
s=0

δxs
T · hs · δxs

=

S∑
s=0

δxs
T · V T

s D2
sVs · δxs

=

S∑
s=0

(Ds (Vs · δxs))
2

=

S∑
s=0

(Ds (Vs · d(X)− Vs · x0s))
2
,

(5)

where the relative motion parameters x0 are the observa-
tions in the adjustment, while the global camera poses X,
and the 3D similarity parameters {λ, α, β} within d are the
unknowns with known initial values. Every relative motion
adds a 6N × 1 observation vector to the global cost, and
the number of observations accumulated over all motions
equals 6NS. We omit the gradient g and the constant m
terms because their values are cancelled in the preceding
relative motion bundle adjustment.

Complete adjustment pipeline. Taking all the ingredi-
ents into account, the full pipeline involves the following
steps:

1. features extraction (e.g., SIFT [23]),

2. generation of observations, including the relative mo-
tions and the initial global solution,

3. per-motion local bundle adjustments, and

4. propagation and refinement in global bundle adjust-
ment.

We rely on MicMac solution [30] for steps 1–2, and
limit the relative motions set to three-view relationships
(i.e., triplets), thus N = 3. This choice is justified by the
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Figure 2. Datasets. We test our method on a classical photogrammetric aerial acquisition, two computer vision benchmarks (ETH3D,
Temple) and a challenging long focal length scenario. Top: Camera poses (in green and red) and sparse 3D structure. Bottom: Triplet
graphs where the blue edges correspond to known relative motions. In (d) during testing only blue edges are exploited (i.e., no loop), while
in evaluation the trajectory’s drift is computed using feature points common to images linked by the red edges.

fact that triplets (i) provide additional redundancy hence are
more reliable than pairs, and (ii) they are easy to compute
thanks to the powerful modern feature extractors. To ob-
tain the hessian matrices we run, in parallel, single-iteration
local bundle adjustments with triplet poses and SIFT fea-
tures from steps 1–2 as inputs. Note that steps 2 and 3 are
typically seamlessly performed in a single step. We rely on
a third-party solution for relative motion thus we separate
them in two. Finally, the outputs from steps 2 are 3 are used
to simultaneously refine all initial global poses.

4. Experiments

4.1. Implementation details

Rotation parameterisation. Rotations in 3D Euclidean
space form a special orthonormal group SO(3). Optimis-
ing rotations without taking extra precautions might de-
stroy this property. Among the common parameterisations
that conserve the matrix orthogonality are the Lie alge-
bra, angle-axis representation or quaternions [18]. We de-
scribe the rotations as a product of the known initial ro-
tation R0 and an unknown skew-symmetric small rotation
ω×: R̂ = R0 (I + ω×). We enforce the orthogonality of
the final rotation by mapping it to the closest rotation with
SVD [24]. The small rotation matrix is initially set to zero
and optimised during the adjustment.

Local and global bundle adjustments. We run single-
iteration local bundle adjustment per each triplet following
the cost defined in Eq. (1). Dense Shur solver of Ceres li-
brary [1] is used for optimisation. The inputs are: a triplet of
images with their initial relative poses and image features.

Our cost function is weighted by a Huber loss, and an atten-
uation loss γ. The first minimises the influence of the out-
liers, while the latter harmonises the triplets between them
in terms of the number of feature points. We want to avoid
penalising triplets with many features which might naturally
lead to larger hessian values. To that end, we weight each
image feature observation by γ which simulates an equal
number of observations for everyone: γ = M ·Q

M+Q where Q
is the fictitious number of points, and M is the input num-
ber (in our experiments Q = 10). To compute the inverse
of the local hessians one must fix the gauge ambiguity. This
can be done in many ways, for instance by fixing the pose
of the first camera and the base between the first and second
camera, or by considering all camera extrinsics as observed.
In our experiments we choose the latter. Triplets with less
than 30 image features are ignored in the processing.

In the global adjustment, we accumulate observations
corresponding to all triplets in the triplet graph following
the Eq. (5) and solve it using sparse Shur solver in Ceres [1].
In analogy to IRLS we weigh the observations by the resid-
ual fitting error and apply the Huber loss.

4.2. Evaluation

Datasets. To evaluate our method we look at four datasets
(see Fig. 2):

• Photogrammetric dataset – a typical photogram-
metric acquisition with a 80/60% along- and across-
track overlap composed of 2000 calibrated images
over a sub-urban taken with the UltraCAM Eagle
(26460x17004pix, F=120mm).

• ETH3D mono planar [33] – a SLAM benchmark,
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Table 1. Reprojection errors. We evaluate the precision of OurBA and compare it with competitive methods. σinit and σfinal are the
initial and final reprojection errors, AverBA corresponds to our implementation of IRLS [7], while #param is the number of unknowns
constituting the BA problem (k ≡ ×103). The difference between (b) and (c) is in the size of the triplet graph, the latter being filtered
to contain ≈ 10% of the initial count of relative motions. High residuals in (d) are due to the presence of outliers among the features.
All methods except for openMVG were initialised with the same approximate global poses. OursBA performs as good as the BAs within
incremental SfMs and the light 5-PtsBA; AverBA performs least good.

