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Abstract

Existing work on scene flow estimation focuses on au-
tonomous driving and mobile robotics, while automated so-
lutions are lacking for motion in nature, such as that ex-
hibited by debris flows. We propose DEFLOW, a model for
3D motion estimation of debris flows, together with a newly
captured dataset. We adopt a novel multi-level sensor fu-
sion architecture and self-supervision to incorporate the in-
ductive biases of the scene. We further adopt a multi-frame
temporal processing module to enable flow speed estima-
tion over time. Our model achieves state-of-the-art optical
flow and depth estimation on our dataset, and fully auto-
mates the motion estimation for debris flows. Source code
and dataset are available at project page.

1. Introduction

Cameras and LiDAR sensors are complementary for 3D
scene understanding, consequently many algorithms de-
signed for autonomous driving and mobile robotics use
these two modalities. However, little attention has been
paid to natural scenes. There is potential to use these sen-
sors to analyse natural processes, and debris flows are par-
ticularly amenable to this [1, 16, 22]. Debris flows are ex-
tremely rapid flows of soil, water and woody debris that can
reach velocities in excess of 5 m/s, and travel for multiple
kilometers [18]. They are a considerable hazard in moun-
tainous regions and cause costly disasters every year [34].
Reducing the impact of debris-flows requires a better under-
standing of the fundamental mechanisms which drive mo-
tion, and progress has been previously limited by a lack of
high temporal and spatial resolution observations of debris-
flow velocity. In the present work, we analyse a debris-flow
dataset captured with a camera-LiDAR setup (see Fig. 1)
and estimate dense surface velocity fields.

Two broad categories of methods can be considered
when analyzing natural debris-flows using camera and Li-
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Figure 1. Debris flow estimation from images and sparse Li-
DAR points. Our self-supervised method automates the estima-
tion of dense scene depth and flow. Additionally, a multi-frame
temporal processing module recovers flow velocity profiles over
time.

DAR sensors: flow estimation techniques or 3D scene flow.
Recent work on fluid flow estimation [26, 27, 55] has fo-
cused on embedding physical constraints into Particle Im-
age Velocity (PIV) solutions. The fluid datasets used are
often either generated by numerical simulations, or col-
lected under well-constrained laboratory conditions, which
makes it difficult to generalize to real-world scenarios. 3D
scene flow estimation relies heavily on the rigid body mo-
tion prior [5, 15, 17, 44], and point-wise correspondence
[15, 17, 28]. These methods are not well-suited to debris
flows, as the bulk motion is non-rigid, although locally rigid
motion occurs when boulders and woody debris are present
on the flow surface [2]. From the above observations, we
find that existing methods are hampered by (i) inapplicable
physical constraints (ii) over-reliance on rigid motion priors
and (iii) an inability to generalize to our hard-to-annotate
debris-flow dataset.

To overcome the above shortcomings, we propose a
method that is tailored to debris-flow monitoring. With no
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direct supervision from manual annotation, we introduce a
self-supervised optical flow branch [19, 39] into our net-
work, which exploits the informative and easily trackable
pixel features in optical images. Since optical flow estima-
tions only provide 2D pixel-wise motion, we incorporate
a depth estimation branch to densify sparse depth obser-
vations from LiDAR and lift the optical flow to 3D scene
flow. In contrast to [15,17], we take into account the unique
properties of debris flows and of the monitoring system,
namely (i) the absence of ego-motion and (ii) the presence
of a continuous fluid surface without motion-induced oc-
clusion. Through experimentation, we show that the opti-
cal flow task and the depth estimation task mutually rein-
force each other and that our method’s performance is fur-
ther improved by the inclusion of suitable inductive biases
and warping-based multi-frame temporal smoothing. Addi-
tionally, our method’s lightweight nature makes it easy to
train from scratch to analyze new debris flow events. We
apply our method to derive dense flow velocity fields of a
debris-flow event, at the highest spatial resolution obtained
so far for a natural debris flow. Finally, we release our code
and debris-flow dataset to the community, as a benchmark
for understanding motion in nature.

