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We supplement the main paper submission with an addi-
tional video, the source code for the proposed best practices,
and the supplementary material in this document. The sup-
plementary material is organized according to the following
table of contents.
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1. Proof on initialization

Here we provide more detailed proof for Eqs. 10-11,
13-14 of the main paper. At each layer l, we assume
learnable matrices W l ∈ RC×C′

, Al
s ∈ RT×2J×2J and

Al
t ∈ R2J×T×T to be independent, have zero mean and be

uniformly distributed. With T being the number of time-
frames, J being the number of joints in one person, and C
and C ′ being the number of input and output channels.

First, we review and demonstrate the proposed initializa-
tion for the forward (Sec. 1.1) and backward passes (Sec.
1.2). Then, in Sec. 1.3, we illustrate how the initialization
results in better training robustness.

1.1. Forward propagation

Let us consider a graph G = (V, E) to encode the body
kinematics, with all joints at all observed frames as the
2J × T nodes defining the vertex set V , and edges ϵ ∈ E
connecting them.

Following up on Eq. (4) from the main paper, the re-
sponse of a separable GCN [13] layer is{

Y l = Al
sA

l
tX

lW l

X l = σ
(
Y l−1

)
,

(1)

where X ∈ RT×2J×C is the C-dimensional embedding of
each node. W may be interpreted as a fully connected layer
acting on each of the graph node embeddings separately,
i.e., on each of the joints from the two people at all times,
for a total of 2J · T connections. W may be assumed to
have C ′ neurons, i.e. to output n = C ′ neural activations
per node. The matrices As and At act on the spatial and
temporal number of connections of the graph, respectively
(please also see [13] for more details). Specifically, As may
be considered to model the interaction of each node with
all 2J others at the same frame, by means of nv = 2J
neurons. Correspondingly, we may consider At to model
the interaction of each node with those of the same joint at
all T times, by means of nt = T neurons.

The number of interactions corresponds to the number of
terms that are summed. Assuming matrices to be i.i.d. [6],
the variance of the sum yields the sum of variances, thus
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Assuming Al
s, Al

t, and W l to have zero mean [6], the vari-
ance of the product of independent variables is
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Figure 1. Comparison of feature activation variances, at layers 0, 2, 4 and 7, estimated during the model training, upon initialization with
random “Uniform”, “Glorot” [3], “He” [6] against “Ours”, our proposed initialization technique.

We consider the PReLU as our activation function, i.e.

σ
(
X l

)
= max

(
0, Y l−1

)
+ amin

(
0, Y l−1

)
, (4)

with a being a learnable parameter that, when set to 0,
reduces to the ReLU1. This means that for a generic a,
E
[
X l

]
̸= 0. Let Al−1

s , Al−1
t , and W l−1 have symmetric

zero-centered distributions [6]. This may then be also im-
plied for Y l−1, and we may write
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2
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Substituting for Eq. (5) in Eq. (3) we get
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Considering L layers, this yields the following variance
formulation for the entire separable GCN model:
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In order to have the same input and output signal variance
for the entire model, it suffices to assume that each layer l
has the same input and output signal variances. This corre-
sponds to setting the variance induced by the multiplicative
parameters to be 1 i.e.,
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Towards this goal, it suffices to set each parameter initial-

1Also recall that a small a e.g., 0.01, is the LeakyRelu and a = 1 is
the linear case.

ization variance as follows
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1.2. Backward propagation

The gradient of a separable GCN is{
∂L
∂Xl = Al

sA
l
t
∂L
∂Y l W̃

l

∂L
∂Y l = dσ

dY l
∂L

∂Xl+1 ,
(12)

with W̃ ∈ RC′×C , while As and At have the same dimen-
sionality as in the forward pass. Our backward response
number is ñl = C for W̃ , and it is still nv and nt for As

and At, respectively, thus
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tñ

lV ar

[
Al

sA
l
t

∂L

∂Y l
W̃ l

]
. (13)

We let Al
s, Al

t, W̃ l and ∂L
∂Y l be independent. Let us

assume Al
s, Al

t, and W̃ l’s to be zero-centered symmetric
distributions, and ∂L

∂Xl to have zero mean [6]. Similarly to
the forward pass, we have to consider the PReLU activation
function. If we assume that dσ

dY l and ∂L
∂Xl+1 are indepen-

dent [6], we get
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Considering Eq. (13) and the assumed independence, we



