Best Practices for 2-Body Pose Forecasting – Supplementary Material –

Muhammad Rameez Ur Rahman^{*,1} Alessandro Flaborea¹ Fabio Galasso¹ Edoardo De Matteis¹ Alessio Sampieri²

Sapienza University of Rome, Italy

¹{rahman, dematteis, flaborea, galasso}@di.uniromal.it ²{scofano, sampieri}@diag.uniromal.it

We supplement the main paper submission with an additional video, the source code for the proposed best practices, and the supplementary material in this document. The supplementary material is organized according to the following table of contents.

Contents

1. Proof on initialization	1
1.1. Forward propagation	1
1.2. Backward propagation	2
1.3. Training variance	4
2. AME results	4
3. Implementation details	4
3.1. Training and testing details	4
3.2. Iterative approach	4
4. Complete list of actions	4
5. Sample videos	5

1. Proof on initialization

Here we provide more detailed proof for Eqs. 10-11, 13-14 of the main paper. At each layer l, we assume learnable matrices $W^l \in \mathbb{R}^{C \times C'}$, $A_s^l \in \mathbb{R}^{T \times 2J \times 2J}$ and $A_t^l \in \mathbb{R}^{2J \times T \times T}$ to be independent, have zero mean and be uniformly distributed. With T being the number of time-frames, J being the number of joints in one person, and C and C' being the number of input and output channels.

First, we review and demonstrate the proposed initialization for the forward (Sec. 1.1) and backward passes (Sec. 1.2). Then, in Sec. 1.3, we illustrate how the initialization results in better training robustness.

1.1. Forward propagation

Let us consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ to encode the body kinematics, with all joints at all observed frames as the $2J \times T$ nodes defining the vertex set V, and edges $\epsilon \in \mathcal{E}$ connecting them.

Following up on Eq. (4) from the main paper, the response of a separable GCN [13] layer is

$$\begin{cases} Y^{l} = A_{s}^{l} A_{t}^{l} X^{l} W^{l} \\ X^{l} = \sigma \left(Y^{l-1} \right), \end{cases}$$
(1)

where $X \in \mathbb{R}^{T \times 2J \times C}$ is the *C*-dimensional embedding of each node. *W* may be interpreted as a fully connected layer acting on each of the graph node embeddings separately, i.e., on each of the joints from the two people at all times, for a total of $2J \cdot T$ connections. *W* may be assumed to have *C'* neurons, i.e. to output n = C' neural activations per node. The matrices A_s and A_t act on the spatial and temporal number of connections of the graph, respectively (please also see [13] for more details). Specifically, A_s may be considered to model the interaction of each node with all 2J others at the same frame, by means of $n_v = 2J$ neurons. Correspondingly, we may consider A_t to model the interaction of each node with those of the same joint at all *T* times, by means of $n_t = T$ neurons.

The number of interactions corresponds to the number of terms that are summed. Assuming matrices to be i.i.d. [6], the variance of the sum yields the sum of variances, thus

$$Var\left[Y^{l}\right] = n^{l}n_{v}^{l}n_{t}^{l}Var\left[A_{s}^{l}A_{t}^{l}X^{l}W^{l}\right].$$
 (2)

Assuming A_s^l , A_t^l , and W^l to have zero mean [6], the variance of the product of independent variables is

$$Var\left[Y^{l}\right] = n^{l}n_{v}^{l}n_{t}^{l}Var\left[A_{s}^{l}\right]Var\left[A_{t}^{l}\right] \qquad (3)$$
$$\mathbb{E}\left[\left(X^{l}\right)^{2}\right]Var\left[W^{l}\right].$$

Figure 1. Comparison of feature activation variances, at layers 0, 2, 4 and 7, estimated during the model training, upon initialization with random "Uniform", "Glorot" [3], "He" [6] against "Ours", our proposed initialization technique.