2. Related work

Scene flow from RGB images. Recent studies have ex-
plored a variety of methods to estimate depth and motion
from RGB images. Brickwedde et al. [6] propose a prob-
abilistic depth estimation network and compute the motion
of the scene by combining multi-view geometry and single-
view depth information. Yang et al. [53] introduce optical
expansion and propose a network that learns to expand opti-
cal flow and estimate motion in depth. Hur et al. [19] jointly
estimate depth and 3D scene flow from monocular images
by adopting self-supervised learning.

However, [6, 43] heavily rely on a rigid motion prior
for moving vehicles, which does not apply to debris flows.
[19,53] suffer from overfitting to specific camera intrinsics.
Their networks are trained on KITTI [11] with known cam-
era intrinsics, but encounter problems when applied to other
datasets, e.g., nuScenes [8] or our debris-flow data.

Camera-LiDAR fusion. An intuitive way to disambiguate
depth scaling is to incorporate direct 3D measurements into
image-based pipelines. Many works have thus focused on
sensor fusion for scene flow estimation. LiDAR-Flow [4]
fuses the LiDAR with a stereo camera to boost the cost com-
putation in the matching process for both stereo and optical
flow. Subsequent work like DeepLiDARFlow [36] encap-
sulates the solution into an end-to-end deep neural network
that regresses scene flow from consecutive LiDAR scans
and monocular images. CamLiFlow [29] mitigates the sen-

sor fusion problem with a multi-stage fusion framework and
estimates point-wise motion for sparse LiDAR point clouds.

Multi-frame flow processing. Two-frame methods [6, 19,
29,36,53] do not account for the temporal continuity across
multiple consecutive frames. In contrast, [42] enforces con-
sistency for both spatial and temporal neighbors in a sliding
temporal window, [40] leverages multi-frame consistency to
detect moving object regions, and [20] introduces a convo-
lutional LSTM on top of [19] to propagate the hidden states
via forward warping, but requires stereo images as supervi-
sion. Huang et al. [17] align multi-frame 3D scans in a com-
mon reference frame, accumulate 3D points on individual
objects, and obtain a better decomposition of the dynamic
scene. Wang et al. [45] encode the spatial-temporal infor-
mation into a neural trajectory prior. These previous works
exploit the geometric layout and rigidity of autonomous
driving scenes, but do not generalize well to debris flows.
Our work takes temporal information into account and es-
timates the flow speed across the entire event by warping-
based temporal smoothing, which is a stable and efficient
choice for debris flows in the absence of strong supervision
signals, e.g., stereo images or ground truth scene flow.

Debris flow estimation. Debris-flow hazard is largely gov-
erned by flow depths and velocities. These parameters have
only been measured in a few locations worldwide, often us-
ing measurement techniques that have poor spatial and/or
temporal resolution [21]. Unlike these previous studies,
Aaron et al. [1, 2, 37] conducted field measurements to di-
rectly measure in-situ parameters of debris flows at high
spatial and temporal resolution with time-lapse LiDARs and
cameras. Spielmann et al. [37] manually measure the front
velocity and track individual features such as large boulders
and woody debris in the point cloud data. Aaron et al. [1]
start from images and explore both pixel-level motion and
object-level motion: the former method applies particle im-
age velocimetry (PIV) to the video frames, while the lat-
ter focuses on tracking boulders and woody debris using
CNN-based object detection. Subsequently, both methods
project the 2D displacements into the point clouds. Al-
though both LiDAR and camera sensors are employed, the
connection between them is not fully exploited with a sim-
ple projection. Further, the velocity fields obtained are rela-
tively sparse when compared to what could be obtained with
dense optical flow techniques. To this end, we develop tai-
lored sensor-fusion methods to fully utilize the multi-sensor
setup for the debris-flow dataset, resulting in much denser
flow velocity fields.

