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Abstract

Segmentation becomes one of the most important meth-

ods for scene understanding. Segmentation plays a central

role in recognizing things and stuff in a scene. Among all

things and stuff in a scene, the road guides vehicles in the

cities and highways. Most segmentation models, i.e., se-

mantic, instance, and panoptic segmentation, have focused

on images with clear daytime weather conditions. Few pa-

pers have tackled nighttime vision under adversarial condi-

tions, i.e., fog, rain, snow, strong illumination, and disaster

events. Moreover, further segmentation of road conditions

like dry, wet, and snow is still challenging under such invis-

ible conditions. Weather impacts not only visibility but also

roads and their surrounding environment, causing vital dis-

asters with obstacles on the road, i.e., rocks and water. This

paper proposes PanopticRoad with five Deep Learning-

based modules for road condition segmentation under ad-

versarial conditions: DeepReject/Scene/Snow/Depth/Road.

Integration of them helps refine the failure of local road con-

ditions where weather and physical constraints are applied.

Using foggy and heavy snowfall nighttime road images and

disaster images, the superiority of PanopticRoad is demon-

strated over state-of-the-art panoptic-based and adaptive

domain-based Deep Learning models in terms of stability,

robustness, and accuracy.

1. Introduction

Semantic scene understanding under various weather

conditions is important for monitoring and auto-driving.

However, most semantic models have focused on clear

daytime weather conditions in Computer Vision [89] and

Deep Learning [1, 2, 3, 4, 5, 6, 13, 18, 19, 20]. In such

weather conditions, city and highway scenes have been se-

lected to recognize and evaluate various objects, such as

buildings, traffic signals, vehicles, and pedestrians. There-

fore, people’s daily normal activities are monitored. On

the other hand, camera images/videos inevitably must deal

with weather changes like rain, snow, and fog. These

weather phenomena can dramatically impact scene appear-

ance changes over time. Moreover, sunbeams, rainfall,

snowfall, and fog can degrade recognition and classifica-

tion rates. More complicated scenes can happen by a mix

of them and illuminations at twilight and night. For camera

images, these factors are assumed to be adversarial visual

conditions. In particular, road scene images are more com-

plicated due to a mix of fog and adversarial factors.

The representative metric is visibility levels or distances

between a camera and a far location. What is worse for vis-

ibility is darkness or low illumination at night. Therefore,

the most important landmarks, as seen in the daytime, may

be readily lost in the nighttime road environment. Previ-

ously, computer vision-based visibility estimation methods

with edge detection and geometrical coordinate have been

proposed [10, 11, 12, 15, 16, 17, 21, 22]. However, they are

known to be vulnerable to illumination changes.

In Deep Learning (DL) models [20, 34, 63, 71], seman-

tic segmentation [1, 39, 46, 49, 74] and instance segmen-

tation [41, 42, 44] have been reported and used for rec-

ognizing things or/and stuff [65]. Panoptic segmentation

[51, 52, 53, 64, 81, 82, 88] handles stuff and thing classes

by fusing subregions by semantic and instance segmenta-

tion, providing a unique class label for each pixel in the

image and instance IDs for countable objects. Panoptic seg-

mentation is an important step towards scene understanding

in autonomous vehicles since it provides object masks and

interesting amorph regions like drivable road space or side-

walks [47]. Although video-based panoptic segmentation

models [40, 43, 48, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62,

64, 67, 68, 70, 72, 75, 76, 101, 73] have recently shown a

new avenue to enhance accuracy, they require a temporally

smooth change over time. Therefore, they are limited to

applying to low frame rates, sudden changes of a moving

camera [36, 37, 38], and snowfall changes.

Adversarial visual factors significantly degrade the ac-

curacy of state-of-the-art (SOTA) DL-based segmentation.

