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Abstract

Autolabeling approaches are attractive w.r.t. time and
cost as they allow fast annotation without human interven-
tion. However, can we really trust the label quality of auto-
labeling? And further, which potential consequences arise
from resulting label noise? In this work, we address these
questions for localization, a subtask of object detection, by
investigating the effects on a state-of-the-art deep neural
network (DNN) for object detection and the widely used
Pascal VOC 2012 dataset. Our contributions are threefold:
First, we propose a method to inject noise into localization
labels, enabling us to simulate localization label errors of
autolabeling methods. Afterwards, we train a state-of-the-
art object detection DNN with these noisy labels. Second,
we propose a refinement network which takes a noisy lo-
calization label and its respective image as input and per-
forms a localization refinement. Third, we again train a
state-of-the-art object detection DNN, however, this time
with refined localization labels. Our insights are: Train-
ing a state-of-the-art DNN for object detection on noisy lo-
calization labels leads to a severe performance drop. Our
proposed localization label refinement network is able to
refine the noisy localization labels. We are able to retain
the performance to some extent by retraining the state-of-
the-art DNN for object detection on the refined localiza-
tion labels. Our study motivates a new challenging task
“refinement of noisy localization labels" and sets a first
benchmark for Pascal VOC 2012. Code is available at
https://github.com/ifnspaml/LocalizationLabelNoise.

1. Introduction

Deep neural networks (DNNs) are the state of the art in
object detection [4, 13, 26, 40] and outperform traditional
machine learning algorithms [7, 10, 29]. DNNs for object
detection are usually trained in a supervised fashion which
requires human-labeled datasets. Human labeling, however,

Figure 1. Examples for our localization label refinement. Our
proposed framework takes a noisy localization label ỹ (red box)
as input and outputs a refined localization label ŷ (green box).

typically comes with high cost and is time-consuming.
Autolabeling approaches [53] address this issue. They

offer an alternative to traditional human-based labeling and
provide much cheaper machine-annotated labels. However,
this comes with the price of a lower label quality, also called
label noise. Looking at widely established computer vi-
sion benchmarks, some studies [17,33,43] show that public
datasets for image classification (ImageNet [44], CIFAR-
10 [19]), semantic segmentation (Cityscapes [6]), as well as
object detection (Pascal VOC 2012 [9]) also contain label
noise. Label noise poses a problem in DNN training. Many
works [1, 2, 5] have shown that label quality is of utmost
importance as it directly affects the DNN’s generalization
capability. In particular, a line of works in image classifica-
tion [15, 39, 48] highlights that the presence of noisy labels
degrades the network’s final performance. However, stud-
ies in more complex tasks, such as localization (a subtask of
object detection, cf. Fig. 1), are rather rare or not existing.

In this paper, we investigate localization label noise. We
focus on localization, since a larger line of works on noisy
labels in image classification (a subtask of object detection)
already exist [15, 39, 48]. In particular, we address three
research questions in our paper.

First, how can we effectively investigate localization la-
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bel noise? One option is the use of autolabeling meth-
ods. However, a new question arises regarding the choice
and mix of autolabeling methods. In addition, autolabeling
methods lack control over the label quality. Instead, we pro-
pose to inject noise into ground-truth localization labels of
Pascal VOC 2012 [9]. Different to autolabeling approaches,
our proposed experimental approach is controllable regard-
ing the amount of label noise. We can adjust it to our needs
and in consequence establish a new benchmark for training
and evaluating with localization label noise. In a sense, it
can be considered as a fully controllable autolabeling error
simulator.

Second, which effects does localization label noise have
on the final object detection performance? We train the
state-of-the-art Cascade R-CNN [3] on Pascal VOC 2012
with our pre-generated noisy localization labels. We ob-
serve a drop in performance with increased localization la-
bel noise which complements the investigations being made
on image classification [1, 2, 5].

Lastly, how can we reduce the effects of localization la-
bel noise? Assuming that our proposed localization label
noise injection simulates autolabeling methods which pro-
vide noisy localization labels close to the ground truth, we
aim at refining the noisy localization labels. To this end,
we propose a new class of methods which is inspired by
[22] and which we dub localization label refinement net-
work (LLRN). Our LLRN takes an image and its respec-
tive noisy localization labels as input and outputs a refined
noisy localization label. Our investigations show that train-
ing the Cascade R-CNN on refined localization labels in-
deed improves its final performance.

The rest of the paper is structured as follows: Sec. 2
discusses the related works. Sec. 3 introduces our method.
Sec. 4 gives an overview over the experimental setup. Sec. 5
shows and discusses our experimental results. Finally, we
conclude our paper in Sec. 6.