3. Method

The workflow of our method is illustrated in Fig. 2. Our
network starts with two feature encoders, followed by fea-
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Figure 2. Architecture overview. The inputs of our network are two consecutive camera images and the corresponding (synchronous)
range maps generated by a LiDAR sensor. The optical and depth information are encoded by image and sparse depth encoders. Next,
a multi-level sensor fusion scheme combines depth features, image features, and the feature correlation volume. The aggregated feature
maps are fed into a multi-task decoder to output the depth and optical flow estimates. After the learnable part, we employ deterministic
geometric relations to back-project the depth image into the point cloud and compute 3D motion from correspondences defined by the
optical flow.

ture warping, correlation volume computation, and multi-
level fusion, and finally decodes the resulting latent features
to optical flow and depth estimates. § 3.2 and § 3.3 elabo-
rate two necessary losses to supervise the learning of optical
flow and depth without ground truth. In § 3.4 and § 3.5, we
explain how we leverage two inductive biases specific to de-
bris flow. To finally obtain the 3D motion, post-processing
(§ 3.7) is used to convert the optical flow and depth to 3D
flow. The flow speed profile over time is estimated after
multi-frame temporal smoothing (§ 3.6). We train the model
end-to-end with a loss L composed of four terms:

L = λflowLflow + λdepthLdepth + Lstatic + Lcycle . (1)

Problem formulation. Consider an image sequence I =

{It}Tt=1 and a point cloud sequence X = {Xt}Tt=1 with
constant interval in T epochs. Our objective is to esti-
mate the 3D coordinates Pt = (x, y, z) and the flow vector
Vt = (∆x,∆y,∆z) for every pixel pt = (u, v) ∈ It. Ad-
ditionally, the flow velocity over time needs to be accumu-
lated to generate the flow speed profile S = {∥Vt∥2}Tt=1.

3.1. Backbone network

We follow [19,39,50] and iteratively estimate the optical
flow in a coarse-to-fine manner. Our network takes both
images and point clouds as inputs, and fuses their features
at multiple levels.

Feature encoders. The network starts with an image en-
coder and a depth encoder. Image features Ft

image and
Ft+1

image are extracted by a shared image encoder. The depth
encoder learns to extract and aggregate the sparse range
features Ft

depth. Both encoders have a pyramid structure
with five layers to preserve global context and local details.
The feature pyramid channels are [32, 64, 96, 128, 192] and
[8, 16, 24, 32, 64] for image encoder and depth encoder, re-
spectively. At each layer a stride of 2 halves the size of the
feature map.

Multi-level fusion. We carry out feature fusion at each level
of the feature pyramid. The first iteration initializes optical
flow Ot and depth Dt to zero. Based on the current optical
flow estimates, the feature map Ft+1

image is warped [47] back
to t to obtain F̃t

image. Then we compute the correlation vol-
ume Ft

corr by stacking the feature-wise correlation, between
Ft

image and F̃t
image with window size l. The feature-wise

correlation fcorr between f ti ∈ Ft
image and f̃ tj ∈ F̃t

image is
computed as

fcorr =
1

C

∑
m∈[0,C)

[f ti ◦ f̃ tj ]m , (2)

where ◦ denotes the element-wise product, indices i, j re-
fer to the jth correlation of the ith feature, and C is the
channel depth of the features. For a feature map Ft

image ∈
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RW×H×N , the correlation volume Ft
corr ∈ RW×H×l2 is

generated. W , H and N correspond to the width, height,
and number of channels of the feature map, respectively.
Then all the latent features are concatenated,

Ft
fuse = cat(Ft

image,F
t+1
image,F

t
depth,F

t
corr,O

t,Dt) , (3)

and the fused feature map Ft
fuse is fed into the decoders.

Decoder design. We adopt separate decoders for depth and
flow as described in [20], for better convergence. The fused
feature Ft

fuse first goes through a shared convolutional layer
to output a latent feature map, which is then passed into
two separate decoders. The context network from [9, 54]
is adopted after each decoder, which outputs the depth and
flow estimates.

