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Abstract

Reconstructing semantic 3D building models at the level
of detail (LoD) 3 is a long-standing challenge. Unlike
mesh-based models, they require watertight geometry and
object-wise semantics at the façade level. The principal
challenge of such demanding semantic 3D reconstruction
is reliable façade-level semantic segmentation of 3D input
data. We present a novel method, called Scan2LoD3, that
accurately reconstructs semantic LoD3 building models by
improving façade-level semantic 3D segmentation. To this
end, we leverage laser physics and 3D building model pri-
ors to probabilistically identify model conflicts. These prob-
abilistic physical conflicts propose locations of model open-
ings: Their final semantics and shapes are inferred in a
Bayesian network fusing multimodal probabilistic maps of
conflicts, 3D point clouds, and 2D images. To fulfill de-
manding LoD3 requirements, we use the estimated shapes
to cut openings in 3D building priors and fit semantic 3D
objects from a library of façade objects. Extensive ex-
periments on the TUM city campus datasets demonstrate
the superior performance of the proposed Scan2LoD3 over
the state-of-the-art methods in façade-level detection, se-
mantic segmentation, and LoD3 building model reconstruc-
tion. We believe our method can foster the development
of probability-driven semantic 3D reconstruction at LoD3
since not only the high-definition reconstruction but also re-
construction confidence becomes pivotal for various appli-
cations such as autonomous driving and urban simulations.

1. Introduction
Reconstructing detailed semantic 3D building models is

a fundamental challenge in both photogrammetry [10] and
computer vision [39]. Recent developments have shown

Figure 1. Scan2LoD3: Our method reconstructs detailed semantic
3D building models; Its backbone is laser rays’ physics providing
geometrical cues enhancing semantic segmentation accuracy.

that reconstruction using 2D building footprints and aerial
observations provides building models up to level of de-
tail (LoD) 2 [10, 20, 34], which are characterized by com-
plex roof shapes but display planar façades. Owing to their
watertightness and object-oriented modeling, such models
have found many applications [4] and are now ubiquitous,
as exemplified by around 140 million open access building
models in the United States, Switzerland, and Poland 1.

However, reconstructing façade-detailed semantic LoD3
building models remains an open challenge. Currently,
LoD3-specific façade elements, such as windows and doors,
are frequently manually modeled [5, 43]; yet at-scale, au-
tomatic LoD3 reconstruction is required by numerous ap-
plications ranging from simulating flood damage [2], esti-
mating heating demand [27], calculating façade solar po-
tential [47] to testing automated driving functions [36].

The best data source for semantic LoD3 façade mod-
elling [54] appears to be mobile mapping data, as the last
years have witnessed a growth in mobile mapping units

1https://github.com/OloOcki/awesome-citygml
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yielding accurate, dense, street-level image and point cloud
measurements. Yet, typically such data necessities ro-
bust, accurate, and complete semantic segmentation be-
fore it can be applied to semantic reconstruction. In the
past decade, various learning-based façade-level 3D point
cloud segmentation solutions have achieved promising per-
formance [8, 23, 49]. However, they have limited accuracy
of up to 40% [23] when working on translucent (e.g., win-
dows) and label-sparse (e.g., door) objects. Methods based
on intersections of laser rays with 3D models are used to
improve the accuracy [40, 49]. However, such methods are
prone to errors due to the limited semantic information [40]
and field-of-view obstacles, such as window blinds [49].
Another approaches employ images for façade segmenta-
tion and achieve high performance [22,33]; yet, their direct
application for 3D façade segmentation is limited chiefly
owing to the 2D representation [16, 30].