2. Related Works
Object detection and localization: Object detection ex-

tends image classification by localization of so-called re-
gions of interest (RoIs). Early works in object detection
were based on hand-crafted features, such as histogram of
oriented gradients (HOG) [7], Viola-Jones [49], deformable
parts model [10], etc. The advance of deep neural networks
(DNNs) in image classification tasks [44], convolutional
neural networks in particular [20, 46], paved the way for
DNN research in object detection [3,11,13,14,21,36,40,42].
A milestone is the introduction of region with CNN fea-
tures (R-CNN) in [14] which had a multi-stage training ap-
proach and set a new state of the art. Soon, improvements in
the form of Fast R-CNN [13] and Faster R-CNN [40]
followed by introducing a new two-stage architecture and
faster computations. In addition, Cascade R-CNN [3]

trades high complexity for high performance by using a
multi-head cascade.

In this work, we use Cascade R-CNN [3] with a
ConvNeXt-Tiny backbone [27] to investigate the effect
of localization label noise. In particular, we compare train-
ing the Cascade R-CNN [3] on noisy localization labels
with training it on refined localization labels using our pro-
posed localization label refinement network (LLRN).

Label noise and autolabeling: Label noise in image
classification tasks, such as CIFAR10 [19], MNIST [8], and
Imagenet [44], are well studied [18, 33, 34, 45]. Almost all
works on image classification show that label noise leads
to a drop in final performance when trained using standard
loss functions and architectures [23,32,54]. To address this
problem, [35,50] propose methods for label noise reduction.
However, the proposed methods build upon a relation be-
tween clean and noisy labels, which in practice is often diffi-
cult to formulate. Further, while machine-annotated labels,
also dubbed autolabels, can serve as an alternative to human
labeling, they are known to be error prone [37, 51, 52]. In
addition, the problem of label noise in more complex tasks,
such as localization (a subtask of object detection) is under-
studied, although still being highly relevant. In particular,
He et al. [17] point out that well-known object detection
datasets, such as MS COCO [25], Pascal VOC 2012 [9],
and Youtube Bounding Boxes [38], contain noisy labels.

In this work, we investigate the effect of localization
label noise on the task of object detection. In particular,
we propose a method for localization label noise injection
which gives us full control over the noise strength. In fact,
we simply use this method to simulate autolabeling. Our
proposed framework can be used as a benchmark for inves-
tigations in localization label errors.

Label refinement: Although previous works [33, 34]
show the existence of noisy labels in image classification
datasets, studies were not conducted to rectify these label
errors. Many works address training under the presence of
label noise instead of refining the labels. The objective of
these works was mainly to train a robust network that is
not influenced by label errors. For example, the authors
of [12,39] introduce a robust loss function that prevents the
network from learning label noise, while [15, 48] employ
teacher-student networks and use the weighted average of
model weights as their final model. Further, [23, 32] con-
sider the combination of teacher-student networks with ro-
bust loss functions for learning under noisy labels.

In this work, we investigate the effect of localization la-
bel noise on the final performance of an object detection
network. Different to previous works, we do not incor-
porate robust loss functions or teacher-student networks to
cope with the label noise. Instead, we propose a local-
ization label refinement network (LLRN) inspired by [22],
which refines the noisy localization labels as a preprocess-
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ing step. We would like to mention [30, 31], where a lo-
calization label refinement is introduced during training in-
stead. In [22], the authors propose to apply their method on
localizations predicted by a weakly supervised object detec-
tor (WSOD) [47]. The chosen WSOD, however, produces
localizations with only low intersection over union to the
ground truth. Different to [22], we perform our experiments
using a fully controllable localization label noise injection
(LLNI) to simulate label errors of autolabeling methods. In
particular, our LLNI yields noisy localization labels with an
intersection over union to the ground truth ranging from low
to high values. This makes our setup practically more rel-
evant. Further, we also investigate whether equipping and
training our LLRN in a multi-pass or cascaded-pass fash-
ion [3] leads to better results in localization label refine-
ment.

3. Method Description
In the following, we will introduce our proposed method

in three separate parts. First, we start with a theoretical
background to build mathematical foundations. Next, we
give an overview of our proposed localization label noise
injection which we use to simulate autolabeling errors. Fi-
nally, we introduce our proposed localization label refine-
ment network.

3.1. Theoretical Background

We define x ∈ IH×W×C as a normalized image, i.e., I =
[0, 1]. Further, let H , W , and C = 3 refer to its height,
width, and number of color channels. In addition, xh,w ∈
IC is a pixel, with x = (xh,w), pixel position (h,w) ∈ I,
and pixel positions set I = {(1, 1), ..., (H,W )}.

