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Abstract

Dense image matching (DIM) and LiDAR are two com-

plementary techniques for recovering the 3D geometry of

real scenes. While DIM provides dense surfaces, they are

often noisy and contaminated with outliers. Conversely, Li-

DAR is more accurate and robust, but less dense and more

expensive compared to DIM. In this work, we investigate

learning-based methods to refine surfaces produced by pho-

togrammetry with sparse LiDAR point clouds. Unlike the

current state-of-the-art approaches in the computer vision

community, our focus is on aerial acquisitions typical in

photogrammetry. We propose a densification pipeline that

adopts a PSMNet backbone with triangulated irregular net-

work interpolation based expansion, feature enhancement

in cost volume, and conditional cost volume normalization,

i.e. PSMNet-FusionX3. Our method works better on low

density and is less sensitive to distribution, demonstrating

its effectiveness across a range of LiDAR point cloud den-

sities and distributions, including analyses of dataset shifts.

Furthermore, we have made both our aerial (image and dis-

parity) dataset and code available for public use. Further

information can be found at https://github.com/

whuwuteng/PSMNet-FusionX3.

1. Introduction

Reconstructing the 3D geometry of real scenes is a cru-

cial task in computer vision and photogrammetry. Vari-

ous methods, including feature-based, optimization-based,

and machine learning-based methods, have been developed

to tackle this challenge. With the advent of deep learn-

ing and autonomous driving, convolution neural networks

(CNN) have been widely applied to dense image match-

ing (DIM). On the other hand, the development of LiDAR

technology made it more accessible, especially in automo-

tive driving, as illustrated by popular datasets: KITTI [24],

Robotcar [22], and more recently Radar [2]. While image

pixels are usually more densely packed than LiDAR points

(a) Left image (b) GT Disparity (c) PSMNet [5]

(d) Input guidance

(0.5%)

(e) GCNet-CCVNorm

[34]

(f) PSMNet-FusionX3

(ours)

Figure 1. Comparison of DIM on DublinCity aerial dataset [20]:

our proposed PSMNet-FusionX3 (f) is capable of combining the

robustness of PSMNet [5] and LiDAR guidance when the guid-

ance LiDAR density is low (0.5%) in (d). As a result, it outper-

forms the state-of-the-art GCNet-CCVNorm [34] (e), especially

in shadow (red rectangle) and uniform (black rectangle) areas.

for the same platform, LiDAR provides higher geometric

accuracy and robustness. As such, it is natural to aim at

combining the advantages of LiDAR and images in order to

achieve both the geometric quality of LiDAR and the high

resolution of images.

Dense 3D reconstruction by combining image and Li-

DAR data have been an important topic in the computer

vision community, and several open datasets have been

proposed to facilitate research in this area [33]. In aerial

photogrammetry, images have much higher spatial resolu-

tion compared to sparser LiDAR, but the geometric qual-

ity of LiDAR can help to improve the DIM performance.

This paper focuses on using LiDAR to guide an aerial

photogrammetry DIM pipeline. While this topic has been

addressed based on traditional optimization frameworks

(such as based on semi-global matching) [13], it has been

scarcely investigated using deep learning techniques. The

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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most similar work is conditional cost volume normalization

(CCVNorm) [34], whose backbone is GCNet [16]. There-

fore, we refer to it as GCNet-CCVNorm in this paper. How-

ever, GCNet-CCVNorm performs poorly on low-density

LiDAR input, and the building boundaries are often inac-

curate, as shown in Figure 1.

This paper focuses on deep learning-based LiDAR-

guided DIM in the aerial context. We generate training data,

investigate the influence of the LiDAR density, distribution

imbalance, and propose PSMNet-FusionX3, a PSMNet-

based LiDAR-guided DIM pipeline. PSMNet-FusionX3

combines the advantage of PSMNet, including clean and ac-

curate depth discontinuities and good handling of shadowed

and uniform areas, with the LiDAR guidance improvement.

