
Human Vision Based 3D Point Cloud Semantic Segmentation of Large-Scale

Outdoor Scenes

Sunghwan Yoo, Yeonjeong Jeong, Maryam Jameela, Gunho Sohn

Department of Earth and Space Science and Engineering, York University

Toronto, ON M3J 1P3, Canada

(jacobyoo, yjjeong, maryumja, gsohn)@yorku.ca

Abstract

This paper proposes EyeNet, a novel semantic segmen-

tation network for point clouds that addresses the critical

yet often overlooked parameter of coverage area size. In-

spired by human peripheral vision, EyeNet overcomes the

limitations of conventional networks by introducing a sim-

ple but efficient multi-scale input and a parallel processing

network with connection blocks between parallel streams.

The proposed approach effectively addresses the challenges

of dense point clouds, as demonstrated by our ablation stud-

ies and state-of-the-art performance on Large-Scale Out-

door datasets.

1. Introduction

Recently, there has been growing interest in developing

digital twins of the three-dimensional world, driven by their

various applications. With advancements in LiDAR devices

and survey techniques, point cloud datasets have become

more accurate, dense, and spatially extensive, both on the

ground level [3, 14, 29, 30, 34] and in the airborne level [10,

16, 28, 35].

However, the functional coverage area of an input batch

is critical for effective feature learning in semantic seg-

mentation networks, especially as data sets become denser

[16, 35]. Traditional approaches to semantic segmentation,

such as increasing the number of input points [17, 33, 40]

and downsampling the point cloud [25, 26] to extract fea-

tures from high-density outdoor scenes, have limitations.

For instance, increasing the number of input points is re-

stricted by the memory capacity of GPUs, while further

downsampling can result in information loss.

In this work, we propose a 3D semantic segmentation

network called EyeNet, inspired by the human visual sys-

tem, peripheral vision. The network takes input from multi-

scale regions, including the central and peripheral regions.

The high-density central region is advantageous for extract-
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Figure 1. The design of EyeNet is based on the concept of the

human vision system. We drew inspiration from the peripheral

vision system, which has a low density of receptors but covers a

larger region than the central vision. As a result, we added the

peripheral region around the central region to achieve a similar

effect in our network.

ing precise geometric features, while the low-density pe-

ripheral region with a larger coverage area is beneficial for

extracting features from objects that require such assets. To

process these regions, the study uses a parallel feature pro-

cessing design with connection layers for exchanging fea-

tures between parallel streams. The proposed network out-

performs state-of-the-art semantic segmentation methods

on the SensatUrban benchmark [16] and Toronto3D [30].

The design philosophy of the EyeNet is presented in Fig-

ure 1.

Our key contributions are:

• Our approach introduces a memory-efficient human

vision based input that draws inspiration from human

vision, in order to address the limitations of traditional

semantic segmentation networks.

• To facilitate feature learning using the human vision

based input, we proposed an efficient parallel process-

ing architecture.

• To ensure that complex features from both the central

and peripheral regions are preserved and effectively
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merged for improved learning, we proposed an effec-

tive deep learning connection layer.

2. Related Work

Semantic segmentation of outdoor 3D point clouds is a

challenging task that has received increasing attention re-

cently. Numerous deep learning-based approaches have

been proposed to address this problem. [13, 17, 25, 26, 33,

36, 40]

Deep learning-based methods have shown promising re-

sults in semantic segmentation of outdoor 3D point clouds.

However, achieving optimal coverage area of the deep

learning network is one of crucial factors. Two commonly

used methods to achieve an effective coverage area in out-

door 3D point clouds are downsampling the input point

cloud and increasing the number of input points.

2.1. Downsampling Input Point Cloud

One of the most effective ways to manage computational

costs and ensure sufficient coverage area of the input in

outdoor 3D point cloud semantic segmentation is down-

sampling. Early networks, such as PointNet [25, 26] often

utilized the constant-volume downsampling method, which

collects points in a fixed volume and downsamples them to

a fixed number of points. More recent networks such as

KPConv [17, 33] adopted the grid sampling method where

one point per voxel in a 3D grid was kept. Although this

approach is computationally efficient, it disregards differ-

ences in point distribution within the point cloud, resulting

in a loss of geometric information and a decrease in perfor-

mance [16].

