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Abstract

Object detection has reached strong performance in the
last decade, having seen its usage spreading to various ap-
plication areas, such as medicine, transportation, sports,
and others. However, one of the more underutilized ar-
eas where advanced detection methods have yet to fully
fulfill their promise is in the area of agriculture, where
a strong potential exists for applying learned models to
achieve practical, real-world impact affecting a large num-
ber of people. In this work, we focus on this applica-
tion area and consider the problem of orchard guidance
for ground robots, focusing on obstacle and plant detection
from RGB camera images. First, we present an overview of
public data sets used to train models to detect relevant ob-
jects from camera images and other sensor inputs. Then
we introduce a novel data set collected in blueberry or-
chards that contains camera images in various conditions
and provides blueberry bushes as targets for detection. The
introduced data set provides the research community with a
novel task of blueberry bush detection, which was not com-
monly considered thus far due to the lack of relevant data
sets. We describe a detailed analysis of the data set, and
finally provide an experimental study with several state-of-
the-art deep object detection models, that set a baseline for
the performance on this novel data set. The data set is
made available online, enriching the variability of the ex-
isting tasks in the field and supporting further development
of smart agriculture applications.

1. Introduction

Object detection in images is a topic that has gained a
lot of attention in recent years due to its widespread appli-
cations and many well-publicized successes [44]. For ex-
ample, face and text detection tasks have been thoroughly
explored by the community [21], and vehicle, pedestrian,
and traffic sign detection are being rapidly developed due to

the popularity of autonomous driving [8]. While the appli-
cations relying on object detection have become ubiquitous
in many parts of human activity, the task is less explored
in the field of agriculture [45]. Nevertheless, particularly in
this area there exists a large potential for real-world impact
through the application of advanced learned models that
can help to improve yield and crop management and effi-
ciency, thus directly affecting a large number of people that
depend on agriculture for work and sustenance. This has
many potential use cases, such as helping to reduce the en-
vironmental impact and improve production efficiency [45],
or in forestry to improve biomass management and prevent
wildfires [12], to name a few.

A large number of detection challenges in agriculture can
be brought under the umbrella of small object detection that
is used to address various tasks in agriculture [3, 22], such
as for improving yield estimation [17] or optimizing robotic
harvesting [15]. However, one of the most prominent ap-
plications in agriculture is for the task of autonomous ve-
hicle guidance, since the detected objects can be used as
landmarks for the localization of unmanned ground vehi-
cles (UGVs) and their path planning in complex environ-
ments where obtained GPS information can be unreliable
[20,24,46]. In the domain of vehicle guidance, a distinction
can be made between natural ecosystems that arise without
human interference and have an unorganized arrangement
of features within them, such as woods and forests, and ar-
tificial ecosystems where some level of organization among
features exists, such as plantations and orchards where the
plants are placed into rows [38]. In the latter case, automa-
tion in viticulture has recently received significant atten-
tion [3,4,6,26], and further diversification of applications to
more complex, bush-structured fruits is a step forward that
can lead to the development of new agricultural solutions.

In our current work we consider this task and focus on
blueberry bush detection, which is a high-value crop [28]
and whose production gained substantial popularity in Eu-
rope and North America. However, due to high production
costs and lack of workforce, there exists a demand for suc-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3646



Table 1. Publicly available annotated data sets for the task of vision-based ground vehicle navigation

Ref. Data set name Environment Targets Modality
Number of images

(original / augmented)

[10, 13] ForTrunkDet Forest
(3 locations)

Tree trunk
(eucalyptus and pinus)

RGB and thermal
(thermal for one location)

2,895 / 24,210

[11, 14] ForTrunkDet v2 Forest
(3 locations)

Tree trunk
(eucalyptus and pinus)

RGB and thermal
(thermal for one location)

5,325 / 49,608

[3, 35] VineSet - Vine Trunk
Image/Annotation Dataset

Vineyard
(4 locations)

Vine trunk RGB and thermal
(thermal for one location)

952 / 9,481

[1, 2, 26]
VineSet - Grape Bunch
and Vine Trunk Dataset

Vineyard
(4 locations)

Vine trunk
and grape bunch

RGB and thermal
(thermal for one location)

1,939 / 428,498
(split to patches)

[5, 6] Humain Lab
Vine Trunk Dataset

Vineyard Vine trunk RGB 899 / 2,786

[20]
Different Light Conditions

Pear Orchard Dataset
Pear orchard
(2 locations)