Raindrops [25, 32] are removed for better visibility. De-

fog and Dehaze [5, 23, 30, 31, 35, 77] are shown, but no

visibility estimation. However, most papers have synthe-
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sized raindrops, rain streaks, and fog to obtain nearly per-

fect original daytime images under uniform illumination

[8]. SOTA DL models are easy to fail in applications of

real foggy scenes due to the non-uniformity of fog and rain-

fall, ambient illumination, halo effect, and motion in depth

[6, 7]. In dark scenes, night vision [24, 28, 29] is a challeng-

ing topic due to low light and less visible landmarks avail-

able. Although night-to-day translation by GAN [26, 27]

may enhance far landmarks to estimate visibility levels, real

nighttime images are converted to false color images due

to strong headlight, spotlighting, and fog image gradients.

Therefore, as the visibility estimation task, DL models have

not thoroughly explored images at foggy twilight and night.

Moreover, few segmentation papers have explored visibil-

ity estimation. Physical distance and level of visibility by

the DL model remain undone. An all-in-one image restora-

tion model [78] is reported with no manual selection of dif-

ficult scenes for multiple tasks with adversarial conditions

and visibility estimation.

Evaluation image datasets [84, 85, 86, 101] are important

but very limited to scenes with clear, synthetic fog and real

lighter fog [9, 84, 85, 86], where no or fewer adversarial

conditions contain. Unlike rainfall and fog, snowfall [93]

causes other difficult issues in visibility and road conditions.

Snowfall can cover and accumulate on the road, causing icy

barns and raising accident risks. Even a small amount of

snowflakes significantly degrades visibility mixed with fog.

Therefore, further segmentation is required for dry, wet, and

snow road conditions [94].

Most SOTA DL-based segmentation models [79, 80, 81,

82, 83, 99, 100, 95] are limited to segmenting the road’s

details, i.e., conditions or statuses. In contrast, this paper

proposes a pixel-based road condition segmentation method

using DL models. Disaster scenes [92] with heavy rain-

fall and snowfall have been increasing, which may cause a

chain reaction of natural disasters observed from the satel-

lite images [95], i.e., landslides and flooding [91, 95, 96].

However, camera image-based post-disaster object recogni-

tion for dirt, water, and rocks remains unsolved on the road.

Such stuff and objects may occlude the road surface, los-

ing the normal road. Since domain adaptation segmentation

DL-models [99, 100] require manual selection of the opti-

mal pretrained model, they are not useful for unpredictable

and sudden scene changes by disaster and weather condi-

tions. Therefore, real heavier foggy night images with ad-

versarial conditions and disaster images have not been fully

publicly available, as this paper uses.

To this end, this paper proposes PanopticRoad: in-

tegrated panoptic road condition segmentation under ad-

versarial visual conditions using single images. Multi-

ple transformer-based Deep Learning (DL) models, i.e.,

DeepX, with branched structures are integrated for effi-

ciency in light of memory, training, and maintenance. This

paper’s contributions are fourfold:

1. Multiple DL architecture with five independent DL

modules is proposed for efficient model enhancement

and maintenance. In order to stabilize the overall recog-

nition system, DeepReject rejects difficult images with

darkness and lenz reflection. SOTA DL, i.e., OneFormer

[33], has not considered this concept yet. DeepSnow

classifies snowfall among no-snow, light snowfall, and

heavy snowfall. DeepScene is panoptic segmentation.

DeepDepth estimates the depth map. DeepRoad recog-

nizes road conditions.

2. Refinement to segmented regions is proposed. Integra-

tion of DeepScene, DeepDepth, and DeepRoad helps

refine the failure of local road conditions due to in-

complete segmentation by each DL module. There-

fore, weather constraint is posed so that initial road

conditions-based segmentation is refined by merging

and changing, i.e., partial wet to fully covered snow

(frozen) based on the surrounding snow. Moreover,

identifying road locations is important to estimate for

correct road condition decisions when a disaster causes

occluded road images with many obstacles, i.e., dirt

and rocks. Dirt and rocks may be on the slope (ver-

tical) or road (on the ground). Therefore, DeepDepth

and DeepScene are used to identify the location of pre-

disaster normal roads under physical constraint, i.e., rel-

ative heights among roads, slopes, and cliffs. It is the

first time to recognize the obstacles on the road by com-

bining segmentation, depth map, and 3D cloud points

under physical constraints, unlike SOTA without such

constraints.