This is illustrated in Figure 1. We also generate a high-

resolution and high-density stereo dense matching aerial

dataset for stereo-LiDAR fusion and evaluate our approach

on it. Our contributions can be summarized as follows:

1. We propose to use a triangulated irregular network

(TIN) interpolation-based expansion for the aerial im-

age, and integrate it with the network for more accurate

depth estimation.

2. We firstly combine TIN interpolation, feature enhance-

ment in cost volume, and CCVNrom with PSMNet

backbone, i.e. PSMNet-FusionX3, it is more robust

to the density and distribution of the LiDAR guidance.

3. We build a high resolution and high dense stereo dense

matching aerial dataset for stereo-LiDAR fusion, and

exploit the DL based stereo-LiDAR methods on the

aerial dataset.

2. Related Work

2.1. Stereo dense matching

Stereo Dense image matching (DIM) is a widely-

explored topic with proposed solutions can be categorized

into local methods [32], global optimization methods such

as Semi global matching (SGM) [12], traditional machine

learning methods [4], and deep learning (DL) method [21].

As this paper focuses on DL methods, we will primarily

review works using DL to replace one or all (end-to-end)

steps of the DIM pipeline.

Single step DL. 2D CNNs have proved effective to re-

place the feature extraction step [38]. For instance, SGM-

Net uses a CNN network to learn the penalties in SGM [30].

In the refinement step, variational networks can be used to

refine the disparity [19].

End-to-end DL. In the pioneering work DispNet [23], a

2D CNN encoder-decoder structure named DispNetS was

the first end-to-end network processing two images as 6

bands to obtain the disparity, while DispNetC investigates

cost aggregation with a 2D CNN. Another pioneering work

GC-Net proposes a 3D CNN-based network for cost aggre-

gation in the cost volume [16]. The Pyramid Stereo Match-

ing network uses spatial pyramid pooling to extract the fea-

ture and 3D CNN stack network to process the cost vol-

ume [5]. High-resolution stereo network structures utilize

upscaling in the 2D CNN network, so the 3D cost volume

can be upscaled inorder to have a better resolution [36]. For

high-resolution image matching, the 3D cost volume can be

pruned with a differential patch match method to handle the

high memory consumption [8]. A 3D CNN named GANet

integrates a Semi-Global Guided Aggregation (SGA) layer

and a Local Guided Aggregation (LGA) layer [39]. More

recently, reinforcement learning such as neural architec-

ture search was applied to the stereo dense matching prob-

lem [6]. Finally, the boundary information can be exploited

by a hierarchical refinement [17].

2.2. LiDAR guided stereo dense image matching

With the emergence of LiDAR and Radar technology,

it has become possible to acquire images and point cloud

data simultaneously. This allows for the use of LiDAR data

to improve DIM. Traditionally, LiDAR 3D points are uti-

lized as constraints in DIM [13], a Gaussian enhancement

function has been proposed as a means to guide DIM [28].

This approach is applicable to both traditional global stereo

methods and some cost-volume-based deep learning meth-

ods, such as PSMNet. More recently, a riverbed enhance-

ment function instead of Guassian function has been intro-

duced to further improve the quality of guidance informa-

tion used in DIM [41].

DIM guided by LiDAR has also been investigated in the

context of autonomous driving [37], as LiDAR and Radar

can be mounted on a car [1,3]. Research in this area has fo-

cused on Guided Stereo Matching and Stereo-LiDAR fusion,

taking inspiration from [28], However, as these terms are

not yet clearly defined, we propose to classify these meth-

ods into three distinct categories instead:

Fusion in 2D input or output. Fusing information in

2D is an intuitive approach and can be easily implemented

using LiDAR data. One common technique is to add an ex-

tra branch to the traditional DIM networks, which extracts

features from a sparse LiDAR depth map and employs a 2D

CNN to generate the final disparity [14, 34, 40]. Another

strategy is to refine the disparity by combining LiDAR data

with the results from traditional SGM methods, and then

using the image to refine the disparity map [25].

