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Abstract

The task of collaborative human pose forecasting stands
for predicting the future poses of multiple interacting peo-
ple, given those in previous frames. Predicting two people
in interaction, instead of each separately, promises better
performance, due to their body-body motion correlations.
But the task has remained so far primarily unexplored.

In this paper, we review the progress in human pose fore-
casting and provide an in-depth assessment of the single-
person practices that perform best for 2-body collabora-
tive motion forecasting. Our study confirms the positive im-
pact of frequency input representations, space-time separa-
ble and fully-learnable interaction adjacencies for the en-
coding GCN and FC decoding. Other single-person prac-
tices do not transfer to 2-body, so the proposed best ones do
not include hierarchical body modeling or attention-based
interaction encoding.

We further contribute a novel initialization procedure for
the 2-body spatial interaction parameters of the encoder,
which benefits performance and stability. Altogether, our
proposed 2-body pose forecasting best practices yield a
performance improvement of 21.9% over the state-of-the-
art on the most recent ExPI dataset, whereby the novel
initialization accounts for 3.5%. See our project page at
https://www.pinlab.org/bestpractices2body

1. Introduction
Human 2-body pose forecasting predicts the future body

poses of two people in interaction jointly. The task is rele-
vant to long-term pose tracking [3], to understanding inter-
acting pairs in sports such as dancing [17] and to the col-
laborative assembly in industry [12, 26], towards human-
robot collaboration [43]. Considering the concurrent pre-
diction of two bodies helps in cases where the people act

*Equal contribution.

synergistically. However, this task has remained mostly
unexplored and limited to the dataset of [17]1. Also, this
differs from the related task of human trajectory forecast-
ing, where social interaction has been key to most recent
progress [27, 41, 42, 51].

There has been vast progress in single human pose fore-
casting [10, 19, 36], which has not transferred to the 2-body
counterpart. Single-person techniques [6, 9, 18] tested on
two-people data underperform, which is unsurprising, as
they neglect the body-body motion correlations [17]. This
motivates the current work, where the most recent model-
ing advancements are analyzed and integrated. Here, we
refer to the best and complementary modeling aspects as
best practices, which we leverage to bootstrap research on
2-body forecasting.

We propose a systematic analysis of single-person
skeleton-based best practices by considering three process-
ing stages (cf. Fig. 1): input representation, encoding, and
decoding. For the first stage, we identify Discrete Cosine
Transform (DCT) [7, 17, 37–39] as an asset to cope with
the periodic body movements. For the second stage, we set
to encode the body kinematics by Graph Convolutional Net-
works (GCN), which power the vast majority of most recent
techniques [17, 19, 37–39, 45] and subsume general MLP-
based formulations [19]. Here we evaluate as best practices
the separability of space and time dynamics [45], the learn-
able adjacencies versus kinematic trees [50], attention [17],
and hierarchical body representations [10]. Finally, for the
third stage, we contrast the widely-adopted [36, 43, 45] de-
coding with convolutional networks (a.k.a. Temporal Con-
volutional Network–TCN [5]) with the simpler Fully Con-
nected (FC) layers [19].

We propose a novel initialization technique for the learn-
able GCN parameters in the encoder. A large body of lit-
erature asserts the importance of initialization for perfor-
mance, convergence speed, and robustness, and theory has

1Beyond [17], another multi-body dataset has been introduced by [13],
but annotations are only available for one individual at the time of writing.
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Figure 1. The general architecture of a 2-body pose forecasting model employing best practices. First, 3D joint coordinates are mapped
to frequencies by DCT coefficients, a best input representation practice. Secondly, body kinematics are encoded by layers of a GCN
σ(AsAtXW ), with separable space-time adjacency matrices σ(At, As), learned unconstrainedly, upon our proposed parameter initializa-
tion. Thirdly, the FC-based decoder outputs future poses for the two people, mapped to 3D coordinates with inverse-DCT (IDCT).

been devised for MLP [16] and ConvNets [20, 28]. Up
until recently, there has been a limited necessity for ad-
hoc GCN initialization theories since techniques leveraged
mainly shallow networks with fixed graphs structures (e.g.,
the people neighbors [4,30,46], the kinematic tree [10,50])
or spectral normalizations [23,25]. Since we determine that
unconstrained learnable GCN affinities are best practices,
we also develop a novel theory (See Sec. 3.4) and exper-
imental study (See Sec. 4.3) on the initialization of GCN
parameters.