3. Novel foggy day and night road images, i.e., dry, wet,

and snow, and post-disaster images have been collected

since publicly available image datasets, i.e., Cityscapes

[84], Foggy Cityscape [85], and Foggy Zurich [86] are

insufficient to train and test.

4. Using foggy and heavy snowfall nighttime road images,

the superiority of PanopticRoad for road conditions is

demonstrated over SOTA panoptic-based and adaptive

domain-based DL models in terms of stability, robust-

ness, and accuracy. Moreover, obstacles on the road

are recognized using 3D cloud points and 3D RANSAC

[104].

2. Related work

This section briefly describes review methods and is-

sues in scene understanding of camera images under various

conditions. Visibility levels are one of the most important

visual factors to estimate for monitoring and auto-driving.

Weather conditions with sunbeams, rainfall, snowfall, fog,
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and haze impact visibility. Strong illumination like head-

lights, street lights, or darkness changes can also be added.

A mix of these factors can lead to a worse visual condition.

To estimate visibility, near and far objects can be landmarks.

Such objects may be obtained from segmentation. Dehaze

[5, 23, 30, 31, 35, 77], denoise, and derain [25, 32] may be

useful to enhance such landmarks.

Although considerable progress has been made in se-

mantic segmentation understanding under clear weather, it

is still a tough problem under adversarial weather condi-

tions, such as heavy fog and snowfall, due to the uncer-

tainty caused by imperfect observations. SOTA segmenta-

tion models have become robust to the partial appearance

of objects. However, they are stable mainly when opaque

objects are occluded from each other. On the other hand,

such natural phenomena pose a different challenge due to

semi-transparent image features, i.e., stuff. This problem

[77] has been alleviated by bridging the gap between clear

and (light) foggy images, i.e., city scenes.

However, issues in foggy and heavy snowfall at night re-

main unsolved only by this model [77], and no visibility es-

timation under fog requires further modelization, unlike the

proposed approaches we show. In image restoration [78],

an all-in-one image restoration network (AirNet) for un-

known corruption has been proposed. Almost all existing

approaches could handle a specific degradation only, i.e.,

denoise, defog, deraining, and deblurring, where the user

must know the correct corruption before applying a specific

API. Since such degradations are rooted in natural phenom-

ena, the degradation ratio can vary in space and time, letting

the user retune manually. In [78], although AirNet experi-

mentally shows superiority in three degradation factors with

noise, rain, and haze (fog), at least only lighter fog has been

used in the daytime scenes.

The monocular geometric scene understanding task

combined with panoptic segmentation and self-supervised

depth estimation has been reported as MGNet [79]. How-

ever, no adversarial weather conditions are shown, i.e.,

heavy fog. Moreover, the depth map may lose a lot of land-

marks due to lower brightness at twilight and night. To en-

hance previous semantic segmentation problems, Deep hi-

erarchical semantic segmentation (HSS) has been proposed

in city scenes [80]. By exploiting hierarchy properties as

optimization criteria, hierarchical violation in the segmen-

tation predictions can be explicitly penalized. However,

no physical scales of different semantic segmentation have

been considered, like depth ordering from near to far objects

along the road, i.e., multiple vehicles and pedestrians.

The proposed method [81] combines the global model-

ing capability of the Transformer and the local representa-

tion capability of CNN with transmission-aware 3D posi-

tion embedding. However, dehazing in [81] is limited to

closer views of daytime lighter foggy scenes, i.e., indoor

and garden, unlike our proposed method for distant scenes

with heavy fog at night, i.e., highway.

A unified framework for depth-aware panoptic segmen-

tation (DPS) has been reported [82], aiming to reconstruct

3D scenes with instance-level semantics from one image.

In contrast to previously predicting depth values for all

pixels at a time, DPS manages to estimate depth for each

thing/stuff instance, which also shares the way of generat-

ing instance masks. 3D cloud point images are generated.

Domain adaptation segmentation [99, 100] is recently re-

ported to refine locally insufficient segmentation. However,

pretrained models are required to select manually based on

target images. Therefore, they are hard to apply to images

with unpredictable natural phenomenon changes.