3.2. Optical flow estimation

The optical flow decoder consists of three convolutional
layers and a context network (dilated convolutions). Unlike
vehicles in KITTI [12] or NuScenes [8], debris-flow mo-
tion is non-rigid. It is hard to model debris-flow motion
through the Navier-Stokes equation [10] due to significant
unknowns related to the underlying mechanisms that con-
trol flow properties. Moreover, manual annotation of optical
flow on such a dataset is almost infeasible. Therefore, we
use an unsupervised loss [3, 23] based on photometric con-
sistency and local smoothness. Given two images (It, It+1)
and an optical flow Ot

f , we warp It+1 back to t:

Ĩt = ω(It+1,Ot
f ) , (4)

where ω(·, ·) represents the backward warping function
with the first argument being the scalar field to be warped
and the second argument the warping correspondences. Un-
der the assumption that the appearance of the same object
remains constant, the photometric loss Lphoto penalizes the
photometric differences between It and Ĩt:

Lphoto = SSIM
(
ϕ(It), ϕ(Ĩt)

)
, (5)

where ϕ(·) is an average pooling module and SSIM(·, ·) is
the structural similarity index [46].

Besides, a first-order regularizer [3] Lsmooth encourages
edge-aware smoothness [19, 31, 49] of the estimates by pe-
nalizing the sum of first-order derivatives, weighted by the
image gradients:

Lsmooth = 1
H×W×C

∑
p

∑
i∈It

∥∥∇1
iO

t(p)
∥∥
1
· e−β∥∇iI

t(p)∥
1 ,
(6)

with β = 10 and H × W × C the image dimensions.
The total flow loss is Lflow = Lphoto + λLsmooth, with
λ = 0.15. In the forward propagation, we additionally swap
the two input images [19, 39] and compute the backward

flow Ot
b and its corresponding photometric loss. During

training Lflow includes the bidirectional flow loss, whereas
only forward flow is computed at inference time. In this way
we double the training samples, moreover the bidirectional
flows are vital to leverage fluid continuity (§ 3.5).

3.3. Depth estimation

All Points Sampled Points

Loss

Depth Map Sampled

Unsampled

Figure 3. A simple and effective way of supervising depth. A
downsampled point cloud serves as input, the full point cloud as
the target.

Previous work on unsupervised and zero-shot monoc-
ular depth estimation [13, 14, 19, 35] and depth comple-
tion [48] does not rely on ground truth (direct depth) as
supervision, but instead uses disparity maps acquired from
stereo images. In the debris flow dataset, we have neither
ground truth nor good stereo pairs. Therefore, we propose
a novel way to supervise the depth estimation as shown
in Fig. 3. We start from randomly downsampling the in-
put point cloud Xt into Xt

down = [xt
i, ...,x

t
j , ...,x

t
nt
] ∈

R3×(η×nt) with η being the downsampling ratio. During
training, only the sampled point cloud Xt

down is converted
to a range map Rt

down, and the network makes predictions
based on that downsampled map. During back-propagation,
the original input point cloud Xt serves as ground truth. Af-
ter converting Xt into a sparse range map Rt, we bilinearly
sample the points with a valid LiDAR footprint from the
dense prediction Dt and compute the loss from those sam-
ples and the sparse range map:

L1 = 1
H×W×C

∑
i

∥∥Rt(i)− ξ
(
Θdepth(I

t, It+1,Rt
down),R

t(i)
)∥∥

1
,

(7)
where Θdepth represents the depth branch of our network
and Rt

down is the downsampled range map. The bilinear
resampling function ξ(X, y) retrieves x from X at the posi-
tion of y. As in § 3.2, smoothness regularization Lsmooth is
used in the depth prediction. The depth estimation branch is
supervised by the weighted sum Ldepth = L1 + λLsmooth,
with λ = 0.1. The rationale behind this supervision strategy
is that (i) the sampled LiDAR points teach the network to
preserve the ground truth input values, while (ii) remaining
LiDAR points provide a supervision signal for the densifica-
tion/interpolation from sparse range input to dense output.
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3.4. Motion segmentation