Fusion in cost volume. A Gaussian kernel has been

demonstrated to be effective in enhancing the feature vector
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Algorithm 1 Algorithm for sparse disparity interpolation

Input: sparse disparity map D
Output: interpolation map D, confidence map M

1: build TIN using 2D Delaunay triangulator with x, y
where D(x, y) > 0 (with dispairty)

2: for ∆ABC in TIN do

3: if Equation (3) is true then

4: for pixel S (xs, ys) in ∆ABC in Figure 2a do

5: calculate ds,Ms using Equation (2)

6: D(xs, ys) = ds
7: M(xs, ys) = Ms

8: end for

9: end if

10: end for

11: return D,M

within the cost volume [34]. Inspired by this work, refine

the Gaussian value by expanding the sparse disparity and

integrating it with the confidence metric in [14]. Similarly,

3D line and 3D graph hint expansion techniques are used to

expand the sparse hints from the LiDAR data [27].

Fusion in 3D space. A graph-based depth correction ap-

proach has been proposed to refine the depth of deep learn-

ing stereo methods in 3D space [37]. This approach has

been leveraged to merge the LiDAR data in 3D space with

the predicted disparity map [14]. Moreover, with the ad-

vancement of 3D convolution techniques for point cloud

processing such as PointNet [29], DL-based point features

can also be extracted and incorporated into the cost vol-

ume [7].

Our study, PSMNet-FusionX3, uses a simple backbone

network and incorporates LiDAR guidance through 2D in-

put and cost volume fusion in three steps.

3. PSMNet-FusionX3

Prior to introducing the pipeline, we provide a compre-

hensive description of the datasets utilized for training and

evaluation, which were generated using aerial data genera-

tion [35]. The input LiDAR data is highly dense, resulting

in a disparity map that is sufficiently dense for the exper-

iment. Under these conditions, we can sample the dense

disparity map using various ratios and strategies, followed

by the exploitation of densification on the sparse disparity.

3.1. Sparse disparity interpolation

Our aerial image/LiDAR dataset encompasses an urban

area where disparity remains relatively regular due to the

presence of man-made objects. As the input disparity guid-

ance is sparse in epipolar image geometry, we interpolate

it using a 2D Delaunay triangulation [31] to generate a tri-

A(x1, y1, d1)

C(x3, y3, d3)

B(x2, y2, d2)

ds(xs, ys) = axs + bys + c

•
S(xs, ys, ds) d(x, y) = ax + by + c

(a) Triangle plane (b) Interpolation confidence

Figure 2. Illustration of the linear interpolation of disparity values

that are solely known on the vertices of a given triangle, the sym-

bols in (a) are used in Equation (1). In (b), Equation (2) is used

to calculate the confidence of the interpolation which is influenced

by the shape of the triangle, and the distance to the vertice of the

triangle.

(a) Randomly sam-

ple

(b) Randomly w/

TIN

(c) confidence of TIN

Figure 3. An example of sparse disparity interpolation from the

Toulouse2020 dataset, where (a) represents the disparity randomly

subsampled from the dense disparity map using a 2.5% ratio, (b)

displays the linear TIN interpolation outcome, and (c) presents the

corresponding interpolation confidence.

angulated irregular network (TIN) from the disparity map.

Although interpolation may introduce errors, an confidence

map can be beneficial in assessing interpolation quality.

There is a similar approach [15] used in [14], where the ex-

pansion is based on pixel values. If the neighbor pixel has

the same intensity or a small difference as the known pixel,

the disparity should be the same; a threshold of 2 was used

in their experiment. Nevertheless, selecting an appropri-

ate threshold for remote sensing images is challenging. To

overcome this issue, we define confidence using a location-

dependent parameter M [10]. We produce an confidence

map for interpolation and leverage it as a weight in the loss

function.

a =
(y2 − y3)d1 + (y3 − y1)d1 + (y1 − y2)d3
x1y2 + x3y1 + x2y3 − x3y2 − x1y3 − x2y1

= a1d1 + a2d2 + a3d3

b =
(x3 − x2)d1 + (x1 − x3)d1 + (x2 − x1)d3
x1y2 + x3y1 + x2y3 − x3y2 − x1y3 − x2y1