This paper challenges dealing with road conditions even

under adversarial nighttime snowfall conditions by the

proposed PanopticRoad with multiple task-oriented Deep

Learning models.

3. Proposed Methods

This section discusses the proposed PanopticRoad

method/system for recognizing and classifying many road

conditions under various adversarial conditions. Instead of

recognization by a single-tasked DL, this paper integrates

five proposed DL modules: DeepReject, DeepSnow, Deep-

Scene, DeepDepth, and DeepRoad. As shown in Figure 1,

a single image is an input with a city, highway, or moun-

tain road. DeepReject may reject adversarial images. If

rejected, past road status will be replaced. If heavy snow

occurs, DeepSnow rejects and outputs the message. Images

with light snowfall and no snowfall are used. If there is

no rejection, an image goes into the three branches. Deep-

Scene, DeepRoad, and DeepDepth are for panoptic segmen-

tation, segmentation-based initial road condition, and depth

map/3D cloud points, respectively.

In order to refine initial road conditions, such three mod-

ules are integrated, where weather and physical constraints

are applied. These constraints may boost the incomplete

segmentation of each DL module, like wet to snow condi-

tion, road class to snow condition, and giving classes to no

segmentation region. Moreover, it may benefit from esti-

mating whether obstacles of rocks and dirt are on the road

or the slope due to the lower location in the 3D coordinates.

Therefore, the refined road conditions will be estimated.

The following explains each of the five Deep Learning mod-

ules: DeepReject, DeepSnow, DeepScene, DeepDepth, and

DeepRoad further.

3.1. DeepReject

Roads at night pose several challenging factors, i.e.,

darkness. To identify and reject adversarial images, as

shown in Figure 2, an algorithm to reject such images is pro-

posed to avoid the degradation of the cascaded other recog-
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Figure 1. Proposed PanopticRoad model

nition modules. Such factors have been pre-analyzed us-

ing many city and highway images with different cameras.

Therefore, three major adversarial image patterns have been

selected: a) lens reflection, b) strong headlight, and c) rain-

drops. These adversarial images were collected from over

2500 images and used to train by Swin Transformer [4] into

2 classes: accept and reject.

(a) (b) (c)
Figure 2. Example of rejected images: (a) Lens reflection. (b)

Strong headlight. (c) Raindrops.

3.2. DeepSnow

Snowfall often appears in the scene of the winter sea-

son. Even with light snowfall, low visibility occurs in im-

ages. Such snowfall patterns can partially or overall oc-

clude road surface view. Therefore, DeepScene can fail

to recognize the road whenever heavy snowfall happens,

as shown in Figure 3 (a). To detect snowfall, DeepSnow

is proposed to apply, where no snowfall, light, and heavy

snowfall are classified. Such images were collected from

various countries’ daytime and nighttime surveillance cam-

eras. No video frames were used to detect snowfall. The

snowfall classification model is based on pre-trained Effi-

cientNet [14] with an input size of 512 × 512. Figure 3 (b)

shows examples of heavy, light, and no snowfall. The global

average is then applied to the output of the pre-trained Ef-

ficientNet followed by 512 units dense layer with ReLU

activation [14]. To avoid the overfitting problem, this pa-

per utilizes several augmentation techniques such as ran-

dom brightness, random contrast, random translation, ran-

dom horizontal flip, and random rotation. A dropout layer

with a rate of 0.4 is also applied to enhance the model’s rep-

resentation. After 500 training epochs with a batch size of

32 and a learning rate of 0.001, the model is used to classify

3 snowfall levels in the image.

(a) (b)
Figure 3. Various snowfall images: (a) segmentation failure cases

under heavy snowfall events. (b) Examples of heavy snowfall (up-

per), light snowfall (middle), and no snowfall (bottom).

3.3. DeepScene

This paper proposes globally and locally segmented im-

ages/objects to enhance the accuracy of road condition clas-

sification. DeepScene plays an important role in globally

segmenting scene objects. On the other hand, DeepRoad

is used for locally segmented road condition classification,

as mentioned below. Segformer [3] is trained with COCO

image datasets [90] to segment outdoor objects like moun-

tains, fences, roads, rivers, and rocks, as shown in Figure 4.