Tree trunk
(pear)

Thermal 5,313 / 7,563

Ours
Ground-level Blueberry

Orchard Dataset v1
Blueberry
orchard

Blueberry bush
and pole

RGB 2,000 / -

cessful deployment of autonomous unmanned ground and
aerial vehicles for tasks such as parcel zoning [36], spray-
ing of weeds, or soil analysis. Further, detection models of
blueberry bushes could potentially be generalized to other
bush-structured fruits, such as raspberries or blackberries,
thus expanding the application of autonomous robots in pre-
cision agriculture.

Our contributions can be summarized as follows:

• We provide and describe in detail a new open-source
data set for blueberry bush detection;

• We analyze the performance of the state-of-the-art de-
tectors, and set a baseline for the bush detection task to
support further studies.

2. Related work
In the following, we give an overview of methods and

data sets related to vision-based UGV navigation. The rele-
vant work covers applications of detection models in natural
settings such as forests, as well as vineyards and orchards.

2.1. Overview of methods

While there exist various distance sensors that can be
used for data acquisition in agriculture applications, such
as lidar, infrared, or time-of-flight cameras, RGB cameras
are still the most prominent robotic navigation method [46].
Thanks to the color information and ability to obtain high-
resolution images at a low cost, RGB cameras have the abil-
ity to extract relevant characteristics of plants, including the
species or ripeness of the detected trees [19], and allow for
reliable object detection in complex environments using one
of many efficient models developed in the last few years that
offer fast training and inference.

Most models considered in the literature have focused
on the problem of plant or plant part detection using such
2D camera-based sensor data as inputs. In [13], the authors
presented a tree trunk detection benchmark between seven
models on a forestry data composed of both RGB and ther-
mal images, and showed that YOLOv4-tiny [7] achieved the
best overall performance. Their work, extended in [12] with
a larger data set, considered thirteen models with different
input resolutions tested on four edge devices, positioned
YOLOv7 [42] as the best trade-off between accuracy and
detection speed among the baselines. In [24], a single RGB
camera is used with the Faster R-CNN model [33] to detect
tree trunks as obstacles when guiding small UAVs at low
altitudes, and the performance of this navigation system has
been verified in eleven successful flight tests.

In an orchard, particularly in vineyards, UGV naviga-
tion is important for precision viticulture and its automa-
tion [27]. In [3] authors present a vine trunk data compris-
ing RGB and thermal images and compared MobileNet [18]
and Inception v2 [39] detection models. The same data was
used in [4], where authors investigated the impacts of the
image and data size on the detection performance. Another
vine trunk data set was introduced in [6] and a compari-
son of six popular object detectors was conducted, indicat-
ing that EfficientDet-D0 [40] is the most suitable for inte-
gration on the UGV. Other orchard-grown cultures where
UGV navigation is being investigated include pears, apples,
and oranges. For example, extraction of fruit row center-
lines is done in [46] based on the YOLOv3 model for pear
tree trunk detection. Navigation in low-light settings us-
ing a thermal camera is explored in [20], where the Faster
R-CNN model [33] showed reliable performance at three
different times of the day. Within apple orchards, in [37]
authors proposed improvements to the YOLOv5 model [41]
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Figure 1. Geographic location of the blueberry orchard of interest

for the detection of tree trunks and workers with the goal of
path planning and obstacle detection. Going beyond deep
methods, the authors of [9] developed a HOG- and SVM-
based algorithm to detect tree trunks in dwarf orange or-
chards using a color camera and an ultrasonic sensor.

2.2. Data sets

Commonly used public data sets for comparison and
benchmarking of detection models are Pascal VOC, MS-
COCO, Open Image, and ImageNet [44], where these data
sets mainly contain objects that are required for visual per-
ception in a non-agricultural context. In more specific do-
mains such as agriculture or forestry, data sets are usually
purpose-made for specific tasks, limited in size and content
(e.g., number of classes and scene variability). Neverthe-
less, the abovementioned general data sets are commonly
used for pretraining of models due to the lack of data which
is a common problem for agricultural use cases [25].