2.2. Increasing the Number of Inputs

Recently, the trend has shifted away from constant-

volume downsampling towards increasing the number of in-

put points through grid sampling [6, 17, 33, 40]. RandLA

[17] is a network that processes large-scale point clouds

by utilizing random sampling based on k-nearest neighbors

(KNN), thus avoiding the loss of geometric information.

However, a critical limitation of this method is that the abil-

ity to increase the number of input points can be restricted

by the memory capacity of GPUs.

2.3. Peripheral Vision in Computer Vision

The integration of peripheral vision into deep learning

has been a widely explored area in 2D computer vision re-

search. It is primarily investigated in 2D object detection

and 2D semantic segmentation [7, 9, 12, 24]. Also, recent

studies have explored the combination of peripheral vision

and transformer networks [23], leading to the development

of the Peripheral Vision Transformer network. However,

the application of peripheral vision systems in 3D computer

vision tasks has not been extensively explored.

3. Methodology

3.1. Overview

Real-world 3D scene’s point clouds have tremendous

points and varying densities, requiring sampling methods

like grid subsampling which scale is determined by voxel

size [32]. Then, unsampled points are predicted based on

the nearest sampled point’s prediction usually decided by

voting because random cropping is used due to GPU mem-

ory limit. When we crop the input point cloud randomly

for training and inference, the optimal coverage size of the

input point cloud is not well-defined.

To address this issue, we introduce a novel approach

in EyeNet that utilizes both central and peripheral regions,

allowing for a parallel processing network that facilitates

communication between these regions to retain important

features. By incorporating the human vision based input in

this manner, we can maximize the benefits of these inputs.

A summary of the EyeNet architecture is shown in Figure 2.

Our Eyenet can basically be applied to most existing point-

based networks [17, 33, 40] easily. In this paper, we select

RandLA as our baseline. Therefore, any process not de-

scribed in this section followed the same procedures used

in the baseline RandLA implementation [1].

As depicted in Figure 2, we constructed the network by

stacking two streams of RandLA-Net’s encoder and decoder

in parallel. To extract fundamental features in each encod-

ing layer, we utilized the k-NN based RandLA’s local fea-

ture aggregation (LFA) module. The LFA module outputs

from both streams were randomly downsampled and fused

through the connection layer. After the five encoding layers,

we included five decoding layers with a bilinear interpola-

tion operation. Skip connections were utilized to concate-

nate features from encoding and decoding layers to mini-

mize information loss due to random downsampling. Fi-

nally, the outputs from both streams were merged using the

Feature Merging Block and passed through fully connected

layers (fc) to assign predicted labels to each point.

3.2. Human Vision Based Input

Due to the extensive number of points present in urban

scale large outdoor point cloud, it is not feasible to input

all points into the network simultaneously. Thus, for both

training and inference purposes, it is necessary to crop the

input region in the entire scene. To do this, our approach,

called Human Vision Based Input, is centred around two

key factors: the coverage areas and point densities of the

central and peripheral regions. Let N be the number of in-

put points for each feature processing stream. We use the

K-nearest neighbours (KNN) algorithm to gather N points

from the centroid C0, forming the input points for the cen-

tral stream Pc = {p1c · · · p
n
c · · · p

N
c }. Here, we define R as

the distance between C0 and the farthest point pfc in Pc, and
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Figure 2: Overview of MRNet

RandLA-Modules EyeNet-Modules

Figure 2. The figure displays the architecture of EyeNet, which utilizes a parallel processing approach to handle the human vision based

input. The network also includes feature connection and feature merging blocks to facilitate information exchange between the central and

peripheral streams. N and d are used to represent the number of points and feature dimension, respectively. The central and peripheral

regions share N/4 points as inputs, resulting in a total of 7N/4 input points. MLP represents the multilayer perceptron.

we set the radius of the central region to R and the periph-

eral region to 2R.

We randomly sample N/4 points from the central region,

and we refer to these points as the messenger points, which

are represented as Pm = {p1m · · · pnm · · · p
N/4
m } ⊆ Pc.

Moreover, we randomly select an additional 3N/4 points

from the region between R and 2R, and we define them as

Pph−m = {p1ph · · · p
n
ph · · · p

3N/4
ph }. We choose the number

3N/4 to ensure uniform point density with Pm.