It is noted that DeepScene recognizes road conditions when

there are snow, flooding, rocks, and other disaster classes.

DeepScene recognizes “road” as “dry” or “wet” conditions.

“road”= “dry or wet”, “sky”, “mountain”, “car”, “truck”, “light”

“snow”, “mountain”, “tree”, “sky”, “truck”

“road”= “dry or wet”, “sky”, “mountain”, “rock”, “dirt”

“water” flooding “rock”, “gravel”, “tree”, “water”

Figure 4. Various object detection segmented by DeepScene.

3.4. DeepRoad

To recognize road conditions, DeepRoad is proposed to

apply. Particularly on winter roads, road conditions form

from simple flat to complicated wheel-tread patterns, i.e.,
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sherbet, frozen, pressed, and covered snow. In this paper,

snow conditions are assumed to consist of a mix of sher-

bet, frozen, pressed, and covered snow. Wet is assumed

to be from rainfall or melt of snow. DeepRoad recognizes

three classes, dry, wet, and snow. It is noted that DeepScene

also outputs “snow” by direct semantic segmentation. This

paper integrates outputs from DeepRoad, DeepScene, and

DeepDepth, as shown in the following sections. This inte-

gration will boost refinements of insufficient segmentation

and road conditions under adversarial conditions. For ex-

ample, a misrecognized wet class will be corrected to snow

under weather constraints, and a far object will be better

recognized. Swinformer [3] is trained from over 2500 win-

ter road images. Since there are no publicly available an-

notation datasets, this paper created original 3-class road

condition datasets from different country road images un-

der adversarial weather conditions in different time zones.

3.5. DeepDepth

This section describes DeepDepth improved from a

monocular depth method [87] using an RGB image. Such a

depth map will be used to boost road conditions in several

ways: road condition correction, road level estimation, and

surface estimation. For example, in order to recognize road

regions from a depth map, segmented objects by DeepScene

are used to delete regions of the depth map corresponding to

them. From this, an obstacle like a rock will be recognized

as on the road under a physical constraint. A more detailed

explanation of the experiments will be provided in Section

5.4.

4. Experiments and Discussion

4.1. Experimental result on DeepReject

This subsection evaluates the performance of DeepRe-

ject. The dataset comprises 3500 images with 3 different

adversarial conditions: clear, lens reflection, strong light,

and raindrops. In a comparative study, DeepRoad is ap-

plied to segment road conditions with and without Deep-

Reject. Evaluation is conducted using all road condition

classes. Table 1 shows that DeepReject can effectively re-

ject images with adversarial conditions, where the accuracy

using DeepReject becomes 86.0% better than 81.3% with-

out DeepReject. No thresholding setting is required. There-

fore, the proposed DeepReject has been proven useful in

rejecting such three adversarial factors in images.

4.2. Experimental result on DeepSnow

Heavy snowfall can impede recognition of road surface.

For this issue, this paper first considered the removal or re-

jection of snowfall. Raindrops and snowfall removal have

recently been active research areas [25]. SOTA, Tran-

sweather [97], has been employed to compare its [97] per-

formance using real images. Two heavy snowfall images

Table 1. Statistical analysis of DeepReject for adversarial condi-

tions
No DeepReject (%) DeepReject (%)

Accuracy 81.3 86.0

Precision 72.9 78.2

Recall 75.5 80.6

F1 Score 74.0 79.3

are shown in Figure 5 (a). (b) The proposed DeepSnow

recognizes light and heavy snowfall. However, (c) SOTA

[97] failed to remove overall snowfall patterns. Also, it

cannot recognize light or heavy snowfall as the proposed

DeepSnow. Therefore, this paper has applied DeepSnow to

utilize the status of snowfall, where no snowfall and light

snowfall images will be used for road conditions.

(a) (b) (c)
Figure 5. Comparison of snowfall detection in real images: (a)

original image. (b) “Light snowfall” and “Heavy snowfall” by

DeepSnow. (c) Failure cases by Transweather.