Integrating the selected best practices into a 2-body pose
forecasting model yields a large-margin improvement of
21.9% wrt the state-of-the-art (SoA) on the most recent
ExPI dataset [17]. The best-practice model is also 5 times
faster than the current best technique and only has 2% of
its parameters (cf. Table 5). The improvement is similarly
consistent in generalization tests, across unseen actions with
an overall improvement of 14.7% (cf. Table 2) and 14.2%
for unseen actors (cf. Table 3). And the same best-practice
model performs on par (cf. Table 4) with the leading single-
person pose forecasting techniques on the established Hu-
man3.6M dataset [22], without any hyper-parameter tun-
ing. The novel initialization, proposed for the unconstrained
learning of GCN affinities, contributes an average perfor-
mance improvement of 3.5%, and it increases stability, as it
reduces the long-term forecasting performance variance by
(at least) a factor of 2.

The main contributions are summarized as follows:

• We thoroughly evaluate all leading best practices from
single-person pose forecasting and bootstrap research
on the 2-body task counterpart;

• We propose a novel theory and experimental study on
the initialization of GCNs, applying to unconstrained
learnable affinities, accounting for an increase in per-
formance of 3.5% and a 2-fold increase in stability;

• On a closed-set dataset configuration, the best-practice

model outperforms the 2-body forecasting SoA by a
large margin of 21.9% while employing 2% of the pa-
rameters and running 5 times faster.

2. Related Work
Here we review related work from the field of human

pose forecasting, specifically approaches of spatio-temporal
pose modeling and hierarchical body representations. Ad-
ditionally, we review relevant literature from initialization
and multi-agent trajectory forecasting.

Human pose forecasting. Established methodologies for
(single) human pose forecasting include Temporal Convo-
lutional Network [30], Recurrent Neural Network [14, 36,
38, 48] and Transformer Networks [2, 17]. The MLP-based
approach of [19] holds SoA performance.

Graph Convolutional Networks (GCN) [25, 50] are most
popular on the task [10, 32, 43], due to their simplicity and
effectiveness. GCNs model the kinematic body part interac-
tions by a plain adjacency matrix at a fraction of the parame-
ters of the otherwise required attention mechanism [17,37].
In this realm, [37] integrates DCT to consider motion fre-
quency; [10, 33] adopt multi-scale hierarchical representa-
tions, grouping joints to model relations between coarser
body parts; [43, 45] factorize the spatial and temporal ad-
jacency matrices, and they propose to learn them, uncon-
strainedly, without kinematic tree priors nor spectral nor-
malization.

As we know, the only work that addresses multi-body
pose forecasting is [49]. However, they utilize datasets that
do not contain highly interactive actions. For comparison,
we ran their model with our setup as a comparison with
our proposed method (See Tab. 1). By contrast, for the
task of 2-body pose forecasting, [17] provides the solely-
available dataset (ExPI) and the only 2-body-specific tech-
nique, adaptation of [37] with cross-person attention. Not
surprisingly, this outperforms single-person techniques.
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Initialization. A proper initialization improves perfor-
mance and accelerates convergence [29], limiting vanish-
ing and exploding gradients [16,20]. Techniques have been
concerned with initializing the weights of linear [16] and
convolutional [20, 28, 40] layers, generalizing from hyper-
bolic (tanh) to rectified-linear unit (ReLU) activations. For
GCNs, spectral techniques [25, 34, 53] rely on the spectral
normalization of the adjacency matrix to elude vanishing
and exploding gradients, while spatial techniques [4] resort
to degree-normalized transition matrices, derived from the
adjacency. In all prior study cases, the graph connectivity is
given. To the best of our knowledge, this work presents the
first theoretical and empirical analysis of GCN initialization
in the case of unconstrained learnable graph connectivity
and edge weights.

Multi-agent trajectory forecasting. For trajectory fore-
casting, employed techniques include attention [21, 27, 51]
and graph-based modeling [31, 42, 44]. The multi-agent re-
lations may parallel the joint-joint interaction. However,
nodes in a graph of joints have a fixed cardinality and a
semantic meaning (head, torso, hand, etc.), which does not
apply to general agent-agent graphs. Notably, best trajec-
tory forecasting techniques model the agent-agent interac-
tion [21,27,31,42,44,51], which aligns with the motivation
of this work, to forecast the poses of people jointly.