In this paper, we present a novel ray-casting-based multi-
modal framework for semantic LoD3 building model recon-
struction named Scan2LoD3. In contrast to previous meth-
ods, we combine multimodalties instead of relying on sin-
gle modality [40]; and we fuse modalities using their state
probabilities, as opposed to mere binary fusion [49]. The
key to maintaining geometric detail is to utilize laser ray
physical intersections with vector priors to find probability-
quantified model conflicts in a Bayesian network, as high-
lighted in Figure 1; we list our contributions as follows:

• A probabilistic visibility analysis using mobile laser
scanning (MLS) point clouds and semantic 3D build-
ing models, enabling detection of detailed conflicts by
non-binary probability masks and L2 norm;

• A Bayesian network approach for the late fusion of
multimodal probability maps enhancing 3D semantic
segmentation at the façade-level;

• An automatic, watertight reconstruction of LoD3 mod-
els with façade elements of windows and doors com-
pliant with the CityGML standard [9];

• An open LoD3 reconstruction benchmark comprising
LoD3 and façade-textured LoD2 building models, and
façade-level semantic 3D MLS point clouds 2.

2. Related work
The key to reconstructing the LoD3 building model is

to achieve an accurate 3D façade segmentation. Here, we
provide insights into visibility- and learning-based methods.

Visibility analysis using ray casting and 3D models.
In the context of 3D building models, ray casting from the
sensor’s origin yields deterministic information about mea-
sured, unmeasured, and unknown model parts [24, 41], but

2https://sites.google.com/view/olafwysocki/papers/scan2lod3

also provides geometric cues, so-called conflicts, for the
façade elements reconstruction [13, 40, 49]. For example,
Tuttas et al. [40] exploit the fact that laser scanning rays
traverse glass objects to identify building openings: They
assume that the intersection points of rays and found build-
ing planes indicate the position of windows, which are then
reconstructed by minimum bounding boxes. Hoegner &
Gleixner [13] pursue this idea using mobile laser scanning
and, besides rays intersections, they analyze empty regions
in point clouds. Due to the methods’ assumption that each
visible opening is a window, they do not distinguish be-
tween other openings, such as doors or underpasses. To
overcome this issue, Wysocki et al. [50] propose the conflict
classification method, which infers the semantics of ray in-
tersections with 3D models using 2D vector maps to detect
and reconstruct building underpasses. However, conflict-
based methods are prone to occlusions and are limited in
identifying openings that are concealed by non-translucent
objects, such as blinds.

Machine learning in 3D façade reconstruction. Early
learning-based façade segmentation methods [6, 19, 33, 39,
42] typically rely on ubiquity of 2D image façade seg-
mentation datasets and represent façade elements as 2D
objects (discussed in detail in [25]). Recent works uti-
lize well-established 2D image-based neural networks to
identify façade elements in images and then project them
onto 3D point clouds or their derivatives, such as 3D mod-
els [12, 16, 29, 30]. However, these methods frequently as-
sume full point cloud coverage of buildings and correctly
co-referenced multiple image observations from various an-
gles. For example, Huang et al. [16] propose a method em-
ploying FC-DenseNet56 [17], trained with ortho-rectified
façade images, to recognize façade openings. The labels
are projected onto LoD2 building model, which is recon-
structed from a drone-based photogrammetric point cloud.
The projected window and door labels are approximated
to bounding boxes, which cut openings in LoD2 solids,
thereby upgrading 3D models to LoD3.

An alternative strategy concentrates on direct 3D façade
modeling from laser scanning point clouds since MLS
point clouds provide detailed and accurate depth informa-
tion [53]. Recently, it has been demonstrated that great
advances of point-wise, learning-based methods [31, 55]
are applicable in the context of 3D façade segmenta-
tion [8, 23], where an early fusion of geometric features
into DGCNN [45] enhances façade segmentation accuracy.
Nevertheless, sparsely represented classes, such as windows
and doors, remain challenging [23]. This issue is further
exacerbated by the lack of comprehensive 3D façade-level
training and validation data: to the best of our knowledge,
no 3D façade-level reconstruction benchmark includes tex-
tures, point clouds, and ground-truth LoD3 models [51].