The debris flow dataset is captured by a static monitoring
system. Different from many scene flow methods [15, 17]
which subtract the ego-motion before analyzing the dy-
namic scene, we leverage the prior of zero ego-motion, via a
loss Lstatic. As described in § 3.2, we compute the forward
flow

(Ot
f ,D

t) = Θ(It, It+1,Rt
down) , (8)

and the backward flow by swapping the input order

(Ot
b,D

t+1) = Θ(It+1, It,Rt+1
down) , (9)

where Θ are the parameters of the network. With bidirec-
tional flows Ot

f and Ot
b and depth estimates Dt and Dt+1,

we define a prior that favours a static sensor system. After
distinguishing static pixels from moving ones with a sim-
ple threshold ε, the loss demands that depth estimates in
the static part should be consistent, and penalizes deviations
from that soft constraint:

Lstatic =

∑
p

(
Mt(p) ·

∥∥Dt+1(p)−Dt(p)
∥∥
1

)∑
q Mt(q)

. (10)

Here p,q represents pixel coordinates in the image, and Mt

denotes a binary mask that is 1 for static pixels and 0 for
moving ones. The loss Lstatic builds a bridge so that optical
flow estimation and depth estimation can mutually super-
vise each other. Inaccurate optical flow estimates lead to
wrong motion segmentation, and consequently, Lstatic in-
creases due to the misalignment of non-static pixels. Unsta-
ble or inaccurate depth estimates in static regions also cause
the increase of Lstatic.

3.5. Fluid continuity

One long-standing problem in optical flow estimation is
occlusion. In this work, we use the inconsistency [31,51,52]
of forward-backward optical flow to achieve an inductive
bias towards fluid continuity. The sensor system is static,
and the motion only occurs on the fluid surface with ap-
proximately in-plane motion. The continuity of the fluid
surface results in almost no occlusion, so we integrate this
prior into the loss Lcycle as

Lcycle =
1

H ×W × C

∑
p

∥∥Ot
f (p) + ω(Ot

b,O
t
f )(p)

∥∥
1
,

(11)
with ω(·, ·) the backward warping function from § 3.2.

3.6. Multi-frame temporal smoothing

Debris flow motion analysis, e.g., calculating flow speed
profiles over time, requires more than two-frames. We add
a post-processing module to achieve a temporally smoother
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Figure 4. Schematic illustration of temporal smoothing for flow
speed estimation.

flow speed estimate, as shown in Fig. 4. Given consecu-
tive images {It}3t=0, and their bidirectional flow estimates
{Om

n }m=0,1,2
n=f,b , our goal is to smooth the flow O1

f . The as-
sumption is that the velocity of object points remains con-
stant over a short time interval. We start with warping O0

f

forward to the next frame O1′

f = ω(O0
f ,O

0
b). Then O2

f

is warped backward O1′′

f = ω(O2
f ,O

1
f ). We compute the

smoothed Õ1
f as

Õ1
f = λ0O

1′

f + λ1O
1
f + λ2O

1′′

f , (12)

where λ0 + λ1 + λ2 = 1. In the end, we apply temporal
smoothing to the per-frame estimates to generate the flow
speed profile.

3.7. Lifting optical flow to 3D

As a final step we transform optical flow to 3D scene
flow with the help of depth. The camera matrix K3×3 and
the camera-LiDAR transformation matrix T3×4 : [R | t]
are known from calibration. Given a depth estimate zti , ev-
ery pixel pt

i ∈ It is back-projected into a 3D point Pt
i as

Pt
i = ztiR

TK−1pt
i −RTt . (13)

The same transformation is applied to the second frame
It+1. Consider two point clouds {Pt

i}
w×h
i=0 and {Pt+1

i }w×h
i=0 ,

we determine the motion for every point in frame t by sub-
tracting its positions in epoch t+ 1 and t as in Eq (2).