3. Methodology
We explore the best models for single-body pose fore-

casting [10, 19, 37, 38, 45] and select best practices for
the 2-body task. We group and evaluate practices in
three processing stages (cf. Fig. 1): 1) input representation
(Sec. 3.1); 2) encoding of the body kinematics in the ob-
served frames (Sec. 3.2); 3) decoding of the future poses
(Sec. 3.3). In Sec. 3.4, we provide a theory for the proposed
unconstrained-GCN initialization. To facilitate reading, we
mark with a green check ✔ the selected best practices upon
evaluation, cf. Sec. 4.

Problem formalization. Across T frames, we observe
the motion of two human bodies B1 and B2, each con-
sisting of J three-dimensional joints. At time t, the 3D
body pose of each person is given by corresponding tensors
B1
t ,B2

t ∈ R3×J . We define the concatenation of two bodies
at timeframe t as xt = B1

t ||B2
t , thus the observed motion

history in T frames is Xin = [x1, . . . , xT ] ∈ RT×3×2J .
Our goal is to predict the future N frames’ poses Xout =
[xT+1, . . . , xT+N ] ∈ RN×3×2J .

Preliminaries on the encoder-decoder baseline. We
adopt an encoder-decoder architecture [43, 45], and follow-
ing [50, 52], we encode the observed body parts and their

kinematic interaction through a GCN, defined as

Y = σ(AXW ), (1)

where A is the adjacency matrix, W learnable weights
and σ an activation function. Other encodings such as
RNNs [8, 11] and MLPs [19] have been proposed, whereas
we opt for a graph-based model to exploit the non-euclidean
nature of graphs. As a decoder, we examine either a single
fully connected layer as in [19] or a convolutional architec-
ture [36, 45].

3.1. Input Representation

Most recent techniques [1, 19, 37, 38] use Discrete Co-
sine Transform (DCT) to represent 3D coordinate input as
frequencies, under the claim that this captures the dynamic
patterns of moving people better.

Frequency encoding ✔
Given the j-th body joint and the t-th timeframe we define
the i-th DCT coefficient as

F(X in)j,i =

√
2

T

T∑
t=1

xj,t
1√

1 + δi1
cos (α) (2)

α =
π

2T
(2t− 1)(i− 1), (3)

where the Kronecker delta function δij ∈ 0, 1 has null
value if i ̸= j and 1 otherwise. After inference, frequen-
cies are remapped to the pose representation via the inverse
DCT decoding function F−1. Previous works [37,39] trun-
cate high frequencies to avoid jittery motion; we consider
the impact of the number of retained DCT coefficients and
discover that employing all of them yields the best perfor-
mances. Studies on the impact of DCT coefficients are
shown in Sec. 4 and Table 5.

3.2. Encoding Best Practices

Best-performing single-pose forecasting GCN encoders
have considered two main aspects: the space-time separa-
bility of adjacency weight matrices and learning the body
kinematic graph connectivity and weights. We detail these
two aspects and empirically compare them in Table 5. Fur-
thermore, we also consider hierarchical representations of
the skeleton proposed by [10], but this is not a best practice,
as we determine experimentally. Nor is it a good practice
to add attention, as we discuss in this section and quantita-
tively evaluate in the next.

Space-time separability ✔
Each graph’s intra-relations are expressed through a GCN-
based framework that encodes the spatiotemporal motion
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and the relationships between keypoints in one’s skele-
ton [45, 50]. Tensor X ∈ RT×2J×C represents a cou-
ple’s skeleton pose and motion, adjacency matrices As ∈
RT×2J×2J and At ∈ R2J×T×T are responsible for learn-
ing spatial and temporal interactions respectively, as in [45].
Matrices are fully learnable, no kinematic tree is used, and
the model is free to grasp the relation between body joints.
Thus, this module is formulated as follows:

Y = σ(AsAtXW ), (4)

where σ is an activation function and W ∈ RC×C′
is a

tensor of learnable weights defined as a convolution with
kernel dimension k = 1. Thus, it is conceptually similar to
a fully connected layer. However, unlike the MLP design of
[19], GCN shares the weights of W across all channels.

Learning the graph connectivity and weights ✔
Some works [10, 50] use inductive biases based on the hu-
man body, such as kinematic trees or specifically-devised
connectivity weights. In contrast, others learn the graph
adding a constraint on the optimization by spectral normal-
ization [24]. Instead, we follow what is done in the most re-
cent work [45]: unconstrained optimization of graph edges
and weights i.e., we set Ast for nonseparable GCN and As,
At in case of space-time separable GCN as a fully learnable
matrix. This is effectively a best practice, experimentally
proven in Table 5.