In the domain of UGV guidance in outdoor conditions,
a large number of studies were done using small bespoke
data. In Table 1 we present a brief overview of annotated
publicly available data designed for the task of vision-based
ground vehicle navigation, used in the aforementioned liter-
ature. References are given for both repositories on which
the data sets are stored and papers with detailed data de-
scriptions. The focus of the table is on vision-based per-
ception, thus lidar or similar range-based data is not con-
sidered. In terms of imaging modalities RGB images are
dominant, which is expected considering the arguments dis-
cussed in Section 2.1. Thermal cameras are used either on
their own or alongside RGB cameras to enable operations
in low-light or night-time settings. All presented data sets

Figure 2. UGV platform used for data collection

are small with the number of original images in the order of
thousands, compared to popular general-purpose data sets
with millions of images [44]. Lastly, an overview of addi-
tional forestry data sets with no annotations is given in [14].

From described literature and related data sets it is appar-
ent that the work on vehicle guidance is mainly focused on
tree trunk detection, and the performance of state-of-the-art
models remains unexplored for the task of bush detection.
Nevertheless, there is a growing need for bush detection for
the task of precise UGV guidance in blueberry orchards.
In particular, such task is important for soil monitoring and
weed spraying [36], as well as in forestry where, besides
the trees, perception of objects like bushes and rocks is of
utmost importance [14].

In this paper, we aim to mitigate this problem and present
a data set to support a task of blueberry bush detection, that
can be used for benchmarking models, pretraining of mod-
els for similar use cases, or as an extension of data sets with
similar applications for the purpose of augmentation and
improving generalization. The data set is publicly avail-
able online1 and is meant to support further research into
this topic. It is planned to be further extended and improved
through the addition of more data and images in the years
to come. In addition to introducing a novel data set, we
also analyze three commonly used detection models to set a
baseline for the task of blueberry bush detection.

3. Data set for blueberry bush detection
The created data set contains 2,000 RGB images of

scenes from a blueberry (lat. Vaccinium corymbosum) or-
chard captured in the village of Babe, Serbia, with the exact
location illustrated in Fig. 1. There are two types of anno-
tated objects: the bush label corresponding to the base of the
blueberry bush, and the pole label corresponding to hail net-
ting poles and similar obstructing objects such as lamp posts

1https://doi.org/10.5281/zenodo.7813238, last accessed April 2023
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(a) Sequence of images with the camera constantly directed towards the bushes

(b) Sequence of images with the camera rotating in the blueberry row

Figure 3. Examples of image sequences, with labels indicating blueberry bush (in red) and poles (in purple)

or wooden legs of bumblebee hives (distinguishing poles is
important to prevent equipment damage in operations such
as soil sampling and pruning). Images were captured using
an RGB module of the Luxonis OAK-D device2, mounted
at a height of about 0.5 meters on our UGV platform such as
the one given in Fig. 2, with the resolution of 1920× 1080
pixels and stored in the lossless PNG format. The data com-
prises 20 image sequences of variable length. The camera
was mostly directed from the row center towards the plants
(i.e., the optical axis of the camera is orthogonal to the row
direction), although there are sequences where the camera
is rotated to look down the row, as seen in Fig. 3. The in-
tended focus was on the base of a blueberry plant and the
surrounding bank on which it grows, however, the camera
direction and angle are not constant, as seen in the figure.

Images were captured on three occasions in March, May,
and August of 2022, and they contain various artifacts and
environmental conditions that can be expected in outdoor
applications. In addition to the natural complexity of the
blueberry bush shape (see Fig. 4a) and different types of
obstacles (see Fig. 4b), some of the most notable sources
of variability in bush appearance are lighting, high contrast,
shadows, and saturation (see Fig. 4c), as well as camera oc-
clusions by weeds and branches (see Fig. 4d). Along with
the described scenes, there is a small number of outliers
such as images with no labeled objects whatsoever, images
from different perspectives, or images containing trash, ex-
amples of which are illustrated in Fig. 5. A deliberate effort
was made to collect the images in a variety of outdoor con-
ditions, however it should be noted that there existed several
data-collecting requirements that limited some of the data

2https://shop.luxonis.com/products/oak-d, last accessed April 2023

variability, such as focusing on one orchard and avoiding
fog, rain, or very low-light conditions.