We consider the PReLU as our activation function, i.e.

$$\sigma\left(X^{l}\right) = \max\left(0, Y^{l-1}\right) + a\min\left(0, Y^{l-1}\right), \quad (4)$$

with a being a learnable parameter that, when set to 0, reduces to the ReLU¹. This means that for a generic a, $\mathbb{E}\left[X^{l}\right] \neq 0$. Let A_{s}^{l-1} , A_{t}^{l-1} , and W^{l-1} have symmetric zero-centered distributions [6]. This may then be also implied for Y^{l-1} , and we may write

$$\mathbb{E}\left[\left(X^{l}\right)^{2}\right] = \frac{1+a^{2}}{2} Var\left[Y^{l-1}\right].$$
(5)

Substituting for Eq. (5) in Eq. (3) we get

$$Var\left[Y^{l}\right] = \frac{1+a^{2}}{2}n^{l}n_{v}^{l}n_{t}^{l}Var\left[A_{s}^{l}\right]Var\left[A_{t}^{l}\right] \qquad (6)$$
$$Var\left[Y^{l-1}\right]Var\left[W^{l}\right].$$

Considering L layers, this yields the following variance formulation for the entire separable GCN model:

$$Var\left[Y^{L}\right] = Var\left[Y^{1}\right] \prod_{l=2}^{L} \frac{1+a^{2}}{2}n^{l}n_{v}^{l}n_{t}^{l} \qquad (7)$$
$$Var\left[A_{s}^{l}\right] Var\left[A_{t}^{l}\right] Var\left[W^{l}\right].$$

In order to have the same input and output signal variance for the entire model, it suffices to assume that each layer lhas the same input and output signal variances. This corresponds to setting the variance induced by the multiplicative parameters to be 1 i.e.,

$$\frac{1+a^2}{2}n^l n_v^l n_t^l Var\left[A_s^l\right] Var\left[A_t^l\right] Var\left[W^l\right] = 1.$$
(8)

Towards this goal, it suffices to set each parameter initial-

ization variance as follows

$$\frac{1+a^2}{2}n_v^l Var\left[A_s^l\right] = 1 \tag{9}$$

$$\frac{1+a^2}{2}n_t^l Var\left[A_t^l\right] = 1 \tag{10}$$

$$\frac{1+a^2}{2}n^l Var\left[W^l\right] = 1 \tag{11}$$

1.2. Backward propagation

The gradient of a separable GCN is

$$\begin{cases} \frac{\partial L}{\partial X^{l}} = A_{s}^{l} A_{t}^{l} \frac{\partial L}{\partial Y^{l}} \tilde{W}^{l} \\ \frac{\partial L}{\partial Y^{l}} = \frac{d\sigma}{dY^{l}} \frac{\partial L}{\partial X^{l+1}}, \end{cases}$$
(12)

with $\tilde{W} \in \mathbb{R}^{C' \times C}$, while A_s and A_t have the same dimensionality as in the forward pass. Our backward response number is $\tilde{n}^l = C$ for \tilde{W} , and it is still n_v and n_t for A_s and A_t , respectively, thus

$$Var\left[\frac{\partial L}{\partial X^{l}}\right] = n_{v}^{l} n_{t}^{l} \tilde{n}^{l} Var\left[A_{s}^{l} A_{t}^{l} \frac{\partial L}{\partial Y^{l}} \tilde{W}^{l}\right].$$
 (13)

We let A_s^l , A_t^l , \tilde{W}^l and $\frac{\partial L}{\partial Y^l}$ be independent. Let us assume A_s^l , A_t^l , and \tilde{W}^l 's to be zero-centered symmetric distributions, and $\frac{\partial L}{\partial X^l}$ to have zero mean [6]. Similarly to the forward pass, we have to consider the PReLU activation function. If we assume that $\frac{d\sigma}{dY^l}$ and $\frac{\partial L}{\partial X^{l+1}}$ are independent [6], we get

$$\mathbb{E}\left[\frac{\partial L}{\partial Y^{l}}\right] = \frac{1+a^{2}}{2}\mathbb{E}\left[\frac{\partial L}{\partial X^{l+1}}\right] = 0, \qquad (14)$$

$$\mathbb{E}\left[\left(\frac{\partial L}{\partial Y^l}\right)^2\right] = \frac{1+a^2}{2} Var\left[\frac{\partial L}{\partial X^{l+1}}\right].$$
 (15)

Considering Eq. (13) and the assumed independence, we

 $^{^{\}rm l}{\rm Also}$ recall that a small a e.g., 0.01, is the LeakyRelu and a=1 is the linear case.