3.8. Implementation details

We have implemented our network in PyTorch [33] and
trained it from scratch on a single RTX 6000/3090 24G
GPU. During training the loss of Eq (1) is minimized with
the Adam optimizer [24], with hyper-parameter β1 = 0.9
and an initial learning rate of 0.0004. We train the network
for 30 epochs with a batch size of 8, the learning rate decays
by half after 5, 7 and 15 epochs. To enlarge the training set,
we adopt geometric data augmentation, including random
cropping and flipping for images and range maps simulta-
neously. The original image size is 1920 × 1080, which
we crop it to 1600 × 960, making sure the dimensions are
divisible by 25 = 32.

4. Experiments
We first introduce the debris flow dataset and our eval-

uation metrics for optical flow and depth estimation. Then
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we compare our model to several baselines. Finally, we per-
form an ablation study to validate our network architecture
and loss design.

4.1. Debris flow dataset

The debris flow event was captured by a camera-LiDAR
setup at Illgraben, Switzerland [30]. The whole event lasted
for approximately 30 minutes and consisted of three stages.
Stage (i) features a watery pre-surge, stage (ii) marks the ar-
rival of the flow front with boulders and woody debris and is
followed by stage (iii) with a finer-grained slurry. This event
is described and analysed in detail by [1, 2, 37]. The point
clouds are captured by a 64-beam Ouster OS1-64 (Gen-1)
LiDAR at a frequency of 10 Hz with each scanline consist-
ing of 2048 points. Along with the LiDAR, two cameras
are also deployed, capturing high-resolution videos of the
event at 25 Hz. The rigid body transformation between the
two sensors as well as the camera intrinsics are known from
calibration. The dataset consists of a total of 6000 ordered
frames (i.e., the first 10 minutes of the flow). We divide
it into chunks of 60 frames, of which the first 45 are as-
signed to the training set and the last 15 are used for eval-
uation. This split avoids excessive (temporal) correlation
between the training and test sets, but still allows one to
evaluate model performance at different stages of the debris
flow event. As the two cameras are poorly synchronized and
do not form a good stereo baseline, we build and evaluate
our method only with the top-view camera and LiDAR.

4.2. Evaluation setting

Optical flow metrics. As our dataset lacks a direct ground
truth for optical flow, typical metrics such as angular er-
ror (AE) [3] or end-point error (EPE) [32] are not appli-
cable; while Lphoto is not an independent metric, since it
is part of the loss minimized during training. We resort to
the frame interpolation metric of Baker et al. [3]. With the
optical flow estimate Ot

f , we reconstruct the first frame Ĩt

by back-warping the second frame It+1. The root-mean-
square deviation (RMSD) between the original image and
the reconstructed image is computed as

RMSD =

√
1

H ×W × C

∑
p

∣∣∣It(p)− Ĩt(p)
∣∣∣2
2
. (14)

Furthermore, we also utilize the ternary census transform
loss [31, 38, 56] in our experimental analysis, as it is robust
against changes in illumination.

Depth estimation metrics. For the evaluation of depth es-
timates, we use the depths from LiDAR points as ground
truth and compute the mean absolute error within 10 m,
30 m, and 50 m distance from the LiDAR sensor (MAE10,

MAE30 and MAE50) as well as the absolute relative error
(Abs. Rel.).

Baselines. We establish four baselines for comparison pur-
poses. For optical flow estimation, we employ RAFT [41], a
leading supervised method, and compare its pretrained and
finetuned model to ours. We also include a comparison with
an unsupervised optical flow network [31] as another base-
line. To evaluate depth estimation, we construct an image-
only baseline, by removing the depth encoder branch in our
network. We also use IP-Basic [25] as another depth com-
pletion baseline. Lastly, we establish the final baseline by
comparing our estimates to the PIV-based flow speed esti-
mates of Aaron et al. [1] for the same dataset.