4.3. Experimental results on DeepRoad

This section conducts experiments of DeepRoad on ad-

versarial night highway scenes. As shown in Figure 6,

heavy rainfall, strong reflection from the traffic board, low

lighting, and reflection from the road images are used for

road conditions. Results show wet conditions in blue by

DeepRoad. It is noted that such images with heavy rain-

fall, raindrops on lenz, and low illumination have not been

rejected by DeepReject. Using 3080 images with day and

night, 86.1% accuracy has been evaluated. Therefore, it has

been proven that DeepRoad is useful for night-time road

condition recognition.

(a) (b)

(c) (d)
Figure 6. Results of DeepRoad with wet road conditions in blue

under adversarial images: heavy rainy and foggy night images.
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4.4. Refinement on DeepScene by DeepRoad

This section conducts refinement experiments by the

proposed multiple Deep Learning modules. Figure 7 shows

(a)-(d) wet and (e)-(h) snowy road conditions. Results

of (b)/(f) DeepScene and (c)/(g) DeepRoad are compared.

Road regions are recognized in (b) and (f), but no road con-

ditions are provided. Therefore, (c) wet and (g) snow condi-

tions from DeepRoad are refined to (b) and (f), respectively.

Final refined images (d)/(h) are generated. Therefore, road

conditions and other objects like mountains and vehicles are

shown in single images.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 7. Refinement on DeepScene with DeepRoad: (a) Original

image. (b) DeepScene. (c) DeepRoad only with road conditions.

(d) Refined road conditions to wet. (e) Original image. (f) Deep-

Scene. (g) DeepRoad. (h) Refined road conditions to snow.

4.5. Refinement on nighttime wet/snow conditions

In order to show the limit of DeepRoad, an improved

method is proposed for road conditions. As shown in Fig-

ure 8, nighttime snowfall and foggy images are used in a 2

x 2 matrix. Ground truth images (upper right) of road con-

ditions are annotated in the snow (yellow), wet (blue), or

dry (red). Since only DeepRoad cannot recognize the road

conditions, this paper first proposes integrating outputs of

panoptic segmentation by DeepScene and road conditions

by DeepRoad in (lower left). However, in (a)-(c), there

was no output from DeepRoad, but only road and snow

classes were segmented from DeepScene. Note that road

class shows a possibility of dry or wet road conditions.

In order to enhance incomplete results of road conditions

in images (lower left), this paper proposes to apply weather

constraints on the road. Due to nighttime-covered snow on

the roads, results in (a)-(c) with a mix of “road” and “snow”

have been refined to all road regions with “snow” in yellow

(lower right). In (d), the mix of dry, wet, and “road” have

been refined to wet in main lanes and snow on the side road

(lower right). SOTA adaptive domain semantic segmenta-

tion models [99, 100] have shown refinements of segmen-

tation, but they are only applied to classes like incomplete

road segmentation, not road conditions. Therefore, unlike

the approaches in SOTA [99, 100], it is the first time to ap-

ply weather constraints to winter roads under snowfall and

fog.

(a) (b)

(c) (d)
Figure 8. Integration of DeepScene and DeepRoad to enhance road

condition accuracy: (upper left) Original image. (upper right)

Ground truth. (lower left) DeepScene. (lower right) Refined road

conditions to uniform snow or wet conditions. Yellow: snow, blue:

wet, red: dry, purple: road, pink: light, green: sky.

5. Ablation study

To justify the proposed PanopticRoad, many additional

ablation studies are conducted below.

5.1. PanopticRoad for more complicated scenes

This section denotes the proposed PanopticRoad and

how the final road conditions are refined. Figure 9 shows

the results with (a) input images, (b) DeepScene + Deep-

Road, (c) the Interaction over Unio (IoU) of (b), and (d)

Refined weather constraints. Despite (a) the covered snow

roads, DeepScene and DeepRoad have recognized the road

and snow or dry due to low contrast, respectively. Next, the

IoU of the two DL outputs is used. However, only local road

regions have been refined to snow (c). Since the output of

DeepScene with the road is suggested dry or wet conditions.