Attention
A GCN model equipped with attention is also known as a
Graph Attention Network (GAT) [47]. In a GAT, attention
re-defines the adjacency matrix terms as a function of the
node embeddings. We employ attention to encode the rela-
tion between the two actor embeddings B1

h and B2
h:

B1
h = B1W1,B2

h = B2W2, (5)

Where B1,B2 ∈ RT×J×C and W1,W2 ∈ RC×C are learn-
able weights to map features in a high-dimensional space.
We use these features to calculate attention weights as fol-
lows:

η = softmax
(
σ(B1

hW3||(B2
hW4)

T)
)
, (6)

Where B1
h,B2

h ∈ RT×J×C , W3,W4 ∈ RC×1 and σ is a
LeakyRelu activation function. We apply softmax to get
attention weights η ∈ RT×n×m constituiting n joints in B1

and m joints in B2 and reweight B1
h and B2

h as follows:

B1
out = B1

hη,B2
out = B2

hη
T, (7)

Where B1
h,B2

h ∈ RT×J×C and B1
out, B

2
out are the outputs

of attention module. We observe that in its more common

use [47], graph attention is used to estimate the interaction
coefficients of the adjacency matrix A. This is done by
learning a function (general MLP) of two node embeddings.
By contrast, when the nodes of the graph are semantically
given (body parts of a leader and follower person), one may
learn the interaction coefficient (i.e., each term of A) di-
rectly, with a joint function of all nodes (not just pairs). The
direct estimation results in better performance, as shown by
the experiments in Sec. 4.3. Hence, the GCN with fully-
learned parameters is selected as a best practice rather than
attention.

Hierarchical body parts
To the best of our knowledge, a high-level motion repre-
sentation improves the prediction of human poses [33]. [10]
achieves this by concatenating the higher level as an extra
node and hand-crafting ad-hoc neighborhoods of nodes.
We integrate a module within the model that enables it to
decrease the number of skeleton keypoints for both bodies.
We allow the model to naturally learn aggregations between
nodes by excluding artificial aggregations while shifting be-
tween hierarchies. We employ a linear layer that learns an
optimized aggregation when downscaling, and the same is
done when upscaling to retrieve the original size skeleton.
Although we gain a small improvement by adopting hierar-
chies, it becomes a limiting factor rather than a gain when
combined with other best practices.

3.3. Decoding Best Practices

In earlier works, convolutions have been employed for
the decoding stage [15, 35, 45]. However, the most recent
SoA method chose a plain, fully connected layer [19]. In
this section, we will analyze the two solutions, and in Sec. 4,
we will show why we choose the latter.

Convolutional-based decoder
In the convolutional-based decoder, convolutional layers
applied to the temporal dimension are responsible for esti-
mating the pose. It aims to forecast the subsequent frames,
t+1 to t+n, given the first t frames. This structure is known
as Temporal Convolutional Network (TCN) [15, 35, 45].

FC-based decoder ✔
The decoder consists of a single linear layer [19] in charge
of mapping the observed T frames to the predicted N .

3.4. Novel Adjacency Matrix Initialization

We propose a novel initialization methodology, aim-
ing to preserve variance during the forward pass, which
matches the preservation of gradients in the backward.
Since over several layers a non-unit variance results in van-
ishing or exploding signals, and neither of those is good for
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training, as they stall the gradient, we aim to preserve the
variance. To do that, under the assumption of a neural net-
work consisting of only linear layers and linear activation
functions, [16] proposes to estimate the standard deviation
by considering the number of neurons in both the current
and previous layer.

It is particularly relevant for our model because it com-
prises 8 layers while GCNs are often shallow [25]. We
propose to randomly initialize the fully learnable matrices
As, At, and W according to a uniform distribution, whose
bounds are defined in such a way that considers both the
number of graph nodes and the number of timeframes.