4.3. Main results

Method RMSD ↓ Census Loss ↓
UnFlow [31] 19.58 0.146
RAFT-Sintel [41] 11.75 0.156
RAFT-Sintel-ft [41] 10.18 0.147
DeFlow-Cam (Ours) 7.25 0.109
DeFlow-Fusion (Ours) 7.02 0.106

Table 1. Results of optical flow estimation.

Optical flow estimation. We test unsupervised Un-
Flow [31], which shows weak performance on the debris
flow dataset. We also evaluate a state-of-the-art optical flow
method, RAFT [41], on the debris flow dataset. We first
evaluate the model pretrained on Sintel [7]. Furthermore,
we also finetuned that model, using the same flow loss Lflow

and the same hyperparameter settings as in our new method,
to conduct a fair comparison. After finetuning, we can see
a performance gain of RAFT on the debris flow dataset
(Tab. 1), which confirms a domain gap between canonical
flow datasets and the newly available debris flow. Both our
hard baseline DeFlow-Cam and full model DeFlow-Fusion
outperform the finetuned RAFT model by a large margin
of ≈ 30%, see Tab. 1. In terms of network design, our
architecture internally downsamples the raw input by a fac-
tor ×2, while RAFT downsamples to ×8 the original size.
Both RAFT and our network adopt an iterative refinement
scheme. We believe that the salient and variable local tex-
ture information in debris flow is better preserved by our
model due to less downsampling and consequently higher-
resolution feature maps.

Depth estimation. We initiated our study with a camera-
only baseline similar to [19] without the top depth encoder
in Fig. 2 to assess whether a single camera is capable of
providing sufficient information for the task. In Tab. 2, we
denote the camera-only model and the camera-LiDAR fu-
sion as DeFlow-Cam and DeFlow-Fusion, respectively. To
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Figure 5. Flow speed estimates over time. Comparison between
our method (DeFlow) and PIV method of Aaron et al. [1, 2].

ensure a fair comparison, we trained both models using only
the two essential loss terms Lflow and Ldepth. The DeFlow-
Fusion model achieves sub-decimeter accuracy, surpassing
the performance of DeFlow-Cam significantly. By fus-
ing the depth branch into our network, the Abs. Rel is re-
duced 6×, from 6.3% to 0.9%. DeFlow-Fusion also out-
performs the depth completion baseline IP-Basic [25] by
approximately 30% in all metrics. Thus, we conclude that a
camera-LiDAR fusion approach is essential for debris flow
estimation, where the sparse LiDAR input provides strong
guidance for depth estimation. As shown in Tab. 1, the inte-
gration of LiDAR not only improves depth estimation, but
also enhances the optical flow. We believe this performance
gain is due to the LiDAR branch and sensor fusion module
providing more information about the 3D scene structure,
which allows the network to better understand debris-flow
motion.

Method MAE10[m] ↓ MAE30[m] ↓ MAE50[m] ↓ Abs. Rel.[%] ↓

IP-Basic [25] 0.06 0.17 0.22 1.1

DeFlow-Cam 0.38 0.83 1.02 6.3

DeFlow-Fusion 0.04 0.10 0.14 0.6

Table 2. Depth estimation on our debris flow dataset.

Flow speed estimation. Our approach determines the
pixel-wise 3D motion for every frame with multi-frame
temporal smoothing. It can therefore provide velocity and
speed estimates for any region in the flow channel. Here
we compute an estimate of the flow speed within a vertical
bounding box {(x, y, z) | x ∈ [−1.0, 1.0], y ∈ [19.0, 21.0]}
in the LiDAR frame, the same region also used in [1]. The
average flow speed in the bounding box during the whole
event is computed and compared to the results of Aaron et
al. [1], derived with a PIV-based method and validated with
manual feature measurements (Fig. 5). The two results are
similar in terms of the overall trend, the absolute velocities,
as well as the timing of peaks.
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Figure 6. Spatial distribution of flow speeds across the channel.