3.1. Data statistics

Statistics of bounding box positions and shapes are pre-
sented in Fig. 6. The distribution of objects on the x-axis is
fairly uniform, with peaks at the edges of the image frame
corresponding to bushes that are partially out of frame. On
the y-axis, the majority of objects are located in the upper
half of the frame, which is caused by a large number of
objects in distant background rows, as well as the focus of
most images being on the point where the bush meets the
ground. In terms of the bounding box shape, poles are ex-
pectedly taller than bushes. There are two distinct modes
appearing in both object distributions, with bigger bound-
ing boxes corresponding to objects in the closest row and
smaller boxes corresponding to more distant rows.

Of the total 2,000 images, there are 1,935 images con-
taining at least one bush and 597 images containing at least
one pole, with 593 images containing both and 61 images of
orchard scenes with no annotated objects (Fig. 7). In total,
there are 5,245 and 833 instances of bushes and poles, resp.,
giving an average of 2.62 and 0.42 instances per image, re-
spectively. The data is randomly split into train, validation,
and test sets with 1,490, 200, and 310 images, resp., aiming
to achieve 75%, 10%, and 15% split. As the data contains
20 sequences, the split is made based on sequences rather
than individual images to prevent data leakage.

3.2. Data labeling

The two classes are annotated with bounding boxes, us-
ing a semi-automated iterative procedure and Python-based

3649



(a) Variation in bush shape: from young, sparse, and thin to mature, dense, and spread out

(b) Different types of obstacles in images: hail netting pole, bumblebee hive legs, and lamp posts

(c) Variation in contrast and shadows: from light and diffuse to dark and opaque

(d) Various occlusions: different types and quantities of weeds and branches obstructing the bush

Figure 4. Examples of images illustrating data variation and artifacts, with labels indicating blueberry bush (in red) and poles (in purple)

(a) Examples of background images with no objects present

(b) Views from irregular heights, positions, angles, and out-of-context objects

Figure 5. Examples of images illustrating irregular scenes present in the data set

LabelMe software [34]. A bush is defined as an above-
ground part of a blueberry plant that is connected to the
soil. An upper part of a bounding box should encompass
blueberry branch splitting and leaves, and the lower part
should include soil and vegetation in near proximity. The
goal is to focus on the triangular shape of the bush base and
encapsulate it into approximately square-shaped bounding
boxes. Bushes are labeled regardless of their position in the
image, distance from the camera, the possible occurrence

of occlusion, or strong shadow presence, even if they are
not crucial for UGV guidance, as long as they can be dis-
tinguished from the background as bushes by a human an-
notator. The region where the bush comes into contact with
the soil is important for tasks such as the selection of soil
sampling point location, or localizing a weed spraying area.
On the other hand, poles are well-defined solid objects and
they are annotated such that the bounding box captures the
visible part of a pole.
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Figure 6. Label statistics: distribution of positions and bounding box dimensions, as well as shape summary (axes are normalized)

Figure 7. Data set statistics: acquisition dates, number of images containing at least one instance of a given class, and label counts

A labeling procedure is done in the following manner.
First, 400 images that capture the data variability (such
as various types of bushes, poles, camera directions, and
occlusions) were hand-picked for manual labeling. Se-
lected images were divided into ten subsets and each was
labeled by a different graduate student annotator. An ini-
tial YOLOv5s model (discussed in more detail in Section
4) was trained using the manually-labeled data, and then
run on the remaining 1,600 images. This architecture was
chosen due to fast training and good empirical results ob-
tained during the development process. Annotations ob-
tained in such a manner were visually inspected, manually
corrected, and added or removed when necessary. This ini-
tial YOLOv5s model was used only to optimize the annota-
tion process and was discarded after the labeling process.

Since the edges of the blueberry bushes were often am-
biguous, the bounding box shapes of manual annotations
differed between 10 annotators (see Fig. 8), even when
given identical instructions as described above. Training
the initial model with these variable shapes enabled the net-
work to better converge to a bounding box shape that is con-
sistent and accurate. Annotations were then converted and
stored in the YOLO format. Note that no predetermined
augmentation was done to the data set, leaving that deci-

sion to the users of the data. Further extensions of the data
set are planned to include a significantly larger amount of
images, as well as additional two mono images for stereo
vision and depth estimation, which will further support the
development of positioning and guidance algorithms.