Finally, the combination of the point clouds Pph−m

and Pm becomes the input point cloud for the peripheral

stream, which we denote as Pph = Pph−m + Pm =

{p1ph · · · p
n
ph · · · p

3N/4
ph , p1m · · · pnm · · · p

N/4
m }. Therefore, the

messenger points are an intersection between the points in

the central and peripheral regions. An overview of the op-

eration is shown in Figure 4.

Our proposed human vision based technique for collect-

ing network input points allows us to cover the same in-

put region for a deep neural network using substantially

fewer points than the conventional fixed-number-based ap-

proaches like RandLA. In all experiments, we used nearly

60% fewer points than the baseline. The efficient sampling

approach enabled our EyeNet to utilize GPU memory more

effectively. During inference, our EyeNet was capable of

employing four times more batches than the baseline due to

this approach.

3.3. Parallel Processing and Receptive Field

The network comprises two streams, namely the central

and peripheral streams. The central and peripheral streams

process point clouds Pc and Pph, respectively, with differ-

ent densities. It makes the receptive field of the peripheral

region larger than that of the central region when we use the

KNN-based module for feature aggregation with the same

number of K for both regions. In this concept, a point can

learn its feature from a variable size of the receptive field -

small when in the central region, large when in the periph-

eral region, or both when selected as a messenger point due

to the use of random cropping in large-scale 3D point cloud

training and inferencing.

3.4. Connection Block

As we utilize a parallel processing network, establishing

connections between two streams is crucial. We were mo-

tivated by previous works such as [18, 39] and developed

the connection block that exchanges information between

streams through messenger points. Since the feature in-

formation from the central and peripheral streams vary, we

adopted the two-way self-attentive pooling block from [17]

along with the channel enhancement block from [6] for bet-

ter information exchange.

Feature Preparation: To start, we consider the fea-

tures of points in the output of the central and pe-

ripheral streams, at a given layer l, denoted as F l
c =

{f l 1
c · · · f l n

c · · · f l N l

c } and F l
ph = {f l 1

ph · · · f
l n
ph · · · f l N l

ph },

respectively. From these features, we extract the features

of messenger points F l
m.c = {f l 1

m.c · · · f
l n
m.c · · · f

l N l/4
m.c } ⊆

F l
c and F l

m.ph = {f l 1
m.ph · · · f

l n
m.ph · · · f

l N l/4
m.ph } ⊆ F l

ph.

The remaining points’ features are referred to as F l
c−m =
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Figure 3. The proposed connection block. The top panel shows the overview of the connection block that is developed to facilitate

information exchange between the central and peripheral streams. The bottom panel shows the self-attentive pooling block that weighs the

most important features and the channel enhancement block that further enhances the features from the attentive pooling block. fc: the

fully connected layer.
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𝒑𝒄𝒇
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Figure 4. The overview of our human vision based input. Points in

the central region are generated based on number-based sampling,

and points in the peripheral region are generated based on volume-

based down sampling.

{f l 1
c−m · · · f l n

c−m · · · f
l 3N l/4
c−m } ⊆ F l

c and F l
ph−m =

{f l 1
ph−m · · · f l n

ph−m · · · f
l 3N l/4
ph−m } ⊆ F l

ph. Afterward, we

concatenate the channel-wise features of F l
m.c and F l

m.ph

into F l
mand process the resulting output through shared

MLP function m() three times. The shared MLPs’ oper-

ations are denoted as follows:

f l i = m3

(

m2

(

m1

(

f l i
m ,W1

)

,W2

)

,W3

)

(1)

where F l = {f l 1 · · · f l n · · · f l N l/4} and Ws are the learn-

able weights of shared MLPs.

Attentive Pooling: Inspired by self-attentive pooling block

in RandLA [17], we used the powerful attention mechanism

to exchange and fuse important features automatically, and

it consists of the following steps.

We utilized a shared MLP followed by softmax to learn

a unique attention score for each feature from F l. It is for-

mally defined as follows:

f l i
ap = L

(

ma

(

f l i,Wa

))

(2)

where W is the learnable weights of shared MLP and L is

the Relu activation function.

sl iap = S
(

f l i
ap

)

(3)

where S is softmax function. We can consider the atten-

tion scores that have been learned as a softmax function that

automatically picks out significant characteristics. In tech-

nical terms, these traits are combined through a weighted

summation process, as described below:

f l i′ =
∑

(

f l i
ap · s

l i
ap

)

(4)

Channel Enhancement: In addition, we improved the fea-

tures by creating more prominent global features while min-

imizing the loss of information during the self-attention

encoding process. This method was initially presented in
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Figure 5. The overview of our feature merging block. First, the features are processed, and shared MLPs are applied to smooth the feature

spaces. Then, the point-wise concatenation of the features occurs, followed by the squeeze and excitation that weighs the most important

features for predictions.