Action	A1	A2	A3	A4	A5	A6	A7	Average ↓
Time (msec)	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000
LTD [10]	51 92 116 132	51 91 116 148	43 80 103 130	38 70 89 111	39 70 90 116	42 75 94 123	52 101 139 198	45 83 107 137
HisRep [9]	34 69 97 130	44 84 115 150	32 65 91 121	27 56 82 112	28 58 85 121	34 66 88 115	42 83 120 171	34 69 97 131
MSR-GCN [2]	41 75 99 126	54 96 129 180	41 74 98 135	34 61 82 106	33 59 79 109	42 71 93 124	57 103 146 210	43 77 104 141
MRT [14]	34 69 95 128	39 78 106 142	30 59 83 115	28 57 79 110	28 57 79 108	34 68 91 120	39 80 114 160	33 67 92 126
siMLPe [5]	32 69 94 115	44 93 122 160	33 73 102 138	26 61 87 114	28 60 84 112	32 69 93 123	45 94 127 171	34 74 101 133
XIA [4]	32 68 99 128	41 82 116 163	29 58 84 116	24 50 73 96	24 51 75 109	31 62 86 114	41 81 115 160	32 65 93 127
Ours	24 51 76 114	31 66 93 132	23 49 70 103	19 41 60 85	21 44 64 93	24 52 73 100	29 64 95 143	24 52 76 110

Table 1. Results in millimeters for ExPI Common actions split. Our model achieves state-of-the-art results in all actions considered, at each predicted time instant.

Action	A8	A9	A10	A11	A12	A13	A14	A15	A16	Average ↓
Time (msec)	400 600 800	400 600 800	400 600 800	400 600 800	400 600 800	400 600 800	400 600 800	400 600 800	400 600 800	400 600 800
LTD [10]	106 136 155	91 119 135	72 96 116	95 123 146	85 106 116	74 91 101	86 115 137	98 125 134	85 110 124	88 113 129
HisRep [9]	86 120 142	73 104 128	54 82 104	101 144 476	61 82 94	49 67 80	73 105 129	53 73 86	64 89 104	68 96 116
MSR-GCN [2]	88 118 142	90 113 136	90 122 148	103 134 155	101 135 160	74 98 121	103 143 173	87 111 132	84 106 122	91 120 143
MRT [14]	89 121 161	79 108 145	69 100 147	97 133 174	71 96 127	66 88 117	83 113 149	72 98 132	67 92 121	77 105 141
siMLPe [5]	95 125 141	82 114 134	63 93 115	124 174 212	61 80 92	50 67 79	83 116 138	59 81 90	72 99 116	77 106 124
XIA [4]	82 116 142	69 97 120	52 79 104	95 137 171	58 80 93	51 70 84	70 105 134	53 73 88	63 88 104	66 94 116
Ours	68 95 115	66 95 116	52 78 103	86 124 150	54 76 91	47 68 84	59 86 108	53 77 94	53 77 94	60 86 121

Table 2. Results in millimeters for ExPI Unseen actions split. On average, we outperform the baseline considered over short and long time horizons.

Action	A1	A2	A3	A4	A5	A6	A7
Time (msec)	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000	200 400 600 1000
LTD [10]	51 99 129 163	61 110 150 229	53 96 131 188	46 81 106 142	44 79 106 147	53 100 162 176	70 133 163 198
HisRep [9]	51 93 114 127	51 91 116 162	43 80 100 126	38 70 88 118	39 70 90 125	42 75 93 123	52 101 137 188
MSR-GCN [2]	45 83 106 118	57 102 135 178	39 72 100 132	41 77 103 119	35 70 97 125	46 82 107 137	48 90 121 169
MRT [14]	36 69 93 123	44 81 106 138	41 76 96 114	30 61 81 105	33 64 88 121	34 64 83 104	42 83 114 157
siMLPe [5]	43 84 107 137	55 107 142 182	47 91 120 164	39 76 101 129	38 75 99 128	47 90 118 150	58 110 150 197
XIA [4]	43 84 115 131	53 99 136 185	35 68 98 140	37 74 106 128	29 59 86 125	39 72 94 119	43 82 112 152
Ours	34 63 86 115	41 79 105 138	27 55 77 110	31 64 88 119	27 55 77 107	30 58 78 103	38 78 109 154

Table 3. Results in millimeters for ExPI Single actions split. We outperform in 6 out of 7 stocks all baselines considered according to the MPJPE metric. For the other stocks our model is comparable with the current state of the art.