4. Baseline methods for bush detection
In this section we propose a baseline method for blue-

berry bush detection based on YOLOv5 [41] architecture,
which has shown great performance in terms of detection
accuracy and inference speed across multiple applications
[16, 30, 43]. Being an extension of YOLOv3, the YOLOv5
model uses CSP-Darknet53 architecture as a backbone [7],
optimized spatial pyramid pooling neck (SPPF, which is an
optimized SPP from [32]), and YOLOv3 head. The loss that
is minimized during training is composed of the following
three components: classification, objectness, and location
losses. The first two are formulated as binary cross-entropy,
while the latter is complete intersection-over-union loss [7].
The YOLOv5 model comes in a combination of different
levels of complexity (n, s, m, l, and x, corresponding to
nano, small, medium, large, and extra large) and input im-
age sizes (such as the P5 and P6 variants with the maximum
resolutions of 640 and 1280, respectively).
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Figure 8. Difference in annotations between 5 different annotators (final labels shown in solid lines, individual annotations in dotted lines)

Table 2. Experimental results for the considered detection models

Model
All Bush Pole

P R mAP
50

mAP
50-95

P R mAP
50

mAP
50-95

P R mAP
50

mAP
50-95

Param
count

Latency
[ms]

YOLOv5n 0.940 0.790 0.859 0.440 0.927 0.840 0.912 0.479 0.954 0.740 0.805 0.401 1.7M 96.4

YOLOv5s 0.892 0.800 0.873 0.472 0.882 0.871 0.909 0.500 0.903 0.730 0.838 0.444 7.0M 179.8

YOLOv5m 0.930 0.797 0.872 0.489 0.935 0.860 0.924 0.510 0.924 0.735 0.820 0.467 20.8M 313.2

Using a larger number of parameters results in more
powerful models, however the trade-off between accuracy
and inference speed makes only the lighter models viable
for the considered real-time edge-based application. For
that reason, we considered a nano version that has 1.7M
parameters (referred to as YOLOv5n), a small one with
7.0M parameters (YOLOv5s), as well as a medium one with
20.8M parameters (YOLOv5m). The default input resolu-
tion of the models is 640 × 640 pixels, and we resized the
collected images to match that resolution. Starting from a
YOLOv5 model pre-trained on the COCO data set, we con-
ducted training for 50 epochs using the proposed data set,
setting a batch size to 32, the learning rate to 0.01, and using
the Adam optimizer [23].

As no pre-determined augmentation is done to the raw
data set, we relied on the default techniques implemented
in YOLOv5 data loaders. During the training procedure, the
original set of training images is loaded and modified with
different augmentations in each epoch. Images are flipped
around the vertical axes with the probability of 0.5, ran-
domly scaled up or down by up to 50%, translated left or
right by up to 10%, and their hue, saturation, and value were
scaled by up to 1.5%, 70%, and 40%, respectively. Along
with these manipulations, mosaic augmentation [7] was ap-
plied where a 4-image mosaic is created from the current
image and three other random images to make the detection
model more robust.

Following the YOLO framework, the model inference is
conducted by dividing an input image into a grid of cells (set
to 32× 32) and predicting a set of bounding boxes for each
cell according to the predefined number of anchor boxes of
different sizes (set to 10 × 13, 16 × 30, 33 × 23, 30 × 61,
62×45, 59×119, 116×90, 156×198, 373×326). During
the evaluation, a default matching IoU threshold of 0.6 was
used. We set the detection confidence threshold value to

that for which the max-F1 is reached on the validation set,
resulting in a detection threshold of 0.24 in the final evalua-
tion. Finally, Non-Maximum Suppression (NMS) [31] with
IoU threshold of 0.6 is applied to model output in order to
eliminate redundant detections.

5. Experimental results
In order to evaluate the considered models we calcu-

lated the following four metrics: precision (P), recall (R),
mean average precision (mAP) with IoU threshold set to
0.5 (mAP50), and average mAP with a threshold in a range
from 0.5 to 0.95 (mAP50-95) [29]. Metrics are calculated
considering joint detections from both classes (referred to
as ”All”), as well as for each class separately (referred to
as ”Bush” and ”Pole”). Inference times were computed and
reported for a single image by evaluating on CPU rather
than GPU, in order to better match the target edge platform
where the models would be deployed.

The evaluation results are presented in Table 2. We can
see that YOLOv5m achieves slightly better metrics than ei-
ther YOLOv5n or YOLOv5s, although these models with
fewer parameters still achieved comparable results on both
classes. It should also be mentioned that YOLOv5n and
YOLOv5s exhibit significantly faster inference times than
YOLOv5m (nearly 4 and 2 times faster, respectively). We
also note that the precision is quite large across the board,
with somewhat lower recall, which we further explore in the
remainder of this section.