= b1d1 + b2d2 + b3d3

c =
(x2y3 − x3y2)d1 + (x3y1 − x1y3)d1 + (x1y2 − x2y1)d3

x1y2 + x3y1 + x2y3 − x3y2 − x1y3 − x2y1

= c1d1 + c2d2 + c3d3
(1)
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The process of triangle linear interpolation is described

in great detail in Equation (1), and the specifics of the vari-

ables a1, b1, c1 etc. can be found in the supplementary doc-

ument. Additionally, the confidence parameter M is de-

fined in Equation (2), and both are visually represented in

Figure 2. The complete outcome of these calculations is

demonstrated in Figure 3.

ds = axs + bys + c

= (a1d1 + a2d2 + a3d3)xs + (b1d1 + b2d2 + b3d3)ys

+ (c1d1 + c2d2 + c3d3)

= (a1xs + b1ys + c1)d1 + (a2xs + b2ys + c2)d2

+ (a3xs + b3ys + c3)d3

M = (a1xs + b1ys + c1)
2 + (a2xs + b2ys + c2)

2

+ (a3xs + b3ys + c3)
2

(2)

During our experiments, we discovered that interpola-

tion can introduce significant errors during training, which

in turn can degrade performance. As we know, the major-

ity of errors arise during interpolation in areas of disparity

discontinuity, where the disparity difference between ver-

tices is considerable. To mitigate these errors, we enforced a

limitation on the disparity difference at triangle vertices(cf.

Equation (3)), setting it to ∆d = 3 for our experiments. The

corresponding pseudo-code is presented Algorithm 1.










|d1 − d2| < ∆d

|d1 − d3| < ∆d

|d2 − d3| < ∆d

(3)

3.2. Network

The primary contribution of this study is the incorpo-

ration of CCVNorm into the PSMNet backbone model

(PSMNet-FusionX3) that is inspired by GCNet-based

CCVNorm (GCNet-CCVNorm) [34], and with improved

performance, given that PSMNet outperforms GCNet. Our

proposed network, PSMNet-FusionX3, integrates the Li-

DAR guidance in the PSMNet framework [5], as depicted

in Figure 4. The guidance is added in three phases:

1. in the 2D CNN processing step, the disparity map is

used as the 4th band.

2. in the cost volume, incorporate the left guidance map

adding the weight into the cost volume [28].

3. in the 3D CNN step, i.e. CCVNorm integrates the

guidance.

The inputs for our network are a stereo image, along with

the interpolated guidance maps and confidence maps. To

begin, features are extracted by a 2D CNN along a Spa-

tial Pyramid Pooling (SPP) module. Next, a cost volume is

constructed, with feature enhancement added, and finally,

CCVNorm is integrated into the 3D CNN like in [34], as

illustrated in Figure 4.

3.3. Loss

The PSMNet model employs the L1 loss function during

training, which we also adopt here. As the guidance pixels

form part of the ground truth disparity map, they are likely

to be more accurate than non-guidance pixels. To account

for this, we generate a weight map for each pixel based on

the confidence outlined in Section 3.1. These weight maps

are used to assign a pixel-based weight in the loss function.

L(d, d̂) =
1

N

N
∑

i=1

smoothL1
(di − d̂i) ∗Wconfidence (4)

where N is the number of the pixels with ground truth dis-

parity, d is the ground-truth disparity, and d̂ is the predicted

disparity, and

smoothL1
=

{

0.5x2, if |x| < 1

|x| − 0.5, otherwise

we use the scale to define Wconfidence from M defined in

Section 3.1:

Wconfidence =

{

M ∗ 5.0, ifM > 0

1, otherwise

The Adam optimization algorithm [18] is used in the ex-

periment.