Therefore, weather constraints are applied to the remaining

road regions as wet to snow (d). It is noted that small side

roads have been refined in [99, 100] but are mainly in dry

conditions, unlike the original images of Figure 9 (a).

5.2. More comparison experiments of panoptic
segmentation­based SOTA at foggy night

For further reconfirmation, various foggy twilight and

night scenes are added to evaluate the performance of

panoptic segmentation. Two SOTA panoptic segmenta-

tion methods are selected PanopticDepth [81] and Panoptic-

DeepLab [45]. Figure 10 (a) compares highways and city

roads. The proposed integrated model (b) has outperformed

two SOTAs, (c) [81] and (d) [45], in terms of clear seg-

mented regions like roads, light, vehicles, and trees. Panop-
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(a) (b) (c) (d)
Figure 9. Proposed PanopticRoad: (a) Original image. (b) Deep-

Scene + DeepRoad. (c) First refinement with the side road from

(b). (d) Second refinement to full snow conditions from (c).

ticDepth could not recognize important stuff: roads and sky.

Notably, the older method [45] presents more stable and

better segmentation regions than the newer method in [81].

Therefore, it has been proven that the proposed integrated

model is robust and stable in adversarial visual conditions.

(a) (b) (c) (d)
Figure 10. Comparison of panoptic segmentation at twilight and

night: (a) Original image. (b) Proposed method. (c) Panop-

ticDepth [81]. (d) Panoptic-DeepLab [45].

5.3. Adaptive domain semantic segmentation­
based SOTA at foggy night

In order to justify the proposed PanopticRoad, two SO-

TAs (DaFormer [99], MIC: CVPR2023 [100]) are used for

nighttime snow roads. As in Figure 11, (a) original images

are the same as those used in Figure 10. (b) DaFormer [99]

and (c) MIC with the best selection of pretrained models

[100] present similar results with segmented road classes.

Therefore, further improvements by adding new pretrained

models are desired for adversarial conditions. However, a

manual selection of the optimal pretrained model may be

required [99][100].

5.4. Post­disaster road conditions

This section challenges post-disaster road conditions to

identify normal road surfaces and detect obstacles on the

road using the proposed PanopticRoad. In addition to the

aforementioned road conditions with dry, wet, and snow,

road conditions can be dramatically changed by disaster

events. Figure 12 (a) shows post-disaster images suffered

(a) (b) (c)
Figure 11. Adaptive domain semantic segmentation results from

two SOTAs: (a) Original image. (b) DaFormer [99]. (c) MIC:

CVPR2023 [100].

from the enormous typhoon, where many obstacles like dirt

and rocks piled up on the road and other regions. In order

to recognize whether obstacles are present on the road or

not, first, the occluded road surfaces have to be identified.

For this, DeepDepth (b) with horizontal (y), vertical (x), and

depth (z) coordinates are used to recognize nearly flat road

surfaces that are assumed to be the normal road (x-z) below

the obstacles.

On the other hand, DeepScene (c) can provide seg-

mented objects. From DeepDepth (b), vertical objects like

tree and mountain classes can be removed from the depth

maps from the physical viewpoint. However, non-road ob-

jects remain unremoved. Further removal to extract the road

surface is needed. 3D cloud points that show a geometrical

feature are converted from the depth maps. It is first as-

sumed that the road is nearly flat. Based on this, the hor-

izontal plane of a road is robustly estimated by Random

Sample Consensus (RANSAC) 3D [104], which excludes

outlier points with non-road points. Therefore, the points

above this plane are used to remove objects above the road

level.

Next, the refined depth maps and segmented regions are

combined (d). (e) Road conditions with dry or wet are rec-

ognized as well. Finally, if the locations of dirt, water, or

rocks are matched, the road conditions are assumed to be

dirt, water, or rocks. It is the first time to utilize depth

maps with physical constraints for road condition recogni-

tion. Although SOTA vision-language models [102, 103]

suggest a promising framework related to this section, no

depth maps have been utilized. Moreover, post-disaster im-

age datasets are required to rebuild with depth maps.