RandLA++ [6] and involved the following procedures.

To start, intermediate feature sets F l, F l′, and F l
ap are

concatenated into F l
cat. Later, the concatenated features are

operated by shared MLP function mce(), followed by ReLu

L.

f l i
ce = L

(

mce

(

f l i
cat,Wce

))

(5)

Subsequently, the output feature f l i
ce is improved channel-

wise by attention pooling using Eq. (6) and Eq. (7) into

f l i
ceat. Ultimately, a fully connected layer yields the com-

bined feature ˙f l i. It is formally defined as follows:

sl ice = S
(

f l i
ce

)

(6)

f l i
ceat =

∑

(

f l i
ce · s

l i
ce

)

(7)

˙f l i
ce = σ

(

fc
(

f l i
ceat,Wfc

))

(8)

where σ is a sigmoid function.

Finally, element-wise multiplication between F l and ˙F l
ce

is applied, which is then added to F l to generate channel

enchanced feature Ḟ l.

Lastly, the outputs of both branches, ˙f l i
c and ˙f l i

ph respec-

tively, are added with the corresponding output of m1 oper-

ation of the concatenated messenger features. Then point-

wise concatenation is performed with the corresponding re-

maining points’ features. It is defined as follows:
˙f l i
m.c =

˙f l i
c +m1

(

f l i
m ,W1

)

(9)

˙f l i
m.ph = ˙f l i

ph +m1

(

f l i
m ,W1

)

(10)

In summary, we begin by preparing features through our

feature preparation process. These features are then divided

into two streams of attention pooling and channel enhanc-

ing blocks. This is done to allow for the effective exchange

and merging of features needed for both the central and pe-

ripheral streams. Please see the diagram of our connection

block in Figure 3 for further illustration.

3.5. Feature Merging

The output features F̈c and F̈ph from the central and pe-

ripheral streams, respecetively, have to be merged back to

match the input size of the human vision based input. We

utilize squeeze and excitation method [15] to perform fea-

ture merging.

First, we extract ¨Fm.c and ¨Fm.ph, features of messen-

ger points, from F̈c and F̈ph respectively, resulting in cor-

responding remained features ¨Fc−m and ¨Fph−m. Next,

we perform channel-wise concatenation between ¨Fm.c and
¨Fm.ph to obtain F̈m. We then use shared MLPs to smooth

the feature spaces of F̈m, ¨Fc−m, and ¨Fph−m, followed

by point-wise concatenation. Subsequently, we apply a

squeeze and excitation module to enhance the salient fea-

tures. The feature merging operation is illustrated in Fig-

ure 5.

4. Experiments

4.1. Implementation details

We implemented EyeNet in Tensorflow, employing the

grid sampling strategy as input pre-processing, followed by

KPConv [33] and RandLA [17]. The Adam optimizer is

employed, with an initial learning rate of 0.005, which de-

cays by 5% after each epoch. For each layer, the number of

nearest points K is set to [16, 21, 21, 21, 16]. We sample

a fixed number of 28672 points from each point cloud as

input, and use a batch size of 16. Our choice of loss func-

tion is lovasz-softmax loss [4]. We followed the same voxel

size and input features with ones used in RandLA [17] ex-

cept YUTO dataset. All experiments are performed on an
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PointNet [25] 80.78 23.71 67.96 89.52 80.05 0.00 0.00 3.95 0.00 31.55 0.00 35.14 0.00 0.00 0.00

PointNet++ [26] 84.30 32.92 72.46 94.24 84.77 2.72 2.09 25.79 0.00 31.54 11.42 38.84 7.12 0.00 56.93

TangentConv [31] 76.97 33.30 71.54 91.38 75.90 35.22 0.00 45.34 0.00 26.69 19.24 67.58 0.01 0.00 0.00