(a) Photogrammetric dataset

Method σinit σfinal #params

MicMacBA 29.79 0.27 5,545k
oMVGGBA – 0.27 –

5-PtsBA 0.28 799k
OursBA 29.79 0.28 135k
AverBA 2.65 135k

(b) ETH3D planar mono

σinit σfinal #params

14.69 0.56 1,388k
– 0.57 –

0.56 5,136k
14.69 0.56 2,372k

0.87 2,372k

(c) ETH3D planar mono

σfinal #params

0.56 1,388k
0.57 –

0.56 518k
0.61 244k
1.93 244k

(d) Temple

σinit σfinal #params

15.92 3.66 224k
– 4.94 –

15.92 3.68 110k
15.92 3.72 49k
15.92 6.77 49k

Table 2. Loop-closure error. For the long focal length dataset
we evaluate the precision of our method and compare it with com-
petitive methods using the loop closure metric. This metric refers
to the pixel reprojection error computed on features common to
images linked by red edges in Fig. 2(d). #params refers to the
size of the BA problem (k ≡ ×103). In the REFBA we impose
the closed loop and run bundle adjustment in MicMac, therefore
we consider this result as our reference. Thanks to the rigorous
propagation of the relative motions’ stochastics, OurBA performs
best among the fast BAs (5-PtsBA, AverBA), and almost as good
as the best performing point-based BA in MicMac.

Long focal length dataset

Method errloop−c #params

REFBA 0.91 7,523k
MicMacBA 3.44 2,283k
openMVGGBA 31.08 –

5-PtsBA 48.11 19k
OursBA 4.10 9k
AverBA >200 9k

a highly overlapping video acquisition of a flat sur-
face consisting of 630 calibrated images (739x458pix,
F=726pix).

• Temple [21] – a 3D reconstruction benchmark Tanks
& Temple, 282 calibrated images of a temple
(1920x1080pix, F=1163pix)

• Long focal length [20] – a challenging very long focal
length acquisition composed of 93 calibrated images
taken around a sculpture (5616x3744pix, F=1000mm)

Comparisons with existing methods We compare our
method against the bundle adjustments within the incre-
mental SfM in MicMac [30] and the global SfM in open-

MVG [27], the 5-Point BA [31], and our own implementa-
tion of IRLS motion averaging [7].

Metrics. As our bundle adjustment objective function im-
plicitly minimises the features reprojection error (also true
for BA implementations of the SfMs we test against), we
decide to use that metric as our only evaluation measure.
Comparing absolute pose accuracies would involve choos-
ing a reference pose estimation algorithm which is known
to induce a bias on the evaluation itself [5].

Moreover, in the long focal length dataset we benefit
from the acquisition geometry forming a closed-loop to
evaluate the trajectory’s drift. During BA, the connections
between the first and last few images of the acquisition are
removed (i.e., no features in common and no relative rela-
tionships, see Fig. 2(d)). During evaluation, for a perfectly
recovered trajectory, reprojection errors computed on fea-
tures common to the beginning and the end of the acquisi-
tion should be close to zero. Nevertheless, pose errors accu-
mulated along the trajectory incur a trajectory drift resulting
in compromised precisions (see Tab. 2).

To asses the sensitivity of our method to outliers we ran-
domly infuse the relative rotations with outliers as observe
their effect on the reprojection error across bundle adjust-
ment’s iterations, as shown in Fig. 4.

The MicMac and openMVG SfMs are complete pipelines
and singleing out the runtime contribution of just the BA
step is not straightforward. For that reason, we use the num-
ber of parameters per problem and the convergence rate as
proxy for runtime.

4.3. Results and discussion

Feature reprojection errors on the Photogrammetric
dataset, ETH3D planar mono and Temple benchmarks are
given in Tab. 1, while the loop closure error on the Long
focal length dataset is shown in Tab. 2.
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(a) Photogrammetric d. (b) ETH3D mono planar (c) Temple (d) Long focal length

Figure 3. Convergence experiment. We evaluate the rate of convergence for all of the tested methods. Our method (OursBA) minimizes at
a rate comparable to point-based BA in MicMac and the 5-PtsBA across all datasets, while the version of IRLS motion averaging (AverBA)
performs worst. Note that OurBA is effectively the lightest among the best-converging methods (MicMacBA, 5-PtsBA) because it engages
much less unknowns (see Tab. 1). Reprojection errors are expressed in logscale.