Let’s assume x contains objects, each having a ground-
truth identifier o ∈ O = {1, 2, ..., NO}. We define yo ∈
I2 ⊂ N4 to be a localization label of object with identifier o
and the (NO×4)-dimensional matrix of the localization la-
bels of all objects being y = (yo). Note that we introduced
the diacritic (·) to refer to ground-truth output entities. Fur-
ther, localization label

yo =
((
h
(L)

o , w
(L)
o

)
,
(
h
(R)

o , w
(R)
o

))
(1)

is represented as a bounding box with top-left corner(
h
(L)

o , w
(L)
o

)
∈ I and bottom-right corner

(
h
(R)

o , w
(R)
o

)
∈ I

ground-truth h- and w-coordinates. We obtain the size of
the bounding box by

Ho =
∣∣h(L)

o − h
(R)

o

∣∣,
W o =

∣∣w(L)
o − w

(R)
o

∣∣, (2)

with Ho and W o referring to object height and width, re-
spectively. We further define Yo as the set of all pixels

(h,w) ∈ I inside the bounding box. In addition, each yo

is tagged with an object class vo ∈ S , from a set of object
classes S = {1, 2, ..., S}, with the NO-dimensional vector
of the classes of all objects being v = (vo). For complete-
ness, vo = argmaxs∈S uo,s, where uo = (uo,s) ∈ {0, 1}S
is the one-hot representation of vo. Similar to y and v, the
(NO×S)-dimensional matrix u = (uo) refers to the one-
hot encoded class vectors of all objects. In our study, we
focus solely on errors in the localizations y and keep v and
u untouched.

Autolabeling: Now, let a : IH×W×C →INÕ×2 be a lo-
calization autolabeling method which takes x as input and
outputs localization labels

a(x) = ỹ =
(
ỹõ

)
, (3)

with top-left corner and bottom-right corner represented
by ỹõ ∈ I2 ⊂ N4 similar to yo (1), object identifier
õ ∈ Õ, and the set of autolabeled object identifiers Õ =
{1, 2, ..., NÕ}. Note that we introduced diacritic (̃·) for au-
tolabel output entities. Assuming correctly referenced ob-
jects (õ = o as well as Õ = O), we obtain

ỹ = y + n, (4)

where n = (no) represents object-specific label noise for
top-left and bottom-right coordinates, similar to (1), in-
jected by a. In summary, although autolabeling method a
is capable of capturing all objects in x, we assume an un-
certainty in its output represented by noise n.

Deep neural network for object detection: Let F :
IH×W×C → (I2×S)NO be a deep neural network for object
detection which takes x as input and outputs object predic-
tions F (x) = (y,v), with predicted object localizations
y = (yo) and predicted object classes v = (vo), where
o ∈ O = {1, 2, ..., NO} is the object identifier. Each pre-
dicted pair (yo, vo) represents an object in image x, with
yo ∈ I2 ⊂ N4 similar to (1) and vo = argmaxs∈S uo,s

being the respective object class with highest probability,
where uo = (uo,s) ∈ [0, 1]S is the predicted object class
output vector. Note that NO = NO not necessarily holds,
as we may have false positive or false negative detections.
Network F is trained by minimizing

J = Jcls + λJ reg, (5)

with classification loss

Jcls = − 1

NO

∑
o∈O

(
uo

)T · log
(
uo

)
, (6)

where log(·) is an element-wise logarithm and (·)T denotes
the vector transpose. The regression loss J reg (10) will be
introduced in Sec. 3.3. As we will concentrate on the lo-
calization properties in this work, we will neglect the object
class representation vo and uo from this point on and solely
focus on the object positioning yo.
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3.2. Localization Label Noise Injection (LLNI)

In order to perform studies on refinement of noisy local-
ization labels, we require to have access to ground-truth la-
bels y and to a method injecting noise n to the ground-truth
labels y, according to (4). For the former, we simply take a
dataset D which is designed for object detection tasks. For
the latter, we have two choices: We either collect a set of
autolabeling methods A, with a ∈ A, or we simply simu-
late A. We proceed with the latter method as it comes with
a major advantage, which is full control over the distribu-
tion of label noise n (4) as well as its strength denoted as ϵ.
Thus, we can adjust the localization label error to our needs.
This is not possible for autolabeling methods as each indi-
vidual a ∈ A might have its own inductive bias depending
on the method itself, the underlying optimization procedure,
the used dataset D, etc.