To better understand the detection performance we focus
on YOLOv5s given its good balance between accuracy and
latency, and provide several illustrative qualitative exam-
ples, presented in Fig. 9. Dashed yellow and cyan bounding
boxes represent blueberry bush and pole detections, respec-
tively, while solid red and magenta bounding boxes repre-
sent their corresponding ground truth labels. Descriptions
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Figure 9. Examples of the detection results of YOLOv5s, detailed discussion provided in the text

of these examples are given in left-to-right top-to-bottom
order. In the first image we see an example of a best-case
scenario, correct detection of two bushes and one pole in
a scene with a small amount of occlusion by the weeds.
When it comes to the second example, two observations
can be made. First, it illustrates the case where the de-
tected bounding box deviates significantly from the label,
while still managing to capture the bush quite well. Second,
it shows two significantly different plants, one young and
sparse and the other mature and covered by leaves, both
detected by the model. Moving forward, the third image
illustrates the model’s ability to detect bushes at different
scales, with varying distances as their locations shift down
the row. The fourth image illustrates how well the model
handles severe occlusions by weeds, as well as the ability
to detect very distant bushes that are barely present in the
image. We can see that both of these detections are nearly
perfect in this example.

In the bottom row of Fig. 9 we focus on mistakes and
deficiencies encountered during the analysis. The fifth im-
age illustrates an interesting situation where the model pre-
dicted two false positive bush detections which do resem-
ble true objects although the significant occlusion makes the
example very ambiguous, and the annotators eventually de-
cided not to label these cases. The sixth and seventh exam-
ples are images with multiple false negative objects that the
model failed to detect. We can see that the missed bushes
are mostly further away from the camera, or occluded by
the other objects. While we are investing efforts to re-
solve such failure modes, we note that more fundamental
improvements to the detectors are out of the scope of our
current work. Instead, our focus is on providing reasonable
baselines on the novel data set that are mostly relying on
default settings, which can support future work on further
model iterations and improvements. The eighth and final
image shows an object of a pole class that is of a larger size
and not present in the training set, included in the test set to
help evaluate the generalization abilities of the model. We

see the model detects such a large object, although the de-
tection box does not fully match the label’s true dimensions.

6. Conclusion
In our current work we explored the topic of vision-based

blueberry bush detection. The literature review showed that
bush detection is mostly an unexplored topic in the domain
of UGV guidance and similar ground-level applications, de-
spite its importance in areas of agriculture and forestry. It
was shown that the majority of the focus in these fields is
on tree trunk detection, which is reflected in detection tar-
gets of publicly available data sets, while there are no major
available data sets focused on bushes. We presented a novel
ground-level blueberry bush data set, annotated for the de-
tection of bushes and obstacles. The data set is captured in a
blueberry orchard, encompassing a large variability in plant
characteristics, camera positions, lighting settings, and oc-
clusions. Both the data set and the labeling procedure were
described in detail. Along with the novel data, multiple
variations of the state-of-the-art YOLOv5 detection model
were used to set the baseline detection metrics on this data
set. Results showed that trained models achieved promis-
ing evaluation metrics on the considered task, thus setting a
good basis for further work on improving the performance
on the task of blueberry bush detection.
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[28] José Gilberto Sousa Medeiros, Luiz Antonio Biasi, Clau-
dine Maria de Bona, and Francine Lorena Cuquel. Phenol-
ogy, production and quality of blueberry produced in humid
subtropical climate. Revista Brasileira de Fruticultura, 40,
2018. 1

[29] Rafael Padilla, Wesley L Passos, Thadeu LB Dias, Sergio L
Netto, and Eduardo AB Da Silva. A comparative analysis
of object detection metrics with a companion open-source
toolkit. Electronics, 10(3):279, 2021. 7

[30] Delong Qi, Weijun Tan, Qi Yao, and Jingfeng Liu.
Yolo5face: Why reinventing a face detector. In Computer
Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part V, pages 228–244. Springer,
2023. 6

[31] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 779–788, 2016. 7

[32] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 6

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 2

[34] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and
William T Freeman. Labelme: a database and web-based
tool for image. Int. J. of Computer Vision, 77(1), 2005. 5
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