One recent work [49] pursues the idea of combining ge-
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Figure 2. The workflow of the proposed Scan2LoD3 consists of three parallel branches: The first is generating the point cloud probability
map based on a modified Point Transformer network (top); the second is producing a conflicts probability map from the visibility of the
laser scanner in conjunction with a 3D building model (middle); and the third is using Mask-RCNN to obtain a texture probability map
from 2D images. We then fuse three probability maps with a Bayesian network to obtain final facade-level segmentation, enabling a
CityGML-compliant LoD3 building model reconstruction.

ometric features and visibility analysis. The authors merge
model conflicts and inferred semantics from a modified
Point Transformer architecture [55]. The output is added
to a 3D building model face using a projection, and re-
spective window and door openings are 3D-modeled by 3D
bounding box fitting of pre-defined models. The method,
however, is limited in reconstructing windows with par-
tially closed blinds owing to simplified probabilities to bi-
nary masks comprising only high-probability conflicts and
semantics. Additionally, the visibility analysis concerns un-
certainties using L1 distance, which generalizes L2 distance
measurements, rendering it less sensitive for detailed con-
flicts.

3. Methodology

Our Scan2LoD3 method comprises two interconnected
steps: semantic 3D segmentation that yields input for se-
mantic 3D reconstruction. As shown in Figure 2, we first
generate a ray-based conflicts probability map consisting of
three states (conflicted, confirmed, and unknown), analyz-
ing the visibility of the laser scanner in conjunction with 3D
building models (Sec. 3.1). However, this map is limited to
the laser field-of-view and does not provide façade-specific
semantics. To address this limitation, we additionally in-
troduce two probability maps derived from point clouds
and images: The former is generated by a modified Point
Transformer network [49, 55] (top branch), while the lat-
ter is produced using Mask-RCNN [11] (bottom branch), as
described in Sections 3.2 and 3.3, respectively. We then
fuse these three probability maps via a Bayesian network,
resulting in a target probability map that represents the oc-
currence of openings and their associated probability score
(Sec. 3.4). The opening labels yield detailed 3D opening ge-

ometries for reconstruction, which is conducted with the in-
put 3D building model and a pre-defined 3D library of open-
ings (Sec. 3.5). Finally, we assign the respective semantics
to the reconstructed parts along with the final probability
score, resulting in the CityGML-compliant LoD3 building
model [9].

3.1. Visibility analysis concerning uncertainties

We perform ray tracing on a 3D voxel grid to determine
areas that are measured by a laser scanner and analyze them
with a 3D building model (Fig. 3). The total grid size adapts
to the input data owing to the utilized octree structure with
leaves represented by 3D voxels of size vs dependent on the
relative accuracy of the scanner.

As shown in Figure 3a, the laser rays are traced from
sensor position si, using orientation vector ri, to hit point
pi = si + ri. Our approach leverages MLS trait of multi-
ple laser observations zi to decide upon the laser occupancy
states (i.e., empty, occupied, and unknown) and includes the
respective occupancy probability score. The states’ update
mechanism uses prior probability P (n), current estimate
L(n|zi), and preceding estimate L(n|z1:i−1) to calculate
and assign the final state. The mechanism is controlled by
log-odd values L(n) along with clamping thresholds lmin

and lmax [14, 49, 50]:

L(n|z1:i) = max(min(L(n|z1:i−1)+L(n|zi), lmax), lmin)
(1)

where

L(n) = log[
P (n)

1− P (n)
] (2)

As illustrated in Figure 3a, in the visibility analysis
process of laser observations, voxels encompassing pi are
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(a) Ray casting of laser observations (b) Rays analyzed with 3D model

Figure 3. Visibility analysis using laser scanning observations and 3D models on a voxel grid. The ray is traced from the sensor position
si to the hit point pi. The voxel is: empty if the ray traverses it; occupied when it contains pi; unknown if unmeasured; confirmed when
occupied voxel intersects with vector plane; and conflicted when the plane intersects with an empty voxel [49].

deemed as occupied (light-blue), those traversed by a ray
as empty (pink), and unmeasured as unknown (gray). Then,
as shown in Figure 3b, we assign further voxel states by
analyzing occupancy voxels and building model: Voxels
are confirmed (green) when occupied voxels intersect with
the building surface and are conflicted (red) when a ray tra-
verses a building surface and reflects inside a building. The
final probability estimate, however, also concerns 3D model
uncertainties.

