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A. Appendix
A.1. Dataset

In this section, we provide supplementary information
and visualizations of the debris flow dataset. The repre-
sentative shapes of the debris-flow surface are summarized
in Fig. Al. The terrain of the monitoring site is shown in
Fig. A2.
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Figure A1l. Three stages of debris flow: (a) pre-event, (b)arrival of
boulder front and (c) fine-grained slurry fluid.

Figure A2. 3D reconstruction of the debris-flow monitoring
site [11]. Overview of the scene on the left. Reconstruction of the
channel before the event on the upper right, and after the event on
the bottom right.

In the debris flow dataset, we release:

* 6000 high-resolution images (1920 1080)

* 6000 high-accuracy point clouds

e Camera calibration matrices

¢ Rotation matrices between camera and LiDAR
¢ Translation vectors between camera and LiDAR

A.2. Evaluation Metrics

SSIM. Structural similarity index [50] is used in our optical
flow loss to assess the similarity between the target image
and warped image:

(2papty + 1) (200y + C2)
(12 + 12+ c1) (02 + 02 + ¢2)

SSIM(z,y) = . (5)

where pi, and i, represent the mean pixel values of images
z and y, and o denotes the corresponding standard devia-
tion.

Census Transform Loss. We use ternary census transform
loss [17,33,42] as the second metric to evaluate optical flow
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performance:
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Given two input images, we compute the corresponding
census-transformed images and compute the average differ-
ence between them as the loss.

A.3. LiDAR to Range Image

Since point cloud-based networks [37, 38, 54] are com-
putationally demanding and complex to train, we convert
the 3D scan points to sparse range maps with the help of
the camera-LiDAR transformation by projecting 3D points
onto the image plane with known camera intrinsics K and
camera pose parameters R and t:

f 0 p re T2 T3 th
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The 2D projection p = (u,v,1)T of 3D point P =
(x,y,2,1)T is computed as

p=K[R|t|P (18)

and rounded to the closest integer pixel coordinate.

A.4. Runtime and Model Size

We report the runtimes and model sizes of RAFT,
DeFlow-Cam, and DeFlow-Fusion in Tab. A1. Our camera-
only baseline is significantly smaller and faster,since we fol-
low the lightweight design of PWC-Net [43] and Mono-
SF [21]. Our fusion model has similar model size and
runtime as RAFT. The increase in runtime and model size
compared to the camera-only baseline is caused by the ad-
ditional depth encoder and the multi-level feature fusion,
which in return offer marked performance gains.

Method ‘ Runtime [ms] ‘ # params
RAFT [45] 171.3 526 M
DeFlow-Cam (Ours) 54.1 416 M
DeFlow-Fusion (Ours) 191.9 499 M

Table Al. Runtime and number of parameters for different mod-
els.

A.5. Additional Qualitative Results

In Fig. A3, we present additional visualizations of opti-
cal flow results, and of the static pixel masks used to en-
force a static sensor pose. To see the qualitative behaviour
of our temporal smoothing module, readers are encouraged
to watch the video in the supplementary material.
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Figure A3. Qualitative results of optical flow (c) and binary (static/dynamic) segmentation (d).
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