SPGraph [19] 85.27 37.29 69.93 94.55 88.87 32.83 12.58 15.77 15.48 30.63 22.96 56.42 0.54 0.00 44.24

SparseConv [13] 88.66 42.66 74.10 97.90 94.20 63.30 7.50 24.20 0.00 30.10 34.00 74.40 0.00 0.00 54.80

KPConv [33] 93.20 57.58 87.10 98.31 95.33 74.40 28.69 41.38 0.00 55.99 54.43 85.67 40.39 0.00 86.30

RandLA [17] 89.78 52.69 80.11 98.07 91.58 48.88 40.75 51.62 0.00 56.67 33.23 80.14 32.63 0.00 71.31

RandLA++ [6] 91.90 57.10 84.10 98.20 94.80 58.60 59.80 53.40 0.00 54.60 42.60 78.20 38.20 0.00 69.70

EyeNet(ours) 93.70 62.30 86.60 98.60 96.20 65.80 59.20 64.80 17.90 64.80 49.80 83.10 46.20 11.10 65.40

Table 1. Sensat Urban Performance Comparison. Performances of other works except RandLA++ are taken from the SensatUrban paper

[16] RandLA++ performance is taken from its paper. [6]

Method OA(%) mIoU(%) road road mark. natural building utility line pole car fence

PointNet++ [26] 92.56 59.47 92.90 0.00 86.13 82.15 60.96 62.81 76.41 14.43

DGCNN [37] 94.24 61.79 93.88 0.00 91.25 80.39 62.40 62.32 88.26 15.81

KPConv [33] 95.39 69.11 94.62 0.06 96.07 91.51 87.68 81.56 85.66 15.72

MS-PCNN [22] 90.03 65.89 93.84 3.83 93.46 82.59 67.80 71.95 91.12 22.50

TGNet [20] 94.08 61.34 93.54 0.00 90.83 81.57 65.26 62.98 88.73 7.85

MS-TGNet [30] 95.71 70.50 94.41 17.19 95.72 88.83 76.01 73.97 94.24 23.64

RandLA [17] 92.95 77.71 94.61 42.62 96.89 93.01 86.51 78.07 92.85 37.12

Rim et al. [27] 72.55 66.87 92.74 14.75 88.66 93.52 81.03 67.71 39.65 56.90

MappingConvSeg [38] 93.17 77.57 95.02 39.27 96.77 93.32 86.37 79.11 89.81 40.89

EyeNet(ours) 94.63 81.13 96.98 65.02 97.83 93.51 86.77 84.86 94.02 30.01

Table 2. Toronto3D Performance Comparison. RGB features are not used to obtain results. Performances of other works are taken from

the Toronto3D paper [30]

NVIDIA Quadro RTX 6000 GPU.

4.2. Semantic Segmentation on Benchmark datasets

To evaluate the performance of EyeNet, we conducted

experiments on the semantic segmentation task. We se-

lected a range of outdoor benchmark datasets, including

SensatUrban [16], Toronto3D [30], DALES [35], as well

as our own YUTO dataset.

Sensat Urban: The SensatUrban [16] dataset for the se-

mantic segmentation task consists of large areas of three

UK cities with a coverage area of 7.64 km2. 2847 mil-

lion points were collected using a UAV Photogrammetry

and have an average point density of 372 points per square

meter. Each point in this dataset is assigned a semantic la-

bel of 13 classes (ground, vegetation, building, etc.). The

point clouds are divided into 34 tiles, and we follow their

work’s same train, validation, and test split. For evaluation,

we upload the test labels on the online test server [2] and ac-

quire mean class-wise intersection over union (mIoU), over-

all point-wise accuracy (OA), and per class IoU. We set the

voxel size of the grid sampling to 0.2m, and use the pro-

vided 3D coordinates and color information for training and

testing our network.

The performance comparison results for SensatUrban

are presented in Table 1. EyeNet has set a new state-of-

the-art for both OA and mIoU metrics, surpassing all exist-

ing methods by a considerable margin. Remarkably, Eye-

Net has shown the best performance in seven out of thir-

teen semantic classes. The SensatUrban dataset is noto-

rious for having severe class imbalance, and none of the

previous approaches were able to predict the rail and bike

classes, except for SPGraph [19]. In contrast, EyeNet suc-

cessfully predicted these classes without any significant

data engineering efforts. Furthermore, recent works such

as RandLA [17], KPConv [33], Point Transformers [40],

Omni-Supervised [11], FG-Net [21], and SCF-Net [8] have

increased the number of input point clouds up to 100K for

expanding the input coverage area. Despite using an input

size of approximately 28K, which is far smaller than other

approaches, EyeNet demonstrated superior performance in

both small and large object classes. An illustration of seg-

mented scenes on Sensat Urban is shown in Fig. 6.