Convolutions on graphs that adopt a normalized adja-
cency matrix [25, 46] use a well-known graph and do not
let all nodes interact with each other. Furthermore, normal-
ization avoids vanishing and exploding gradient, yet it lim-
its the performance and, in the end, fully-learnable yields
the best performances [43, 45]. Here is the importance of
randomly initializing an ad hoc fully learnable adjacency
matrix, avoiding exploding or vanishing gradients. The re-
sponse from the Separable GCN at layer l, according to
Eq. (4), is

Xl+1 = σ
(
Al

sA
l
tX

lW l
)
, ∀l. (8)

Let’s assume matrices As, At, and W to be independent,
have zero mean [16, 20] and uniformly distributed. To con-
strain variance, hence stabilize training and avoid exploding
or vanishing gradient, constraining the variance of the out-
put product of nl neurons at layer l times W to 1 [20] is a
sufficient condition, i.e.,

1

k
nlV ar[W l] = 1, ∀l, (9)

where k = 2 in the case of Re-LU activations, which are
asymmetric [20] (while k = 1 for symmetric activations
such as the tanh). For the spatial matrix, rather than the
number of neurons nl, we consider the number of nodes v,
which As integrates

1

k
(nl

v)V ar[Al
s] = 1, ∀l. (10)

Similarly, we consider t time frames to initialize the tempo-
ral matrix At,

1

k
(nl

t)V ar[Al
t] = 1, ∀l. (11)

When initializing W with a zero-mean uniform distribu-
tion, the constraint of Eq. (9) yields the following distribu-
tion for the initialization:

W l ∼ U

[
−
√

k

nl
,

√
k

nl

]
, ∀l. (12)

The spatial and temporal matrix constraints of Eqs. (10) and
(11) translate to the following initializing distributions for
As and At respectively:

Al
s ∼ U

[
−

√
k

nl
v

,

√
k

nl
v

]
, (13)

Al
t ∼ U

[
−

√
k

nl
t

,

√
k

nl
t

]
, ∀l. (14)

4. Experiments
We thoroughly evaluate the proposed best practices on

the most recent and challenging 2-body pose forecasting
dataset ExPI [17], comparing against the SoA and the best
single-pose forecasting techniques adapted to the task. The
selected best practices also perform on par with the SoA
in single-pose forecasting on the established Human3.6M
dataset [22].

4.1. Benchmark and baselines

Datasets. The dataset used for multi-body pose forecast-
ing, ExPI [17], is a collection of two different dancing pairs
performing Lindy Hop sessions, dubbed “extreme human
interaction” by the authors [17]. Data were collected in a
multi-camera platform with 68 synchronized and calibrated
RGB cameras and a motion capture system with 20 mocap
cameras. The missing points were manually fixed to ensure
good data quality. ExPI contains 115 sequences at 25 fps
with 18 body joints for each of the two persons involved.
These agents are grouped in two couples, dubbed (A1

c ,A2
c),

which perform 16 different actions. Actions A1 to A7 are
common to both couples; A8 to A13 performed only by A1

c

and A14-A16 by A2
c . Based on this, ExPI provides three

different splits to test the model on:

• Common. Training and test set are composed only of
actions performed by both couples. The ones belong-
ing to A2

c define the train set, and A1
c’s the test set.

• Unseen. Differently from the previous one, this split
has common actions to both A1

c and A2
c as the train set

and couple-specific actions as the test one. This subset
allows us to test for generalization.

• Single. In this split, a single action from couple A2
c

is used as a train set, and the same action from cou-
ple A1

c as the test set. It allows testing how the model
generalizes to a new couple for each action.

We also test on Human3.6M [22], an established dataset
for single-person pose forecasting. It consists of a total of
3.6 million poses, acquired at 25 fps, depicting seven actors
performing 15-day real-life actions, e.g., walking, sitting,
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Action A1 A2 A3 A4 A5 A6 A7 Average ↓
Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [38] 70 125 157 189 131 242 321 426 102 194 260 357 62 117 155 197 72 131 173 231 81 151 200 280 112 223 315 442 90 169 226 303
HisRep [37] 52 103 139 188 96 186 256 349 57 118 167 240 45 93 131 180 51 105 149 214 61 125 176 252 71 150 222 333 62 126 177 251
MSR-GCN [10] 56 100 132 175 102 187 256 365 65 120 166 244 50 95 127 172 54 100 138 202 70 132 182 258 82 154 218 321 69 127 174 248
MRT [49] 50 98 134 188 79 155 212 307 53 106 152 229 47 95 131 185 52 105 149 215 58 118 166 242 65 136 199 299 58 116 163 238
siMLPe [19] 49 102 137 177 88 180 244 336 57 122 174 254 45 100 137 182 50 103 144 206 59 126 175 250 77 164 134 348 60 128 178 250
XIA [17] 49 98 140 192 84 166 234 346 51 105 154 234 41 84 120 161 43 90 132 197 55 113 163 242 62 130 192 291 55 112 162 238
Ours 34 71 105 159 56 121 181 292 36 78 118 195 30 66 98 145 35 74 113 171 41 88 129 193 47 108 166 261 39 86 129 202

Table 1. Results in millimeters for ExPI Common actions split. Our model achieves state-of-the-art results in all actions considered, at
each predicted time instant.