Specifically, we address the uncertainties of global posi-
tioning accuracy of building model surfaces and of point
clouds along the ray. Let us assume that the probabil-
ity distribution of global positioning accuracy of a build-
ing surface P (A) is described by the Gaussian distribution
N (µ1, σ1), where µ1 and σ1 are the mean and standard de-
viation of the Gaussian distribution. Analogically, let us as-
sume that the probability distribution of global positioning
accuracy of a point in point cloud P (B) is described by the
Gaussian distribution N (µ2, σ2). To estimate the probabil-
ity of the confirmed Pconfirmed and conflicted Pconflicted

states of the voxel Vn, we use the joint probability distribu-
tion of two independent events P (A) and P (B):

Vn =

{
Pconfirmed(A,B) = P (A) ∗ P (B)

Pconflicted(A,B) = 1− Pconfirmed(A,B)

}
(3)

We obtain a conflicts probability map (Fig. 4) by pro-
jecting the vector-intersecting voxels to the vector plane,
where the cell spacing is consistent with the voxel grid; each
pixel receives probability values of the states conflicted,
confirmed, and unknown, accordingly.

3.2. 3D semantic segmentation on point clouds

We semantically segment 3D point clouds using the en-
hanced Point Transformer (PT) network [49, 55]. The en-
hancement involves fusing geometric features at the early

Figure 4. Exemplary conflict probability map: high probability
pixels present high conflict probability, whereas low probability
pixels show high confirmation probability.

training stage to increase 3D façade segmentation perfor-
mance [23, 49]. In this work, we consider seven geomet-
ric features: height of the points, roughness, volume den-
sity, verticality, omnivariance, planarity, and surface varia-
tion [8, 46, 49], which are calculated within an Euclidean
neighborhood search radius di. We define eight perti-
nent classes for the façade segmentation task: arch, col-
umn, molding, floor, door, window, wall, and other [49].

The final softmax layer of the modified PT network pro-
vides a per-point vector of probabilities of each class as an
output (Fig. 5). Notably, in contrast to [49], we do not dis-

Figure 5. Exemplary results of the modified network: point cloud
colors according to the probability vector of the class window.

card points based on a probability threshold but consider
each point and its class probability score for further pro-
cessing. Finally, we create the point cloud probability map
(Fig. 7) by projecting the points onto the face of a build-
ing while preserving the probabilities and following the cell
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spacing of the conflict probability map (Sec. 3.1).

3.3. 2D semantic segmentation on images

As demonstrated by Hensel et al., 2019, [12], Faster R-
CNN [32] effectively identifies approximate façade open-
ings positions. In our approach, we utilize Mask-
RCNN [11], which builds upon the concept of Faster
R-CNN and identifies probability masks within proposed
bounding boxes. This trait allows us to obtain later a more
accurate instances that are not necessarily restricted to a
rectangular shape. For the proposed façade opening detec-

Figure 6. Exemplary texture probability map: high probability
pixels stand for a high probability of opening.

tion, we focus on two classes: windows and doors. Ana-
logically to the 3D semantic segmentation stage (Sec. 3.2),
we preserve the pixel-predicted probabilities. To generate
the texture probability map (Fig. 6), we project the pixels
and their probabilities onto the building face, aligning with
the cell spacing of the other probability maps (Secs. 3.1
and 3.2).