Action A1 A2 A3 A4 A5 A6 A7 Average ↓
Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [10] 51 92 116 132 51 91 116 148 43 80 103 130 38 70 89 111 39 70 90 116 42 75 94 123 52 101 139 198 45 83 107 137
HisRep [9] 34 69 97 130 44 84 115 150 32 65 91 121 27 56 82 112 28 58 85 121 34 66 88 115 42 83 120 171 34 69 97 131
MSR-GCN [2] 41 75 99 126 54 96 129 180 41 74 98 135 34 61 82 106 33 59 79 109 42 71 93 124 57 103 146 210 43 77 104 141
MRT [14] 34 69 95 128 39 78 106 142 30 59 83 115 28 57 79 110 28 57 79 108 34 68 91 120 39 80 114 160 33 67 92 126
siMLPe [5] 32 69 94 115 44 93 122 160 33 73 102 138 26 61 87 114 28 60 84 112 32 69 93 123 45 94 127 171 34 74 101 133
XIA [4] 32 68 99 128 41 82 116 163 29 58 84 116 24 50 73 96 24 51 75 109 31 62 86 114 41 81 115 160 32 65 93 127
Ours 24 51 76 114 31 66 93 132 23 49 70 103 19 41 60 85 21 44 64 93 24 52 73 100 29 64 95 143 24 52 76 110

Table 1. Results in millimeters for ExPI Common actions split. Our model achieves state-of-the-art results in all actions considered, at
each predicted time instant.

Action A8 A9 A10 A11 A12 A13 A14 A15 A16 Average ↓
Time (msec) 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800

LTD [10] 106 136 155 91 119 135 72 96 116 95 123 146 85 106 116 74 91 101 86 115 137 98 125 134 85 110 124 88 113 129
HisRep [9] 86 120 142 73 104 128 54 82 104 101 144 476 61 82 94 49 67 80 73 105 129 53 73 86 64 89 104 68 96 116
MSR-GCN [2] 88 118 142 90 113 136 90 122 148 103 134 155 101 135 160 74 98 121 103 143 173 87 111 132 84 106 122 91 120 143
MRT [14] 89 121 161 79 108 145 69 100 147 97 133 174 71 96 127 66 88 117 83 113 149 72 98 132 67 92 121 77 105 141
siMLPe [5] 95 125 141 82 114 134 63 93 115 124 174 212 61 80 92 50 67 79 83 116 138 59 81 90 72 99 116 77 106 124
XIA [4] 82 116 142 69 97 120 52 79 104 95 137 171 58 80 93 51 70 84 70 105 134 53 73 88 63 88 104 66 94 116
Ours 68 95 115 66 95 116 52 78 103 86 124 150 54 76 91 47 68 84 59 86 108 53 77 94 53 77 94 60 86 121

Table 2. Results in millimeters for ExPI Unseen actions split. On average, we outperform the baseline considered over short and long time
horizons.

Action A1 A2 A3 A4 A5 A6 A7
Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [10] 51 99 129 163 61 110 150 229 53 96 131 188 46 81 106 142 44 79 106 147 53 100 162 176 70 133 163 198
HisRep [9] 51 93 114 127 51 91 116 162 43 80 100 126 38 70 88 118 39 70 90 125 42 75 93 123 52 101 137 188
MSR-GCN [2] 45 83 106 118 57 102 135 178 39 72 100 132 41 77 103 119 35 70 97 125 46 82 107 137 48 90 121 169
MRT [14] 36 69 93 123 44 81 106 138 41 76 96 114 30 61 81 105 33 64 88 121 34 64 83 104 42 83 114 157
siMLPe [5] 43 84 107 137 55 107 142 182 47 91 120 164 39 76 101 129 38 75 99 128 47 90 118 150 58 110 150 197
XIA [4] 43 84 115 131 53 99 136 185 35 68 98 140 37 74 106 128 29 59 86 125 39 72 94 119 43 82 112 152
Ours 34 63 86 115 41 79 105 138 27 55 77 110 31 64 88 119 27 55 77 107 30 58 78 103 38 78 109 154

Table 3. Results in millimeters for ExPI Single actions split. We outperform in 6 out of 7 stocks all baselines considered according to the
MPJPE metric. For the other stocks our model is comparable with the current state of the art.

elaborate on Eq. (15) as follows
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For L layers, this yields
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In order to avoid exploding and vanishing gradients, a suf-
ficient condition is to set the gradient of each layer to main-

tain the signal variance throughout the backpropagation
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Finally, it suffices to set the variance initialization of each
of the parameter matrices as follows:
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Note that the result in Eq. (19) resonates with what was
obtained for the forward pass, in Eq. (8). This ensures that
the same initialization may be adopted to yield the signal
and gradient requirements both in the forward and back-
ward passes.