4. Experiment

Our experiments were conducted using the DublinCity

[20] and Toulouse2020 dataset, which are described in Ta-

ble 1, more detail can be found in the supplementary doc-

ument. The parameter Ri is defined as w×h
Nvalid

, where

Nvalid represents the number of valid pixels with ground

truth disparity, and w and h are the width and height of

the cropped image. We utilized a GPU cluster equipped

with Tesla V100 cards with 32GB of memory. To handle

the memory-intensive cost volume processing in PSMNet-

FusionX3, we set the batch size to 8. Further details on the

training set configuration and training times are provided in

Table 2. During the testing phase, there were 822 pairs for

DublinCity and 411 pairs for Toulouse2020.

Our proposed method, PSMNet-FusionX3, was com-

pared against several baseline methods, including SGM

[11], PSMNet [5], GuideStereo [28], GCNet and GCNet-

CCVNorm [34] (GCNet lacks official code, code from

GCNet-CCVNorm).
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CNN
SPP

Conv

CNN
SPP

Conv

Cost Volume

w

2D Conv

3D Conv

3D Conv

CCVNorm

3D DeConv

CCVNorm

SPP Network

Cost Volume

bilinear+regression

Figure 4. The PSMNet-FusionX3 nework. The stereo images and their corresponding interpolated disparity maps serve as inputs for the

two weight-sharing pipelines that consist of a 2D CNN and a Spatial Pyramid Pooling (SPP) Module. Following 2D CNN processing,

utilizing the learned image feature, a 4D cost volume is constructed. At this stage, the green circle indicates that the left guidance map

can also be utilized to add weight to the cost volume. Subsequently, the cost volume is processed by a Stacked Hourglass network that

comprises a 3D CNN, a 3D Conv CVVNorm, and a 3D DeConv CVVNorm. Ultimately, the predicted output disparity map is generated

through bilinear interpolation followed by regression, and the input confidence map is leveraged to weigh the loss.

dataset GSDi (cm) Dl (pt/m2) Ri (px/pt)
DublinCity 3.4 250-348 2.3

Toulouse2020 5 ≈ 50 3.0

Table 1. Image Ground Sampling Distance (GSDi), LiDAR den-

sity Dl, and image guide density Ri which means Ri pixels with

1 LiDAR point.

4.1. Batchsize in PSMNet­FusionX3

As shown in Table 2, the batch size for PSMNet-

FusionX3 is 8, while it is 12 for PSMNet due to CCVNorm

with 3D-CNN is high memory requirements. To investi-

gate the impact of batch size on PSMNet-FusionX3, we

employed PyTorch Lightning [9] to train on 4 GPU nodes.

Interestingly, from Table 3, we observed that while the re-

sult remained unchanged with a batch size of 8, the training

time per epoch was reduced. This indicates that using larger

batch sizes for training on larger datasets can save time.

4.2. Density analysis

The ratio between the density of LiDAR points (pt/m2)

and image pixels (px/pt) is an important factor in LiDAR

guided stereo DIM. To investigate its impact, we randomly

selected valid pixels (with LiDAR points) to achieve ratios

of 0.5%, 1%, 2.5%, 5%, and 10%. The ratio is expressed

as Nselected

Nvalid

, where Nselected is the number of selected pix-

els and Nvalid is the number of valid pixels with ground

Figure 5. Influence of LiDAR density on 1-pixel error on

Toulouse2020. For image-only DIM, PSMNet is much better than

GCNet. GuideStereo does not improve over image only below

5% ratio. Above, its performance is slightly better than PSMNet,

but worse than the simple TIN interpolation. GCNet-CCVNorm is

better than GuideStereo and below image only DIM only for very

low density (0.5%). Our PSMNet-FusionX3 is always slightly bet-

ter than GCNet-CCVNorm and is the only guided method that out-

performs PSMNet at the lowest density of 0.5%

truth disparity. Ri refers to the pixel with LiDAR guidance.

The equivalent density can be computed and is presented

in Table 4. For the DublinCity dataset, we used an average

density of 300. The 1-pixel error will be analyzed and the

3-pixel error can be found in the supplementary document.