Toronto3D: Toronto3D [30] is a publicly available dataset

that contains 3D point clouds and associated images of ur-

ban environments in Toronto, Canada. The dataset covers

a total length of 1 kilometer and was collected using a mo-

bile lidar scanner. The dataset contains 78.3 million points

with an average point density of 391 points per square me-
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Method OA(%) mIoU(%) ground vegatation car truck power lines poles fences building

KPConv [33] 97.8 81.1 97.1 96.6 85.3 41.9 75.0 95.5 63.5 94.1

RandLA [17] 97.09 79.27 96.99 93.16 82.22 38.6 94.96 58.01 73.56 96.64

PointNet++ [26] 95.7 68.3 94.1 89.1 75.4 30.3 40.0 79.9 46.2 91.2

ConvPoint [5] 97.2 67.4 96.9 96.3 75.5 21.7 40.3 86.7 29.6 91.9

SPGraph [19] 95.5 60.6 94.7 93.4 62.9 18.7 28.5 65.2 33.6 87.9

PointCNN [30] 97.2 58.4 97.5 95.7 40.6 4.8 57.6 26.7 52.6 91.7

ShellNet [17] 96.4 57.4 96.0 95.4 32.2 39.6 20.0 27.4 60.0 88.4

EyeNet(ours) 97.18 79.6 97.15 93.37 83.53 41.3 94.65 57.38 72.54 96.87

Table 3. DALES Performance Comparison. RandLA results are directly obtained from the author of RandLA. All other results are taken

from DALES paper. [35]

Method mIoU(%) ground vegatation building water car truck traffic road sidewalk parking

RandLA [17] 58.37 80.61 94.44 95.39 3.34 74.59 13.87 78.10 23.43 61.56

KPConv [33] 56.14 86.94 96.25 94.01 0.00 84.02 0.00 79.93 3.26 60.83

EyeNet(ours) 63.44 86.26 95.94 96.78 13.61 83.02 14.26 84.65 31.08 65.34

Table 4. YUTO Performance Comparison. Results of RandLA and KPConv are taken from internal experiments.

Input RandLA-Net EyeNet Ground Truth

Figure 6. Visualization comparison of SensatUrban between

RandLA and EyeNet. From left to right: the input point cloud with

RGB colours, semantic segmentation results of RandLA, seman-

tic segmentation results of EyeNet, the ground truth of the input

pointcloud

ter. Each point in the dataset is labelled with one of 8 se-

mantic classes such as road, road markings, or natural ob-

jects. The dataset is divided into four different sections, and

the L002 section was selected as the test split for this study.

The evaluation was done by calculating mIoU, OA, and per

class IoU for the test split. A voxel size of 0.06 meters was

used for grid sampling, and the provided 3D coordinates

and intensity information were used for training and testing

the network.

The results of the performance comparison for

Toronto3D are presented in Table 2. The EyeNet model

achieved a new state-of-the-art performance for mIoU met-

ric, surpassing all existing methods by a considerable mar-

gin. Notably, EyeNet demonstrated the best performance in

four out of eight semantic classes. The Toronto3D dataset

includes a unique class called road marking, which is chal-

lenging to classify without RGB features, and previous ap-

proaches have struggled to accurately classify it. However,

EyeNet successfully predicted road markings, highlighting

its superior performance.

DALES: The Dayton Annotated LiDAR Earth Scan

(DALES) [35] dataset is a publicly available dataset of Li-

DAR point clouds covering an area of approximately 10

square kilometers in Dayton, Ohio, USA and was collected

using an Aerial Laser Scanner (ALS). The dataset includes

over 505 million points and has an average point density of

25.5 points per square meter. Each point in the dataset is

assigned a semantic label from one of 8 classes, including

ground, building, vegetation, water, and others. The dataset

is divided into 40 sections and split into training, validation,

and test sets for semantic segmentation tasks. The evalua-

tion was done by calculating mIoU, OA, and per class IoU

for the test split. A voxel size of 0.32 meters was used for

grid sampling, and the provided 3D coordinates was used

for training and testing the network.

