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1. Table of important acronyms and notations

NPVP:
Neural process

for conditional video prediction
VFI: Video frame interpolation
VFP: Video future frame prediction
VPE: Video past frame extrapolation
VRC: Video random missing frames completion
NPs: Neural processes
INRs: Implicit neural representations
FFN: Fourier feature network

SIREN: Sinusoidal representation networks
MLP: Multiple layer perceptron
CNN: Convolutional neural network

ConvLSTMs: Convolutional-LSTMs
VC : Context video frames
VT : Target video frames
XC : Context coordinate representations
YC : Context video frame features
XT : Target coordinate representations
YT : Target video frame features
MC : Output feature of TE given XC and YC

MT : Output feature of TE given XT and YT

ze: event variable
TE : Transformer encoder
TD: Transformer decoder
EC : Context event CNN encoder
ET : Target event CNN encoder

Table 1. Table of important acronyms and notations

2. Implementation details

3. Datasets
KTH. KTH dataset includes grayscale videos of 6 different
human actions. Following the experimental setup of previ-
ous work, we take persons 1-16 as training set, and persons
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17-25 as test set. Random horizontal flips and vertical flips
are applied to each video clip as data augmentation.
BAIR. BAIR dataset includes RGB video clips of a robot
arm randomly moving over a table with small objects. The
training and test sets are defined by the creators of BAIR.
Random horizontal flips and vertical flips are applied to
each video clip as data augmentation.
SM-MNIST. Stochastic Moving MNIST (SM-MNIST) is a
synthetic dataset includes videos of two randomly moving
MNIST characters within a square region. There is no data
augmentation for SM-MNIST during training.
Cityscapes. Cityscapes dataset includes high-resolution
urban traffic videos of many cities. Note that we
do not use any annotation provided by Cityscapes,
for example, object classes or segmentation masks.
Same as previous work, we use the raw video clips
from the ”leftImg8bit sequence trainvaltest.zip” of
Cityscapes. The frames are firstly center-cropped to be
square, then we resize the frames to be the resolution of
128×128. There is no data augmentation for the Cityscapes
dataset during training.
KITTI. KITTI dataset includes traffic videos across mul-
tiple scenarios, including city, residential, road etc. We
follow the experimental setup of previous works [1], i.e.,
randomly select 4 sequences from the raw data of KITTI
for testing and use the remaining videos for training. The
frames are firstly center-cropped and then resize to be the
resolution of 128× 128. Random horizontal flips and verti-
cal flips are applied to each video clip as data augmentation.

3.1. Training details

Training of the autoencoder. For all datasets, the di-
mension of visual features is set to be H = 8,W = 8, D =
512. For input with a resolution of 64 × 64, the frame
encoder includes 3 downsampling blocks and 2 residual
blocks. For input with a resolution of 128× 128, the frame
encoder includes 4 downsampling blocks and 3 residual
blocks. The number of upsampling blocks for the frame
decoder equals to the number of downsampling blocks in
the corresponding frame encoder. An Adam optimizer with



a learning rate of 1e−4 is used for the training.
Training of the NPs-based predictor. For all datasets,

γ = 0.01. For BAIR and SM-MNIST, β = 1e−6. For
KTH, β = 1e−8. The predictors are trained by AdamW, we
take a cosine annealing learning rate scheduler with warm
restarts [2] at every 150 epochs, the maximum learning rate
is 1e−4 and the minimum learning rate is 1e−7. Gradient
clipping is applied to TE and TD during training. Please
visit https://npvp.github.io for the code.

3.2. Architecture of VidHRFormer block

For the convenience of the readers, we have redrawn the
detail architecture of VidHRFormer block [4] and the VPTR
decoder block in Figure 1.
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Figure 1. (a) VidHRFormer block [4]. (b) Decoder block of VPTR
[4].

3.3. Architecture of Event encoder EC and ET

EC and ET share the same architecture, see Figure 2.
They are implemented by a small neural network with three
Conv−BN−ReLU layers and two Conv heads to output
µ and σ respectively.

4. Qualitative examples

4.1. Unified model

Here we show another example (see Figure 3) of the uni-
fied model on Cityscapes dataset for all four different con-
ditional video prediction tasks. In order to demonstrate the
continuous prediction ability of NPVP, we take the trained
unified model to solve different tasks with different rates,
please visit https://npvp.github.io for video ex-
amples of a unified model for KTH dataset.
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Figure 2. Architecture of the Event encoders.

4.2. Task-specific VFI

We present uncurated VFI examples of KTH, SM-
MNIST and BAIR datasets by task-specific NPVP mod-
els, see Figure 4, Figure 5 and Figure 6. As there is lit-
tle stochasticity for VFI on KTH and SM-MNIST, we only
show the example with the best SSIM from 100 random ex-
amples. We also present the VFI results of MCVD [3] on
KTH and SM-MNIST datasets for qualitative comparison.
Please visit https://npvp.github.io for video ex-
amples.

4.3. Task-specific VFP

We present VFP examples by task-specific NPVP mod-
els, see Figure 7, Figure 8 and Figure 9. For Cityscapes
dataset, we show the results of MCVD for comparison.
Please visit https://npvp.github.io for video ex-
amples.
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Figure 3. One model for all tasks. Frames inside the red boxes are target frames generated by the model. C-VRC denotes continuous VRC.
Diff are the difference images between neighboring frames of C-VRC to show that they are all different and that the temporal coordinates
are taken into account.
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Figure 4. VFI examples on KTH by a Task-specific NPVP (10→5) model. Frames inside the red boxes are target frames generated by the
models. Compared with MCVD [3], predicted moving arms or legs by NPVP are more realistic and more similar to the ground-truth.
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Figure 5. VFI examples on SM-MNIST by a Task-specific NPVP (10→10) model. Frames inside the red boxes are target frames generated
by the model. Compared with MCVD [3], the interpolation quality of NPVP is better as it captures the shape and motion of MNIST
characters for missing frames.
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Figure 6. VFI examples on BAIR by a Task-specific NPVP (4→5) model. Frames inside the red boxes are target frames generated by the
model. VFI 1 and VFI 2 denote two different random interpolations given the same contexts.
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Figure 7. VFP examples on KTH by a Task-specific NPVP (10→10) model. Frames inside the red boxes are target frames generated by
the model.
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Figure 8. VFP examples on Cityscapes by a Task-specific NPVP (2→28) model. Frames inside the red boxes are target frames generated
by the model. Here we also show the examples generated by MCVD [3], which suffers from a brightness-changing problem.
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Figure 9. VFP examples on KITTI by a Task-specific NPVP (4→5) model. Frames inside the red boxes are target frames generated by the
model.
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