3.4. Final segmentation with Bayesian network

To calculate the final shape, semantics, and probabil-
ity score of opening instances, the multimodal probability
maps are fused using a Bayesian network. The network
quantifies uncertainties and assigns weights based on evi-
dence when calculating the target probability map. Figure 7
shows the network architecture, including three input nodes
for each probability map, to infer the probability of open-
ing occurrence. The X and Y nodes exhibit a causal rela-
tionship, forming directed acyclic links. We utilize a condi-
tional probability table (CPT) to assign weights to combina-
tions of each node and state. The target node estimates two
mutually exclusive states: opening and non-opening. The
probability of node Y (opening space) being in the state y
(opening) is calculated using the marginalization process,
which combines the conditional probabilities of the parent
nodes’ X states x (i.e., of point cloud probability, conflicts
probability, texture probability maps) [38, 50].

The probability maps serve as pieces of evidence updat-
ing the joint probability distribution P (X,Y ) of the com-
piled network. The inference mechanism performs the
update and estimates the posterior probability distribution
(PPD), which provides the states’ probability [38, 50]. In

Figure 7. The Bayesian network architecture comprising three in-
put nodes (blue), one target node (yellow), and a conditional prob-
ability table (CPT) with the assigned combinations’ weights.

general, the network favors situations where there is a high
probability of an opening occurring if at least two pieces
of high-probability evidence co-occur; otherwise, it yields
a low opening probability. For example, a very high conflict
probability overlying high texture opening probability and
medium point cloud opening probability should yield a high
opening probability.

As an output from the Bayesian network, we extract the
high probability clusters Phigh, which have a neighbor in
any of the eight directions of the pixel. To distinguish be-
tween doors and windows, we compare overlying per-pixel
class probabilities and select the more probable pixel class.
The pixel-wise probability scores are then averaged per in-
stance and kept for the final 3D model. Since the extraction
can include noisy clusters, we employ their post-processing
to obtain final, noise-free opening shapes. To this end, we
apply morphological opening to reduce the effect of small
distortions and weak-connected shapes. We also calculate
a modified rectangularity index [3, 49], on which basis we
reject erroneously elongated shapes using upper PEup and
lower PElo percentiles of the index score.

3.5. Semantic 3D reconstruction

Since it is crucial to preserve the 3D model’s watertight-
ness and its given semantics, we use the prior building solid
as the basis for the modeling. Specifically, the openings are
cut automatically in the prior model using the constructive
solid geometry (CSG) difference operation: the bounding
boxes of found windows and doors cut the openings in the
outer boundaries of the given solid. Then, we use these
3D cuts as matching and fitting geometries for automati-
cally queried 3D models from a pre-defined library of LoD3
façade objects. To ensure the watertightness and prevent
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self-intersections, each object is aligned with the respective
face and scaled to the 3D cut shape.

We leverage the CityGML’s traits to create a hierarchical
semantic model structure [9]. Specifically, the prior solid
and its constituting faces preserve their unique identifiers
and associated semantic classes. The new unique identi-
fiers are assigned to openings, which point to the respec-
tive solid’s faces; each window and door obtain the stan-
dard Window and Door class, respectively. As it is pivotal
to preserve the final detection confidence, we also add an
attribute named confidence, keeping the final detection con-
fidence of the shape opening. Ultimately, the model’s LoD
attribute value is upgraded to LoD3.

4. Experiments
In this section, we describe experiments concerning the

proposed Scan2LoD3 method, which necessitated acquiring
existing and creating new datasets. Within the scope of this
work, we publish in the repository 2: textured LoD2 and
modeled LoD3 building models, enriched TUM-FAÇADE
point clouds, implementation, and settings.

4.1. Datasets

To showcase the performance of Scan2LoD3, we eval-
uated the method on the public datasets: TUM-MLS-2016
[56], TUM-FAÇADE [51,52] and textured CityGML build-
ing models at LoD2 [44] representing the Technical Univer-
sity of Munich main campus in Munich, Germany. Addi-
tionally, we used a proprietary MLS point cloud of the TUM
area called MF. To validate the reconstruction, segmen-
tation, and detection performance, we manually modeled
a CityGML-compliant LoD3 building model [9] based on
the combination of point clouds and LoD2 building model,
serving as ground-truth; the LoD2 building models were ad-
ditionally textured.