(a) AverBA (b) OursBA

Figure 4. Sensitivity to outliers experiment. We infuse between
0 and 22% of outliers within the relative rotations, and observe
their impact on the final reprojection errors (expressed in logscale).
As the portion of outliers grows the metrics deteriorate in all cases,
however, OurBA detoriorates at a lower pace. The + signifies that
outliers are added to the initial triplet graph, i.e., the accumulated
ratio of outliers might be slightly higher. Sensitivity tests are per-
formed on Temple benchmark.

In terms of precision, our pointless BA performs as good
as the classical BAs and the 5-Point BA. It significantly out-
performs the IRLS averaging (i.e., AverBA). This tendency
repeats across all datasets. The trajectory loop closure er-
ror in the challenging Long focal length dataset reveals the
superiority of our pointless BA against the 5-Point BA. It
highlights the power of the hessian propagation which, by
bringing the stochastics of the local bundle adjustment into
the global adjustment, prevents large trajectory drifts.

We reduce the size of the BA problem by at least a factor
of 4 with respect to the standard BA, and up to 40 times for
the Photogrammetric dataset (5,545k vs 135k unknowns).
This is thanks to the controlled acquisition pattern and the
resulting optimality of the dataset’s viewgraph contaning a
limited number of redundant triplets. Compared to 5-Point
BA, we halve the number of parameters. One can safely
assume that reducing the triplet graphs for other datasets
would proportionally increase their reduction factors.

As shown in Fig. 3 all tested methods except the AverBA

follow similar convergence rates, yet OursBA with much
fewer unknowns is the lightest among the best-converging.
Finally, faced with outliers our hessian BA, weighted by

the fitting residual error and the Huber loss function, shows
only marginal deterioration of the reprojection metric (see
Fig. 4).

Inclusion of ground control points. Although not pre-
sented in this study, our BA can be easily extended to
include ground control points (i.e., GCPs or landmarks).
To that end, the initial global solution is first transferred
to the coordinate frame of the GCPs (i.e., the new global
frame), and the initial 3D similarity transformations are
changed correspondingly. Then, for each relative motion
where a GCP is seen in at least two images, the global
BA in Eq. (5) is extended to include the GCP’s residual:
rGCP = ρGCP ||PGCP − d−1 (pGCP ) ||2, where PGCP

and pGCP are the GCP’s 3D coordinates in global and lo-
cal frames, d−1 is the inverse 3D similarity transformation
moving from the local to global frame from Eq. (4), and
ρGCP is an appropriate weighting function.

Self-calibrating bundle adjustment. Our method as-
sumes calibrated cameras with precisely known intrinsic pa-
rameters, but it could be extended to self-calibration. We lay
out this extension below, stipulating that we have not con-
ducted experiments proving its practicality or effectiveness.

To refine the camera intrinsics in the final bundle adjust-
ment, two key steps are required. First, the camera intrinsics
must be included as parameters in the local bundle adjust-
ment. Second, the Schur complement applied to the local
hessian matrix in Eq. (2) must extract both the extrinsic and
intrinsic parameters. This increases the size of the reduced
camera matrix to at least (6N + 3× 6N + 3), if the cam-
era is shared among all images and has no distortions. In
the global bundle adjustment, the local hessian matrices are
accumulated as in Eq. (5) where the observations x0 are
complemented by the input initial intrinsics. The intrisics
appear thus as the observed unknowns in our pointless BA.
Note that the local BA with camera intrinsics as unknowns
should free the intrinsics only in the very last iteration in
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which the hessian matrix h should not be inverted. This is
for two reasons: (i) inverting the hessian of a 3-image block
with unknown intrinsics would be very unstable and (ii) for
shared camera intrinsics it violates the sharing property.

Limitations. For highly overlapping acquisitions, such as
the video acquisition of ETH3D, viewgraph pre-selection is
necessary and can be done for instance through sketoniza-
tion techniques [34]. Running our method on a full graph
consisting of all possible relative relationships incurs a com-
putational cost equal or higher to that of the standard BA.
The same limitation and the necessity to reduce the view-
graph would apply to crowed-sourced image collections.
Note that randomly reducing the number of triplets by a fac-
tor of 10 (see Tab. 1(b) and (c)), had only a minimal impact
on the reprojection error in our hessian-based BA.

5. Conclusion
We have presented a Pointless Global Bundle Adjust-

ment – a new way to optimise camera poses which disen-
gages explicit feature points from the adjustment. Instead,
our BA implicitly incorporates the feature points through
rigorous propagation of the camera hessians defined in their
relative frame into the global frame.

By examining the feature reprojection errors, trajectory
drift and a runtime proxy metric, we demonstrated that our
bundle adjustment remains as efficient as the state-of-the-
art motion averaging bundle adjustment while being com-
petetive with traditional point-based bundle adjustments in
terms of precision.

We have presented our method as an efficient approach
to the final global bundle adjustment. However, we think of
pointless BA as more generic, and we argue that it can be
integrated as an intermediary adjustment routine within any
SfM pipeline.
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