elaborate on Eq. (15) as follows

$$Var\left[\frac{\partial L}{\partial X^{l}}\right] = n_{v}^{l}n_{t}^{l}\tilde{n}^{l}Var\left[A_{s}^{l}\right]Var\left[A_{t}^{l}\right] \qquad (16)$$

$$Var\left[\frac{\partial L}{\partial Y^{l}}\right]Var\left[\tilde{W}^{l}\right],$$

$$= \frac{1+a^{2}}{2}n_{v}^{l}n_{t}^{l}\tilde{n}^{l}Var\left[A_{s}^{l}\right]Var\left[A_{t}^{l}\right] \qquad (17)$$

$$Var\left[\frac{\partial L}{\partial X^{l+1}}\right]Var\left[\tilde{W}^{l}\right].$$

For L layers, this yields

$$Var\left[X^{2}\right] = Var\left[\frac{\partial L}{\partial X^{L+1}}\right] \prod_{l=2}^{L} \frac{1+a^{2}}{2} n_{v}^{l} n_{t}^{l} \tilde{n}^{l} \quad (18)$$
$$Var\left[A_{s}^{l}\right] Var\left[A_{t}^{l}\right] Var\left[\tilde{W}^{l}\right].$$

In order to avoid exploding and vanishing gradients, a sufficient condition is to set the gradient of each layer to maintain the signal variance throughout the backpropagation

$$\frac{1+a^2}{2}n_v^l n_t^l \tilde{n}^l Var\left[A_s^l\right] Var\left[A_t^l\right] Var\left[\tilde{W}^l\right] = 1.$$
(19)

Finally, it suffices to set the variance initialization of each of the parameter matrices as follows:

$$\frac{1+a^2}{2}n_v^l Var\left[A_s^l\right] = 1$$
⁽²⁰⁾

$$\frac{1+a^2}{2}n_t^l Var\left[A_t^l\right] = 1 \tag{21}$$

$$\frac{1+a^2}{2}\tilde{n}^l Var\left[\tilde{W}^l\right] = 1$$
(22)

Note that the result in Eq. (19) resonates with what was obtained for the forward pass, in Eq. (8). This ensures that the same initialization may be adopted to yield the signal and gradient requirements both in the forward and backward passes.

1.3. Training variance

The model output should maintain unit variance during training for the sake of activation functions and robust training, avoiding vanishing gradient [3, 6]. This becomes more challenging when adopting deeper networks, which regards our case, as we consider a separable-GCN twice as deep as the original one of [13] (8 Vs. 4 layers).

In Fig. 1, we consider the variances of the feature activations at sampled layers during training and compare the result of our proposed initialization against the "Uniform", "Glorot" [3], and "He" [6] techniques. Observe how "Ours" yields feature variances that are consistently closer to the desired unit variance. This is especially true for the last layer (layer 7), arguably the most challenging.

2. AME results

Following [4], we also evaluate our model using a different metric for the error between poses, the *Aligned Mean per joint position Error* (AME). Both poses are independently normalized in advance to avoid positional errors, to correct errors due to having a root joint as the origin, we use a rigid alignment transformation T.

$$L_{\text{AME}} = \frac{1}{V} \sum_{v=1}^{V} ||\hat{n}_{vt} - T(\hat{n}_{vt}, n_{vt})||_2, \qquad (23)$$

where *n* is the coordinate *x* after normalization as defined above. The results are reported in Tab. 1, Tab. 3 and Tab. 2. Results are consistent with those reported in the main paper, expressed in terms of *Mean per joint position Error*(*MPJPE*), as it favors comparability with other works [1, 2, 5, 9-13]

3. Implementation details

In this section, we thoroughly describe the implementation procedures that we have used in training and testing. Furthermore, we describe the iterative approach used during testing.

3.1. Training and testing details

We use 10 frames as input and 10 frames as output during training. We use an iterative mechanism at test time to make a 1-second prediction(25 frames). We exclusively use our predictions as input for subsequent iterations. We extensively analyze the iterative mechanism impact in the supplementary materials. We adopt the ADAM [8] optimizer and a learning rate of 1×10^{-5} , decayed to 5×10^{-8} after 30K iterations. The model converges in 40K iterations, i.e., the training takes 23 min on a single Nvidia P6000 GPU. We also get an average prediction time on CPU² of 0.07 seconds compared with the fastest [4]'s 0.4. At each layer, we adopt batch normalization [7] and residual connections.