The TUM-MLS-2016 dataset. The point clouds in
TUM-MLS-2016 were collected via obliquely mounted two
Velodyne HDL-64E LiDAR sensors mounted on the Mo-
bile Distributed Situation Awareness (MODISSA) platform.
The entire point cloud covered an urban area with an inner
and outer yard of the campus. The inertial navigation sys-
tem was supported by the real-time kinematic (RTK) cor-
rection data of the the German satellite positioning service
(SAPOS), which ensured geo-referencing.

The TUM-FAÇADE dataset. The TUM-FAÇADE
dataset is derived from the TUM-MLS-2016 point clouds,
where the former enriches the latter in 17 façade-level se-
mantic classes. The dataset comprises 17 annotated and 12
non-annotated façades totalling 256 million façade-level la-
beled and geo-referenced points. Within the scope of this
work, we additionally annotated four of the open-access
non-annotated façades. As discussed in Section 3.2, we de-
fine seven façade classes as pertinent for the reconstruction.

Therefore, we combined 17 TUM-FAÇADE’s classes into
seven by merging: molding with decoration; drainpipe with
wall, outer ceiling surface and stairs; floor with terrain and
ground surface; other with interior and roof ; blinds with
window; whereas door remained intact.

The MF dataset. The MF point clouds were acquired at
the TUM campus and covered an approximately the same
area as the TUM-MLS-2016 dataset. The point cloud was
geo-referenced by proprietary mobile mapping platform,
supported by the German SAPOS RTK system [37].

Textured LoD2 and LoD3 semantic building models.
We acquired open data CityGML-compliant building priors
at LoD2 from the state open access portal of Bavaria, Ger-
many [44], which were created using 2D cadastre footprints
in combination with aerial observations [34]; comparable
results can be achieved with methods such as PolyFit [26].
The textures were acquired manually at an approximately
45◦ horizontal angle using a 13MP rear camera of a Xi-
aomi Redmi Note 5A smartphone and projected to the re-
spective faces: this approach simulated terrestrial acquisi-
tion of a mobile mapping unit or street view imagery where
no ortho-rectifications were applied [15]. The LoD3 build-
ing model was created manually based on a combination of
TUM-FAÇADE and textured LoD2 models. We modeled
the so-called building 23 as it has been commonly used as
a validation object for various methods [13, 40, 49, 51, 52].
The pre-defined library of openings was downloaded from
the open dataset of LoD3 building models of Ingolstadt,
Germany [35].

4.2. Implementation details

Visibility analysis. We set the size of voxels to vs = 0.1
m and initialized them with a uniform prior probability of
P = 0.5 to perform the ray casting on an efficient octree
structure [14]; we used the standard [14, 41, 49] clamping
and log-odd values. The uncertainty of building models and
point clouds was assigned considering their reported global
positioning accuracy. As such, the parameters of building
models were set to µ1 = 0 and σ1 = 3, while for the TUM-
MLS-2016 and MF point clouds were set to µ2 = 0, σ2 =
2.85 and to µ2 = 0, σ2 = 1.4, respectively.

Semantic segmentation. For the modified Point Trans-
former data pre-processing, we followed [49] and removed
redundant points within a 5 cm radius, which resulted in
10 million points; the point cloud was split into 70% train-
ing and 30% validation subsets. We chose the optimal ge-
ometric features search radius di following [7, 49]: As for
the features roughness, volume density, omnivariance, pla-
narity, and surface variation the radius was set to di = 0.8
m; whereas for verticality to di = 0.4 m. For the image
segmentation, we deployed a pre-trained Mask-RCNN on
the COCO dataset [21]. The inference was fine-tuned with
378 base images of the CMP façade database [42], where
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we selected two classes for training: door and window in-
cluding blinds. As Phigh pixels in the Bayesian network,
we deemed values higher than Phigh = 0.7. To reject
outliers, we fixed the modified rectangularity percentiles to
PEup = 95 and PElow = 5.