Action A8 A9 A10 A11 A12 A13 A14 A15 A16 Average ↓
Time (msec) 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800

LTD [38] 252 333 387 174 228 268 139 184 217 239 324 394 175 226 259 148 191 220 176 240 286 143 178 192 146 193 226 177 233 272
HisRep [37] 157 219 257 134 190 233 96 146 187 195 283 358 121 169 206 92 129 160 129 193 245 80 104 121 112 154 187 124 176 218
MSR-GCN [10] 177 239 295 143 179 213 157 222 281 230 289 335 188 245 290 148 198 248 234 319 384 176 232 278 162 218 266 179 238 288
MRT [49] 170 231 308 145 199 270 141 245 338 225 327 481 131 180 253 120 169 238 165 229 322 110 151 209 105 144 201 146 205 291
siMLPe [19] 165 220 258 137 198 246 104 154 198 210 301 432 114 156 187 94 132 160 140 204 255 91 119 138 120 166 204 131 183 225
XIA [17] 156 216 256 126 175 213 96 152 205 191 287 377 118 165 203 91 129 162 122 183 232 81 107 128 106 150 185 121 174 218
Ours 113 164 203 114 167 209 85 136 183 153 231 304 100 148 188 82 125 162 91 138 179 79 109 132 85 124 156 100 149 191

Table 2. Results in millimeters for ExPI Unseen actions split. On average, we outperform the baseline considered over short and long time
horizons.

and talking on the phone. Following [10, 37, 39], we train
on subjects S1, S6, S7, S8, S9, we use S11 for validation,
and S5 for testing.

Evaluation metrics. We validate performance by the
Mean per joint position Error, defined as the MPJPE
[22, 38] and renamed as JME in [17] at a future frame t:

LJME = LMPJPE =
1

V

V∑
v=1

||x̂vt − xvt||2, (15)

where x̂vt and xvt are the 3-dimensional vectors of a tar-
get joint and the ground truth, respectively. For the joint
evaluation of the 2-body position error, the two body poses
are normalized into the same reference system. In this work,
we keep the MPJPE notation.

Baselines. We select the latest and best-performing
single-body pose forecasting models, and we adapt them to
predict the motion of two people. XIA-Transformer [17] is
the only 2-body pose forecasting method in the literature.
XIA uses a transformer to encode skeleton features and
model the body-body interaction via attention. We consider
[49] the only multi-body model based on a Transformer ar-
chitecture. Due to the lack of multi-body pose forecasting
models, we also compare them to single ones. LTD [38]
consists of a cascade of GCN blocks acting on frequen-
cies, and its extension, HisRep [37], inserts a motion at-
tention mechanism based on DCT coefficients operating on
sub-sequences of the input. MSR-GCN [10] is a hierarchi-
cal GCN-based technique that applies multi-scale aggrega-
tions, so coarser scales represent groups of body joints and

coarser motion. In Table 4 we compare ourselves, again,
to LTD [38], HisRep [37] and MSR-GCN [10] and, addi-
tionally, on two recent single-body models. SeS-GCN [43]
adopts an all-separable GCN with a teacher-student ap-
proach, and the SoA [19], which consists of MLPs encoding
spatial and temporal relationships.

4.2. Evaluation of human pose forecasting

We evaluate our model quantitatively and qualitatively
on ExPI’s [17] provided splits. We further test our
model’s generalization power on the single-body dataset
Human3.6M.

ExPI Common Actions. Table 1 shows the results ob-
tained from our best model with our selected best practices.
These outperform every tested method by a large margin,
both the SoA single-person and the SoA 2-body pose fore-
casting techniques. The overall mean improvement is 22%
over all actions and all time horizons. In particular, on all
actions, the improvement for short-term future predictions
(200 msec) is 29% and 15% for the long-term.

ExPI Unseen Actions. Table 2 also showcases improve-
ments using the proposed best practices. On average, across
all forecasting horizons, the improvement is 14%.