As the disparity map is 2.5D, we employed TIN to

generate a dense disparity map, which can be used as a

baseline to allow us to evaluate the LiDAR and image fu-
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method epochs crop size batch size train time(s/epoch) pairs

PSMNet 500 256x512 12 216 1200

GCNet 40 256x512 4 2851 1200

GCNet-CCVNorm 40 256x512 4 3457 1200

PSMNet-FusionX3 (ours) 500 256x512 8 335 1200

PSMNet-FusionX3-PL (ours) 500 256x512 12 113 1200

Table 2. Training configuration and runtime for each method. The PyTorch-Lightning (PL) implementation of PSMNet-FusionX3 runs on

4 GPUs, and the other methods only run on a single GPU.

method batch size <1-pixel <2-pixel <3-pixel <5-pixel <9-pixel

PSMNet-FusionX3 8 85.94 91.82 94.45 97.08 99.15

PSMNet-FusionX3(Lightning) 12 85.78 91.70 94.34 96.97 99.09

Table 3. Influence of the batch size of PSMNet-FusionX3. Testing on Toulouse2020 dataset with a LiDAR density ratio of 5%. The result

remained unchanged even increasing the batch size.

dataset 0.5% 0.1% 2.5% 5% 10%
DublinCity(Dl) 1.5 3 7.5 15 30

DublinCity(Ri) 462.0 231.0 92.4 46.2 23.1

Toulouse2020(Dl) 0.25 0.5 1.25 2.5 5

Toulouse2020(Ri) 605.9 302.9 121.1 60.6 30.3

Table 4. Dl is the
Nselected

Nvalid

, equivalent density (pt/m2) of input

LiDAR in experiment, Ri is image guide density (px/pt).

sion performance. The 1-pixel error on the Toulouse2020

dataset is depicted in Figure 5. Our PSMNet-FusionX3

was observed to leverage the strengths of both PSMNet

and GCNet-CCVNorm, indicating that LiDAR information

can be beneficial for PSMNet-FusionX3, even at very low

density, without adversely impacting the performance of

GCNet-CCVNorm.

The 1-pixel error on the DublinCity dataset is illustrated

in Figure 6. Here, we observed similar behavior as on

Toulouse2020, with the exception that GuideStereo outper-

formed TIN interpolation except for the highest densities.

Moreover, our PSMNet-FusionX3 outperformed GCNet-

CCVNorm by a larger margin.

4.3. Density distribution analysis

In the previous experiment, we generated sparse input

disparity maps of varying densities by uniformly subsam-

pling the dense disparity map. As observed in a similar

study in [14], the resulting signal distribution imbalance can

have a significant impact on the outcome. In this section, we

investigate how the distribution of LiDAR affects the learn-

ing process. To address this issue, we propose a Gaussian

subsampling strategy that generates a 2D Gaussian distribu-

Figure 6. Influence of LiDAR density on 1-pixel error on

DublinCity. The behavior is the same as Toulouse2020, even

though the density is different.

tion centered at the middle of the image, as shown in Fig-

ure 7.

The results presented in Figure 8 and Figure 9 clearly

indicate that a distribution imbalance always leads to in-

creased errors. While the distribution of LiDAR has a

considerable effect on GCNet-CCVNorm, GuideStereo and

PSMNet-FusionX3 are comparatively less sensitive.

4.4. Dataset shift analysis

The dataset shift is a significant factor in practical ap-

plications because it is not always possible to have a train-

ing dataset available in the production area. To address this

challenge, we can use the model trained on Toulouse2020

to test on DublinCity or vice versa. The impact of dataset

shift, measured in terms of 1-pixel error, is depicted in Fig-

ure 10 and Figure 11. For the LiDAR guided methods, the

input LiDAR density ratio is consistent across both datasets.

End-to-end training methods can also be trained on the
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(a) Ground truth (b) Random subsampling (c) Random subsampling w/

TIN interpolation

(d) Gaussian subsamping (e) Gaussian subsamping w/

TIN interpolation

Figure 7. An example of random and Gaussian subsampling and the corresponding interpolations of a disparity map from Toulouse2020.

For both uniform and Gaussian subsampling, the sampling ratio is 5%.