1.3. Training variance

The model output should maintain unit variance during
training for the sake of activation functions and robust train-
ing, avoiding vanishing gradient [3, 6]. This becomes more
challenging when adopting deeper networks, which regards
our case, as we consider a separable-GCN twice as deep as
the original one of [13] (8 Vs. 4 layers).

In Fig. 1, we consider the variances of the feature acti-
vations at sampled layers during training and compare the
result of our proposed initialization against the “Uniform”,
“Glorot” [3], and “He” [6] techniques. Observe how “Ours”
yields feature variances that are consistently closer to the
desired unit variance. This is especially true for the last
layer (layer 7), arguably the most challenging.

2. AME results
Following [4], we also evaluate our model using a dif-

ferent metric for the error between poses, the Aligned Mean
per joint position Error (AME). Both poses are indepen-
dently normalized in advance to avoid positional errors, to
correct errors due to having a root joint as the origin, we use
a rigid alignment transformation T .

LAME =
1

V

V∑
v=1

||n̂vt − T (n̂vt, nvt)||2, (23)

where n is the coordinate x after normalization as defined
above. The results are reported in Tab. 1, Tab. 3 and
Tab. 2. Results are consistent with those reported in the
main paper, expressed in terms of Mean per joint posi-
tion Error(MPJPE), as it favors comparability with other
works [1, 2, 5, 9–13]

3. Implementation details
In this section, we thoroughly describe the implementa-

tion procedures that we have used in training and testing.
Furthermore, we describe the iterative approach used dur-
ing testing.

3.1. Training and testing details

We use 10 frames as input and 10 frames as output dur-
ing training. We use an iterative mechanism at test time to
make a 1-second prediction(25 frames). We exclusively use
our predictions as input for subsequent iterations. We exten-
sively analyze the iterative mechanism impact in the supple-
mentary materials. We adopt the ADAM [8] optimizer and
a learning rate of 1× 10−5, decayed to 5× 10−8 after 30K
iterations. The model converges in 40K iterations, i.e., the
training takes 23 min on a single Nvidia P6000 GPU. We
also get an average prediction time on CPU2 of 0.07 sec-

2An AMD Ryzen 5 3600 6-Core processor.

onds compared with the fastest [4]’s 0.4. At each layer, we
adopt batch normalization [7] and residual connections.

3.2. Iterative approach

We test different combinations of T input frames and N
output frames (See Tab. 4) and notice that some perform
better than others. Most notable works in pose forecast-
ing [4, 5, 13] use T = 50 input frames and N = 10 out-
put ones. Conversely, the best results are obtained using
T = 10 a mechanism [4, 9, 10] that iteratively feeds both
parts of the observed history and new predictions as an in-
put.

MPJPE (ms)↓
Input Frames Output Frames 200 400 600 1000

50 1 43 113 176 274
50 5 52 114 162 243
50 10 62 126 174 243
50 50 68 131 177 244
10 1 36 98 164 294
10 5 37 89 141 238

Used 10 10 39 86 129 202

Table 4. Results in millimeters on the ExPI dataset, on average
common actions split. We show the impact that different com-
binations of input-output frames have on performance. Using 10
input frames makes predictions in the short term more accurate,
helping results to be more stable in the long term.

4. Complete list of actions

This section lists (ref. Tab. 5) each action Ai, with i =
1, ..., 16. Refer to the supplementary material in [4] for a
more detailed explanation.

Action Name
A1 A-frame
A2 Around the back
A3 Coochie
A4 Frog classic
A5 Noser
A6 Toss out
A7 Cartwheel
A8 Back flip
A9 Big ben
A10 Chandelle
A11 Check the challenge
A12 Frog-turn
A13 Twisted toss
A14 Crunch-toast
A15 Frog-kick
A16 Ninja-kick

Table 5. List of actions and their corresponding names



Actions A1, ..., A7 are performed by both couples A1

and A2. Actions A8, ..., A13 are exclusive to couple A1,
and actions A14, ..., A16 to couple A2.

5. Sample videos
In addition, we include a video comparing the results of

our and the current SoA’s model [4] qualitatively. It is pos-
sible to see how our model is far more accurate when ana-
lyzing both basic and complex activities. For comparison,
we use the pre-trained model provided by [4] and showcase
only 10 of their 50 input frames to make it the same length
as ours. Still, the number of output frames remains at 25
for both models. We release videos on our project page at
https://www.pinlab.org/bestpractices2body.
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