4.3. Results and Discussion

Detection rate. The methods of Hoegner & Gleixner,
2022, [13] and Wysocki et al., 2022 [49] were both tested
on the three façades of the building 23 at the TUM cam-
pus using the TUM-MLS-2016 data; thus we validated the
detection accuracy using the same setup and our manually
modeled LoD3 building (Tab. 1). To show the ratio of the
detection rate to the laser-covered rate, we introduced met-
rics for all existing façade openings (AO) and only laser-
measured façade openings (MO).

Our multimodal fusion enabled a higher detection rate
and still maintained a low false alarm rate. If compared
to the Hoegner & Gleixner (H&G) [13] and CC [49] meth-
ods, Scan2LoD3 achieved higher detection rate on the TUM
dataset by 10% and 6%, respectively (Tab. 1 and Fig. 8).
The MF map provided more accurate results (i.e., 91% of

H&G [40] CC [49] Scan2LoD3 Scan2LoD3
(TUM) (MF)

A B C Tot A B C Tot A B C Tot A B C Tot
AO 66 17 20 103 66 17 20 103 66 17 20 103 66 17 20 103

MO 60 17 10 87 60 17 12 87 60 17 12 89 66 12 18 96
D 60 15 4 75 60 15 6 81 60 16 11 87 65 16 16 97
TP 60 12 4 76 60 15 5 80 60 16 11 87 65 14 15 94
FP 0 3 0 3 0 0 1 1 0 0 0 0 0 0 1 3
FN 6 5 16 27 6 2 15 23 6 1 9 16 1 3 5 9
DA 91 71 20 74 91 88 25 78 91 94 55 84 98 82 75 91
FA 0 0 0 4 0 0 17 1 0 0 0 0 0 12 6 3
DM 100 71 40 87 100 88 42 90 100 94 92 98 98 117 83 98

Table 1. Detection rate for all openings (DA) and laser-measured
openings (DM) and the respective false alarm rate (FA) for façades
A, B, and C (AO = all openings, MO = laser-measured openings,
D = detections, TP = true positives, FP = false positives, FN = false
negatives).

all openings correctly detected) owing to higher point cloud
global accuracy and complete façade A coverage; also other
maps complemented the MF’s laser-observed openings, as
exemplified by façade B (Tab. 1).

Semantic segmentation. To measure the accuracy of
the segmentation, we selected the median per-instance inter-
section over union (IoU) metric for all openings of building
23 (Tab. 2 and Fig. 8). This setup enabled us the compari-
son to the introduced modified Point Transformer network
(Pt+Ft.) working only on point clouds; Mask-RCNN (M-
RCNN) using only images [11]; method using ray-casting
and binary point cloud masks (CC) [49]; our method fusing
three maps (i.e., conflicts, point clouds, images), once with

the TUM-MLS-2016 conflict map (TUM) and on the higher
accuracy conflict map of MF (MF).

Our experiments corroborate that, in contrast to the
tested methods, our proposed solution identifies even closed
openings, their full shapes, and reaches higher accuracy
(Tab. 2 and Fig. 8). This fact enabled the whole-shape re-
construction of, for example, covered by blinds windows,
which resulted in up to 20% higher IoU on the TUM-MLS-
2016 dataset (red boxes, Fig. 8). Similarly to the detection

median IoU ↑

Façade A B C Total
Openings 66 17 20 103

PT+Ft. [55] 7.3 4.6 3.7 7.3
M-RCNN [11] 63.7 47.4 38.6 58.4
CC [49] 66.5 56.4 53.2 60.6
Scan2LoD3 (TUM) 63.9 52.9 38 62.1
Scan2LoD3 (MF) 78.4 62.3 40.6 76.2

Table 2. Comparison of opening segmentation using only: 3D
point clouds (Pt+Ft.), images (M-RCNN), binary masks (CC), and
our method with TUM and MF conflict maps.

results, the accuracy of laser measurements significantly in-
fluenced the IoU results: Our method tended to overesti-
mate opening shapes on the TUM point cloud, whereas on
MF the shapes were approximately 14% more accurate. On
the other hand, Scan2LoD3 was sensitive to poor segmen-
tation results (façade C, Tab. 2).