Figure 8. The influence of the distribution of LiDAR on

Toulouse2020. GCNet-CCVNorm is highly influenced by the dis-

tribution of LiDAR. GuideStereo and PSMNet-FusionX3 are less

sensitive, and the imbalanced result is much worse than the ran-

domly sampled result.

Figure 9. The influence of the distribution of LiDAR on

DublinCity. The behavior is the same as Toulouse2020, GCNet-

CCVNorm is highly influenced by the distribution, and PSMNet-

FusionX3 is less sensitive compared to Toulouse2020.

sparse ground truth disparity using LiDAR guidance. In

light of GCNet’s poor performance (cf. Section 4.2), PSM-

Net training on the sparse LiDAR guidance is introduced.

Notably, for both dataset shifts, TIN interpolation outper-

forms GuideStereo for almost all LiDAR densities, SGM

outperforms GCNet, LiDAR input guidance enhances the

Figure 10. Training on DublinCity and testing on Toulouse2020.

Learning-based methods except for GCNet are still better than

SGM, PSMNet learning on sparse ground truth work well, for low

density guidance(0.5%), GCNet-CCVNorm is worse than PSM-

Net training on guidance, but PSMNet-FusionX3 is better.

Figure 11. Training on Toulouse2020 and testing on DublinCity.

The behavior is the same as Toulouse2020, when the ratio is 0.5%,

PSMNet-FusionX3 is slightly worse than PSMNet training on the

LiDAR guidance.

performance of GCNet-CCVNorm and PSMNet-FusionX3,

and PSMNet-FusionX3 outperforms GCNet-CCVNorm.

4.5. Visual assessment

To analyze the error distribution, we have provided an

error map of DublinCity in Figure 12. Further analysis
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(a) Left image (b) GCNet (c) PSMNet (d) GCNet-CCVNorm (e) PSMNet-FusionX3 (ours)

(f) GT Disparity (g) GCNet (h) PSMNet (i) GCNet-CCVNorm (j) PSMNet-FusionX3

(ours)

Figure 12. Shaded depth map (first row) and error map (second row) in pixel on DublinCity. The shading is done using the GrShade tool

from MicMac [26]. Blue rectangle: high vegetation. Red rectangle: depth discontinuity. Green rectangle: uniform area.

on Toulouse2020 can be found in the supplementary doc-

ument. When the input LiDAR density is at 5%, Figure 12c

shows significant improvement in LiDAR guidance on high

vegetation and large depth discontinuities. Moreover, com-

pared to GCNet, the performance of GCNet-CCVnorm

has improved significantly. In comparison to GCNet-

CCVnorm, PSMNet-FusionX3 generates a smoother out-

come, especially in uniform areas. Therefore, our PSMNet-

FusionX3 successfully combines the quality and robustness

of PSMNet while appropriately utilizing LiDAR guidance.

5. Conclusion

This paper explores the use of sparse LiDAR to guide

DL-based Stereo DIM on high-resolution aerial imagery.

We introduce a novel method, PSMNet-FusionX3, which

combines TIN-based interpolation, feature enhancement

in cost volume, and CCVNorm in PSMNet backbone.

By leveraging the strengths of PSMNest and GCNet-

CCVNorm, PSMNet-FusionX3 surpasses the state-of-the-

art for any LiDAR density, and is less susceptible to the

distribution of the LiDAR. We also demonstrate that our

approach is robust to dataset shifts between two European

cities. We have made available a high-resolution aerial

dataset for training DP-based DIM methods.

During our experiments, we found that errors in inter-

polation can negatively impact the outcome, underscoring

the importance of guidance LiDAR quality. The dataset is

derived from an urban area where disparity discontinuity is

regular, and interpolation performs well. However, it poses

a challenge for small structure objects since interpolation

can be inaccurate. A promising solution is to enhance the

weight of image information. Future work could explore

the influence of inconsistencies between images and LiDAR

(especially if they were not acquired simultaneously). Fur-

thermore, considering more confidence factors in training

could be an interesting avenue to explore, for example when

the image is more reliable than the LiDAR guidance.
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