The performance comparison results for DALES are

presented in Table 3. The EyeNet model achieved the

second-best performance for mIoU metrics. However, since

DALES is the most sparse dataset among the tested bench-

marks, the benefits of using the human vision based input

in EyeNet are minimal.
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YUTO: The York University Toronto Ontario (YUTO)

dataset is a privately owned dataset of LiDAR point clouds

covering an area of approximately 9.5 square kilometers in

the York University campus. The dataset contains 738 mil-

lion points collected using an ALS and has an average point

density of 78 points per square meter. Each point in the

dataset is assigned a semantic label from one of nine classes,

including ground, traffic road, sidewalk, water, and others.

The dataset is divided into 41 tiles, with 11 tiles used for

evaluation. The evaluation was performed by calculating

mIoU and per-class IoU for the test split. The performance

of two popular semantic segmentation networks, RandLA

[17] and KPConv [33], was also evaluated for comparison.

A voxel size of 0.20 meters was used for grid sampling,

and the provided 3D coordinates and intensity were used

for training and testing the network.

The results of the performance comparison for YUTO

are presented in Table 4. The EyeNet model outperformed

the two tested networks by a significant margin in terms

of the mIoU metric. It is noteworthy that EyeNet exhib-

ited the highest performance in six out of the nine seman-

tic categories. The YUTO dataset encompasses classes re-

lated to the terrain, including traffic road, ground, side-

walk, parking, and water, which is a distinctive feature of

ALS datasets. It poses a challenge to classify these classes

without the RGB channel accurately. Nevertheless, Eye-

Net achieved superior results in recognizing these terrain-

related classes.

4.3. Ablation Study

An ablation study was conducted to evaluate the effec-

tiveness of the introduced features in the Sensat Urban test

set through an online evaluation server.

In order to demonstrate the efficacy of our parallel pro-

cessing network architecture, we constructed and com-

pared three different types of network structures: Base-

line, Sequential, and Parallel. The Baseline structure uti-

lized the pre-existing RandLA-Net architecture. The Se-

quential structure consisted of two RandLA-Net structures

connected sequentially. The Sequential structure was con-

structed to demonstrate that the performance gain from Eye-

Net was not solely due to increased parameters. The Paral-

lel structure stacked two RandLA-Net structures in parallel

like Fig. 2.

The study compared the performance of four network

structures, including the baseline network RandLA, sequen-

tially stacked RandLAs, EyeNet with only Feature Merg-

ing Block, and EyeNet. The results, presented in Ta-

ble 5, indicated that the sequential structure resulted in a

6.7% decrease in mIoU, implying that increasing parame-

ter size alone did not improve performance. In contrast,

our EyeNet with only Feature Merging Block yielded im-

provements of 3.2% and 8.8% in OA and mIoU, respec-

Peri. Input Structure CB OA mIoU

✗ Baseline ✗ 89.8 52.7

✗ Sequential ✗ 89.4 46.0

✓ Parallel ✗ 93.0 61.5

✓ Parallel ✓ 93.7 62.3

Table 5. Ablation results of the peripheral input (Peri. Input),

network structure, and connection block (CB).

tively, over the baseline. These results suggest that our hu-

man vision-inspired approach contributed to performance

enhancement. Additionally, the connection block led to fur-

ther improvements of 0.7% and 0.8% in OA and mIoU, re-

spectively, indicating that the connection between the two

streams improved the network’s feature understanding and

led to a performance boost.

5. Conclusion

Determining an optimal coverage area for the input batch

is crucial for effective feature learning in 3D point cloud

semantic segmentation, but it is often neglected. To ad-

dress this issue, we have developed a human vision based

input processing semantic segmentation network architec-

ture, which overcomes the limitations of traditional se-

mantic segmentation networks. We have also introduced

a merging block, connection block and parallel stack de-

sign for effective feature learning. As a result, our ap-

proach has achieved state-of-the-art performance on large

scale outdoor benchmark datasets such as SensatUrban and

Toronto3D. However, it is possible that the performance of

our network may be limited by the baseline network. There-

fore, in future work, we plan to investigate the application

of our method to different network architectures since our

method is model-agnostic.
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