3D reconstruction. We measured the accuracy of re-
construction by comparing our method using the TUM-
FAÇADE data to the well-established and mesh-oriented
Poisson reconstruction [18] and to the second-best-IoU per-
forming CC method (Figs. 8 and 9 and Tab. 3). To high-
light the influence of point cloud accuracy, we also added
the results for MF point clouds. As shown in Table 3 and

Method vs. GT LoD3 ↓

µ RMS WT

Poisson (TUM) [18] 0.35 0.54 ✗
CC [49] 0.31 0.34 ✓
Scan2LoD3 (TUM) 0.23 0.26 ✓
Scan2LoD3 (MF) 0.13 0.25 ✓

Table 3. Comparison of mesh-based Poisson, building-prior-
driven CC, and our proposed method using the ground-truth LoD3
model and measuring watertightness (WT).

in Figure 9, the 3D building priors provided more accurate
reconstruction results than the standard Poisson reconstruc-
tion (i.e., RMS lower by 52%); the former also achieved the
watertightness. Among the prior-driven methods, the im-
provement related to higher detection rate and IoU was no-
ticeable: Scan2LoD3 had lower mean and RMS scores by
up to 26% and 24%, respectively, compared to CC (Tab. 3).
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Figure 8. Comparison of different reconstruction results for the façade A: Our method reconstructs complete window shapes despite the
presence of window blinds (red boxes).

Figure 9. Comparison of the Poisson to our reconstruction approach: Deviations are projected onto the ground-truth LoD3 model.

It is worth noting that the eaves were incorrectly recon-
structed in any of the presented methods.

5. Conclusions

In this paper, we introduce Scan2LoD3, a multimodal
probabilistic fusion method for the high-detail semantic 3D
building reconstruction. Our work has led us to the conclu-
sion that the multimodal probabilistic fusion can maximize
the advantages of ray-casting- and learning-based methods
for the LoD3 reconstruction. The findings of this study indi-
cate that while joining images, point clouds, and model con-
flicts, a Bayesian network reveals a very high-level detec-
tion rate (i.e., 91%); and robustness as the false alarm rate
is negligible (i.e., 3%). Crucially, our method segments and
reconstructs complete opening shapes, even when closed by
blinds, which can provide up to around 76% shape accu-
racy. By such detection and segmentation, we minimize
the final reconstruction deviations by 54% and 24% when
compared to mesh-based and other prior-driven methods,
respectively. Such method’s characteristics are of great im-
portance for applications necessitating object-oriented se-
mantics, high robustness, and completeness, such as auto-
mated driving testing [36] or façade solar potential anal-
ysis [47], among others [28, 48]. Furthermore, an upshot

of keeping reconstruction confidence score can be pivotal
for confidence-based navigation algorithms, such as in au-
tonomous cars [1,48,57]. It is worth noting that our method
focuses on upgrading facades to LoD3; refining roofs to
LoD3 would require additional, airborne data.

As the late fusion results so far have been very encourag-
ing and do not require any training data, we deem Bayesian
networks suitable for the task. Future work will concen-
trate on comparing the Bayesian network’s generalization
capabilities to deep neural networks, which, however, re-
quire extensive training data. Moreover, we expect the
method’s performance to be comparable on similar archi-
tecture styles; considering selected classes and small sam-
ple size. To tackle these issues, we plan to extend our open
library of textured LoD2 and LoD3 models to foster the
methods’ development.
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[9] Gerhard Gröger, Thomas H Kolbe, Claus Nagel, and Karl-
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