5.5. Overall evaluation

To justify the performance of the proposed method, the

experiment is conducted by comparing single-tasked DL

models and combinations of various DL models. The test

dataset is collected at various camera locations under dif-

ferent weather conditions. Evaluation results are calculated

based on accuracy and mean IoU (mIoU) metrics. The ac-

curacy metric is determined by the overall road conditions
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(a) (b) (c) (d)

(e)

Figure 12. Proposed PanopticRoad applied to post-disaster scenes

to identify road regions with various obstacles (dirt, water, rock):

(a) Input image. (b) Depth map. (c) Panoptic segmentation. (d)

Refined road surface. (e) Road condition by DeepRoad.

based on the class accounted for most of the coverage area,

and mIoU is the mean of Intersection over union on three

road conditions between ground truth and prediction mask.

As shown in Table 2, the metrics become gradually better

when combining the proposed five DL models: Panopti-

cRoad.

Table 2. Comparison of PanopticRoad.

Accuracy (%) mIoU(%)

DeepRoad 91.75 55.15

Combination of DeepRoad

and DeepScene
94.85 56.02

PanopticRoad 96.15 58.83

5.6. Evaluation of SOTAs under heavy nighttime
snowfall

To understand the limitations of SOTAs, DETR [88] and

DDSN [98], heavy nighttime snowfall events have been

used. Figure 13 (a) shows two results by DETR [98], where

the mix of heavy snowfall and strong illumination might

have caused two failure cases: no segmentation regions with

road and sky. It can be assumed that heavy snowfall seems

to become foreground region. In (b), DDSN [98] failed to

recognize and remove different snowfall events with light

and heavy snowfall. It can be assumed that non-uniform

streaks of snowfall in depth might not have been trained by

DDSN [98]. Therefore, SOTAs could not demonstrate a sat-

isfactory result in adversarial weather events.

(a)

(b)
Figure 13. Failure cases (a) by SOTA, Transformer-based DETR

[88] for panoptic segmentation, and (b) by SOTA, DDSN for

snowfall removal [98].

5.7. Experiment on image restoration under adver­
sarial weather conditions

To confirm another possibility for further processing un-

der adversarial conditions, image restoration by an all-in-

one DL model [78] has been applied. Figure 14 shows re-

sults with (a) heavy snowfall, (b) raindrops on the lens, (c)

heavy fog with strong light, and (d) a clear scene. No image

restoration has been achieved by SOTA DL [78]. However,

heavy snowfall (a) and raindrops on lenz (b) could not be re-

moved at all, unlike examples demonstrated in [78]. More-

over, false colors in (c) and (d) have been generated in red

and sky blue. Therefore, the proposed DeepReject in this

paper is important in avoiding visibility estimation in diffi-

cult images. This can stabilize overall system performance.

(a) (b) (c) (d)
Figure 14. Limit of an all-in-one deep learning model [78] for ad-

versarial weather conditions and clear scenes: (a) heavy snowfall.

(b) raindrops on lenz. (c) heavy fog with strong headlight. (d)

Clear scene.

6. Conclusion

This paper has proposed PanopticRoad with five Deep

Learning-based modules, i.e., DeepReject/Scene/Snow/

Depth/Road, for road condition segmentation under adver-

sarial conditions, i.e., heavy nighttime snowfall and dis-

aster. Integration of them helps refine the failure of local

road conditions where weather and physical constraints are

applied. On the other hand, most SOTA Deep Learning-

based image enhancement and panoptic segmentation mod-

els show low performance. Recognizing obstacles, i.e., dirt,

rocks, and flooding, on the road are novel road conditions.

More complicated conditions will be considered for the de-

ployment of auto-driving scenarios. The proposed Panopti-

cRoad can be extended to video-based panoptic segmenta-

tion.
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Ramos, Lúcio André de Castro Jorge, Sarah Narges Fatho-

lahi, Jonathan de Andrade Silva, Edson Takashi Matsubara,

Hemerson Pistori, Wesley Nunes Gonçalves, and Jonathan
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