Channel speed distribution. To better understand how
flow velocity is distributed in space, we investigate the
flow speed along a horizontal cross-section of the chan-
nel. Specifically, we plot the velocity against the x-axis
with y ∈ [470, 490] at three different times, represented
by epoch 1200, 3000, and 4800 (Fig. 6). During the first
two epochs (1200 and 3000), we observe a nearly con-
stant cross-channel velocity profile, whereas during the final
epoch the shape of the velocity profile changes. This corre-
sponds to a large rise in overall flow velocity (Fig. 5), and
may reflect changes in flow composition [2].

Qualitative results. We show qualitative examples of op-
tical flow fields and scene reconstructions generated by our
approach. Our model successfully segments the motion of
large features, such as boulders, in the flow field (Fig. 7).
It further distinguishes between dynamic and stationary re-
gions, and reconstructs the 3D scene geometry, as shown
in Fig. 7. These results represent the densest flow field ob-
tained so far for a natural debris flow, and further processing
will make it possible to better understand the interaction of
large particles with the surrounding fine-grained slurry.

4.4. Ablation Study

Modules Optical Flow↓ Depth Estimation↓
Context Lstatic Lcycle RMSD MAE10[m] MAE30[m] MAE50[m] Abs. Rel.[%]

✘ ✘ ✘ 7.018 0.053 0.139 0.196 0.83

✔ ✘ ✘ 6.969 0.047 0.155 0.207 0.90

✔ ✘ ✔ 7.024 0.051 0.132 0.179 0.82

✔ ✔ ✘ 6.871 0.049 0.137 0.196 0.81

✘ ✔ ✔ 6.954 0.049 0.136 0.186 0.82

✔ ✔ ✔ 6.833 0.046 0.130 0.176 0.79

Table 3. Ablation study on network and loss design. The com-
bination of Lstatic and Lcycle offers the best performance.

Loss design. We ablate the two additional loss terms Lstatic

and Lcycle with the context network. The results are pre-
sented in Tab. 3, which demonstrate that the model trained
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Figure 7. Qualitative results. Raw images (a), optical flow estimates (b), and scene reconstruction (c).

Ratio
Optical Flow↓ Depth Estimation↓

RMSD MAE10[m] MAE30[m] MAE50[m] Abs. Rel.[%]

0.2 6.990 0.057 0.196 0.269 0.11

0.5 7.018 0.053 0.139 0.196 0.83

0.8 6.982 0.048 0.131 0.183 0.79

Table 4. Ablation study on downsampling ratios.

with all loss terms performs the best, indicating that each
of the losses contributes to overall model performance. We
also observe that while the context network (Fig. 2) on its
own is not particularly helpful, it significantly enhances the
model performance when used in conjunction with our loss
design.

Depth downsampling. To validate our downsampling
strategy for depth supervision, we train three identical mod-
els using different depth input ratios and examine the re-
sulting performance changes, as shown in Tab. 4. The re-
sults indicate that using a higher input ratio leads to a more
precise depth map, suggesting that the network is able to
leverage varying levels of depth information and adjust its
performance accordingly.

5. Conclusion

In this study, we have focused on motion estimation un-
der the unique properties exhibited by debris flows, and
have presented a multi-task learning approach that inte-
grates images and point clouds. Our self-supervised method
is able to estimate the scene structure (depth) and the mo-
tion field at a level of detail that is unprecedented in the
context of debris-flow research. Further analysis of these re-
sults will provide insights into the mechanisms that govern
debris-flow motion, which can ultimately be used to reduce
the risk associated with these destructive events. We release
the dataset to the vision community, providing a new anal-
ysis domain and performance benchmark. For future work,
one promising avenue is to incorporate physical constraints
from fluid and soil mechanics to boost the model training.
Another important direction is to develop automated algo-
rithms for infrared cameras, in order to enable monitoring
during nighttime.
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