ExPI Single Actions. In Table 3, also for the case of sin-
gle actions, the best practices report an average improve-
ment of 14.2%. They outperform all other tested techniques
in 6 (out of 7) actions at all predicted time horizons. It con-
firms the generalization of our model to new people.
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Action A1 A2 A3 A4 A5 A6 A7
Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [38] 70 126 155 183 131 243 312 415 102 194 252 338 62 117 153 203 71 131 171 231 81 151 199 299 112 223 306 411
HisRep [37] 66 118 153 190 128 231 308 417 74 143 205 295 64 120 159 191 63 121 166 227 90 168 232 312 88 166 232 332
MSR-GCN [10] 64 108 136 170 119 210 282 385 79 144 189 265 59 103 134 173 65 118 162 225 86 151 201 283 96 178 255 362
MRT [49] 63 120 160 218 97 190 249 346 77 148 193 240 51 102 139 186 61 118 163 226 58 115 151 198 82 172 244 340
siMLPe [19] 60 113 145 200 104 202 268 373 76 150 205 305 58 110 151 203 64 123 163 218 76 152 207 277 93 180 254 341
XIA [17] 64 120 160 199 109 200 275 381 59 117 174 277 60 116 162 209 53 106 152 221 65 122 166 223 74 144 203 301
Ours 52 94 128 179 89 176 242 329 42 90 129 200 49 96 134 185 48 99 140 196 52 105 144 198 68 140 204 305

Table 3. Results in millimeters for ExPI Single actions split. We outperform in 6 out of 7 stocks all baselines considered according to the
MPJPE metric. For the other stocks our model is comparable with the current state of the art.

ExPI qualitative. In Fig. 2, the current SoA, ExPI [17],
is compared against the best-practice model (Ours), qualita-
tively. The first three columns depict observations; the fol-
lowing four are future motion predictions. The light-colored
pictograms represent ground-truth motion. The best prac-
tices provide, in general, better predictions. Best improve-
ments are observed in the case of large motion displace-
ments, cf. the last two rows, action “Cartwheel”.

MPJPE ↓
Time Horizon (msec) 160 400 560 1000
LTD [38] 23.4 58.9 78.3 114.0
HisRep [37] 22.6 58.3 77.3 112.1
MSR-GCN [10] 25.5 63.3 81.1 114.1
SeS-GCN [43] 29.0 64.0 84.4 113.9
siMLPe [19] 21.7 57.3 75.7 109.4
Ours w/o init. 27.3 64.6 83.1 116.3
Ours 26.8 63.1 81.1 113.2

Table 4. Error in millimeters on Human3.6M dataset. We show
how our method adapted to single-person human pose forecasting
is comparable with the best-performing techniques on average.

Evaluation of single-person pose forecasting. We test
how the 2-body best practices transfer back to single-person
pose forecasting for a sanity check. In Table 4, observe that
the best practices (Ours) yield results within a small margin
compared to SoA. Note that, for the sake of this experiment,
we just run the 2-body best-practice model as is. Without
any hyper-parameter tuning. Furthermore, the initialization
gives an overall 2.4% over the counterpart model that does
not use it.

4.3. Evaluation of Best Practices

In this section, we refer to Table 5 and thoroughly as-
sess each selected practice. First, we select a baseline GCN
model. Secondly, we assess each practice’s performance,
added as a standalone extension. Thirdly, we integrate prac-
tices. Best practices are assessed based on their standalone
performance improvement and complementarity. Finally, in
Table 6, we evaluate the impact of the proposed initializa-
tion in more detail.
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Figure 2. Visual comparison of our proposed best-practice model
(Ours) against ExPI [17]. The first three columns are observed,
and the last four are predicted poses. Light-colored and dashed
skeletons are GT, and darker and solid ones are predictions. Note
the improved larger-displacement motions (Cartwheel).

Baseline selection. We first select a baseline model on
which we test each best practice. We identify three possible
GCN-based encoder architectures:

• Space-time GCN [50]: this is a plain GCN model
σ(AXW ) with learnable A (learnable connectivity
and graph weights)

• Space-time separable GCN with learnable kinematic
tree: inspired by [50] and [45] to factorize the ad-
jacency matrix into two spatial and temporal learn-
able matrices, whereby the spatial connectivity is con-
strained to the kinematic tree

• Space-time separable GCN with fully-learnable con-
nections: lastly, we evaluate a space-time separable
GCN with fully-learnable adjacencies matrices taking
inspiration from [45].