3.2. Iterative approach

We test different combinations of T input frames and N output frames (See Tab. 4) and notice that some perform better than others. Most notable works in pose forecasting [4, 5, 13] use T = 50 input frames and N = 10 output ones. Conversely, the best results are obtained using T = 10 a mechanism [4, 9, 10] that iteratively feeds both parts of the observed history and new predictions as an input.

				MPJP	E (ms)↓	
	Input Frames	Output Frames	200	400	600	1000
-	50	1	43	113	176	274
	50	5	52	114	162	243
	50	10	62	126	174	243
	50	50	68	131	177	244
	10	1	36	98	164	294
	10	5	37	89	141	238
Used	10	10	39	86	129	202

Table 4. Results in millimeters on the ExPI dataset, on average common actions split. We show the impact that different combinations of input-output frames have on performance. Using 10 input frames makes predictions in the short term more accurate, helping results to be more stable in the long term.

4. Complete list of actions

This section lists (ref. Tab. 5) each action A_i , with i = 1, ..., 16. Refer to the supplementary material in [4] for a more detailed explanation.

Action	Name
A_1	A-frame
A_2	Around the back
A_3	Coochie
A_4	Frog classic
A_5	Noser
A_6	Toss out
A_7	Cartwheel
A_8	Back flip
A_9	Big ben
A_{10}	Chandelle
A_{11}	Check the challenge
A_{12}	Frog-turn
A_{13}	Twisted toss
A_{14}	Crunch-toast
A_{15}	Frog-kick
A_{16}	Ninja-kick

Table 5. List of actions and their corresponding names

²An AMD Ryzen 5 3600 6-Core processor.

Actions $A_1, ..., A_7$ are performed by both couples A_1 and A_2 . Actions $A_8, ..., A_{13}$ are exclusive to couple A_1 , and actions $A_{14}, ..., A_{16}$ to couple A_2 .

5. Sample videos

In addition, we include a video comparing the results of our and the current SoA's model [4] qualitatively. It is possible to see how our model is far more accurate when analyzing both basic and complex activities. For comparison, we use the pre-trained model provided by [4] and showcase only 10 of their 50 input frames to make it the same length as ours. Still, the number of output frames remains at 25 for both models. We release videos on our project page at https://www.pinlab.org/bestpractices2body.

References

- Arij Bouazizi, Adrian Holzbock, Ulrich Kressel, Klaus Dietmayer, and Vasileios Belagiannis. Motionmixer: Mlp-based 3d human body pose forecasting. In *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22*, 2022. 4
- [2] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021. 3, 4
- [3] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, volume 9. PMLR, 2010. 2, 4
- [4] Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, and Francesc Moreno-Noguer. Multi-person extreme motion prediction. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 3, 4, 5
- [5] Wen Guo, Yuming Du, Xi Shen, Vincent Lepetit, Alameda-Pineda Xavier, and Moreno-Noguer Francesc. Back to mlp: A simple baseline for human motion prediction. arXiv preprint arXiv:2207.01567, 2022. 3, 4
- [6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 1026– 1034, 2015. 1, 2, 4
- [7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *Proceedings of the 32nd International Conference on Machine Learning*, 2015. 4
- [8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR, 2015. 4
- [9] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History repeats itself: Human motion prediction via motion attention. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2020. 3, 4

- [10] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning trajectory dependencies for human motion prediction. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2019. 3, 4
- [11] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Multi-level motion attention for human motion prediction. *International Journal of Computer Vision*, 129(9):2513–2535, 2021. 4
- [12] Alessio Sampieri, Guido Maria D'Amely di Melendugno, Andrea Avogaro, Federico Cunico, Francesco Setti, Geri Skenderi, Marco Cristani, and Fabio Galasso. Pose forecasting in industrial human-robot collaboration. In *Proceedings* of the European Conference on Computer Vision (ECCV), 2022. 4
- [13] Theodoros Sofianos, Alessio Sampieri, Luca Franco, and Fabio Galasso. Space-time-separable graph convolutional network for pose forecasting. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021. 1, 4
- [14] Jiashun Wang, Huazhe Xu, Medhini Narasimhan, and Xiaolong Wang. Multi-person 3d motion prediction with multirange transformers, 2021. 3