As shown in Table 5, the space-time GCN with separa-
bility (row 3) has an overall decrease of error by 25% com-
pared to the base GCN (row 2). A considerable additional
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Model Input Repr. Encoding Decoding MPJPE ↓ Param. ↓
Freq. Enc. ✓ Learn. ✓ Sep. ✓ Init. ✓ Att. Hier. FC ✓ 200 400 600 1000 (M)

1 [17] ✓ ✓ ✓ 55 112 162 238 8.5
2 Space-time GCN ✓ 108 152 255 379 1.08
3 (kin. tree) ✓ 81 129 183 260 0.18
4 ✓ ✓ 55 112 156 224 0.18
5 Input repr. practice ✓ ✓ ✓ 41 88 135 219 0.18
6 ✓ ✓ ✓ 53 106 148 216 0.18
7 Encoder practices ✓ ✓ ✓† 55 112 157 228 9.9
8 ✓ ✓ ✓ 51 104 148 223 0.18
9 Decoder practices ✓ ✓ ✓ 51 104 145 212 0.17
10 ✓ ✓ ✓ ✓ 41 89 133 208 0.17
11 ✓ ✓ ✓ ✓ ✓ 51 104 146 217 0.17
12 Best model ✓ ✓ ✓ ✓ ✓ 39 86 129 202 0.17

Table 5. Combinations of best practices. From left to right, we have frequency encoding, fully learnable connections, Space-time sepa-
rability, initialization, attention mechanism, hierarchy, fully connected layer as a decoder. †: we implement a Graph Attention Network
(GAT) tailored for GCNs, similar in spirit to [17] designed for transformers.

performance boost (18% over all frames) s also given by
using the separability and fully-learnable connections (row
4) instead of limiting the learning procedure on the kine-
matic tree. The simple space-time separable GCN already
outperforms XIA [17] while having a fraction of the pa-
rameters, although XIA includes DCT representations and
attention. Thus GCN with separability and fully-learnable
connections is a good baseline to build upon.

Standalone best practices. Table 5 shows input represen-
tation (row 5), encoding (rows 6-8), and decoding practices
(row 9). When considering the input representation and de-
coding techniques, DCT, and fully connected (FC) layer as
decoder, it is clear that both have a considerable impact. The
DCT provides a significant boost in short-term predictions,
up to 25%, while the FC-based decoder offers a more sub-
stantial increase in long-term predictions, up to 7% against
TCN (when the box is not ✓). Regarding the encoder prac-
tices, the novel initialization procedure and a hierarchical
architecture improve the chosen baseline by 5% and 4%,
respectively. On the other hand, using the attention tech-
nique did not lead to any gain in performance and is hence
not considered a best practice.

Integrated best practices. Rows 10-12 in Table 5 refers
to the combinations of techniques that performed best inde-
pendently.

Integrating the input representation using DCT coeffi-
cients and the FC-based decoder indicates how these two
methods can be used in addition to the standard method.
Secondly, we include a Graph Attention Network as ex-
plained in Sec. 3.2 to account for the interaction. The per-
formance does not benefit from it, and the number of param-
eters is considerably higher. Lastly, a hierarchical structure
lowers performance when combined with other practices, so

we do not consider it a best practice. Our proposed initial-
ization improves our best practice model by another 3.5%.

Impact of initialization. Table 6 shows the average of
multiple runs for different initialization methods and the
corresponding standard deviation. We compare our strat-
egy with the Uniform sampling and the two established
methodologies of [16], and [20]. Our proposed initializa-
tion exceeds or is on par with the others on average, having
more than 2.6% improvement over uniform sampling over
the longer time horizon. Note also the lower standard devia-
tion of performance for our proposed technique, especially
for the most challenging long-term prediction horizon (at
least 2x lower), which we interpret as improved stability.

MPJPE ↓
Time Horizon (msec) 200 400 600 1000
Uniform 39.7 ±0.7 87.6 ±0.7 132.2 ±0.5 207.7 ±1.1
Glorot et al. [16] 40.3 ±0.1 89.4 ±1.2 134.3 ±1.5 207.9 ±1.8
He et al. [20] 40.2 ±0.4 88.6 ±0.7 133.4 ±1.4 206.6 ±1.2
Ours 39.2 ±0.4 86.4 ±0.6 129.4 ±1.0 202.2 ±0.5

Table 6. Initialization procedures for best practices model.

5. Conclusion

This work has identified, reviewed, and experimentally
evaluated best practices for 2-body pose forecasting, to
bootstrap research in the mostly unexplored task. Best prac-
tices have a large impact on SoA performance, and the novel
initialization adds further improvement in performance and
stability. Notably, predicting the future of two people in in-
teraction yields better estimates than considering each per-
son separately, so 2-body forecasting is recommended for
applications such as sports and collaborative assembly in
factories.
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