Let’s assume we have data (x,y) ∈ D, consisting of im-
ages x with respective object localization labels y = (yo)
(1). To inject label noise to D we need to define a noise
sampling scheme to obtain noisy labels ỹ = (ỹo) (4). To
this end, we formulate object-specific uniform distributions

Uh(−uh, uh), with uh =
ϵ

2
Ho,

Uw(−uw, uw), with uw =
ϵ

2
W o,

(7)

with noise strength ϵ ≥ 0, to deviate from the top-left cor-
ner and bottom-right corner coordinates (h

(L)

o , w
(L)
o ) and

(h
(R)

o , w
(R)
o ) of yo (1), respectively. Following (4), we then

obtain(
h̃
(L)
o , w̃

(L)
o

)
=
(
h
(L)

o , w
(L)
o

)
+
(
∆h

(L)
o ,∆w

(L)
o

)
,(

h̃
(R)
o , w̃

(R)
o

)
=
(
h
(R)

o , w
(R)
o

)
+
(
∆h

(R)
o ,∆w

(R)
o

)
,

(8)

where top-left and bottom-right coordinates of no follow

∆h
(L)
o ,∆h

(R)
o ∼ Uh(−uh, uh),

∆w
(L)
o ,∆w

(R)
o ∼ Uw(−uw, uw).

(9)

For completeness, similar to yo (1), noisy lo-
calization label and label noise are defined as
ỹo =

((
h̃
(L)
o , w̃

(L)
o

)
,
(
h̃
(R)
o , w̃

(R)
o

))
and no =((

∆h
(L)
o ,∆w

(L)
o

)
,
(
∆h

(R)
o ,∆w

(R)
o

))
, respectively. Very

important to our approach and proposal of localization label
noise injection is that the sampling (7), (9) is performed
for each object o ∈ O represented in y. In other words,
the power of the label noise n = (no) in (4) depends on
each object’s bounding box size (2). This ensures that
deviations between y and the resulting ỹ remain realistic
and controllable via ϵ (7). This gives us a major advantage
over the method used in [22], which only yields rough
localization estimates with a very low intersection over

Localization Label Refinement Network

Feature 
Extractor

RoI
Processing

RoI
Generator

Decoder

times

LLRN

(a) Training

Localization Label Refinement Network

Feature 
Extractor

RoI
Processing

Decoder

Set times

LLRN

(b) Inference

Figure 2. Proposed single-pass (k = 1) and multi-pass (k > 1)
localization label refinement. Training (Fig. 2a): Image x is
fed into a feature extractor yielding the latent feature represen-
tation z. A subsequent region-of-interest (RoI) processing yields
cropped feature representations z′

k=1 using sampled region pro-
posals Rk=1 based on ground-truth localization label y. Finally,
the decoder outputs a refined localization label ŷk=1. For multi-
pass localization label refinement we repeat this procedure by fur-
ther using ŷk≥1 instead of y. For simplicity, we do not display
any subsequent loss computations. Inference (Fig. 2b): Noisy lo-
calization label ỹ instead of ground-truth localization label y or
refined localization label ŷ (multi-pass only) are used. Note that
the RoI generator is not used during inference. Instead, a set oper-
ation yields Rk=1 = {ỹ} and Rk = {ŷk} for k > 1.

union to the ground truth. In summary, following this
procedure, we can create datasets with noisy labels denoted
as D(ϵ) with noise strength ϵ.

3.3. Localization Label Refinement Network

Next, we design a method which is capable of refin-
ing noisy localization labels. As we are only interested in
localizing objects without a subsequent classification, we
build our method on top of an object localization frame-
work. To this end, we choose the universal bounding box
regressor (UBBR) [22] approach, which is a class-agnostic
and anchor-free method for localization. As our objective
is the refinement of noisy localization labels, we dub our
proposed framework localization label refinement network
(LLRN). Next, we give a brief overview of the most im-
portant components of our LLRN. We then proceed by in-
troducing three possible variants of our LLRN depending
on the refinement procedure: single-pass, multi-pass, and
cascaded-pass refinement.
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General overview: Fig. 2 displays the most important
components of our LLRN. We neglect the subscript k in the
following. Similar to conventional DNNs for object detec-
tion, our LLRN consists of a feature extractor, a region-of-
interest (RoI) processing (in our case RoI align [16]), and
a decoder. To generate regions of interest during training
(Fig. 2a), we do not use a region proposal network (RPN)
[40] but a RoI generator instead. The RoI generator takes
object localizations (y, ỹ, or ŷ) as input and yields a set of
M randomly sampled RoI proposals R per object follow-
ing the sampling policy in [22], thus NO ·M in total. Note
that the sampled RoI proposals can be understood as noisy
localizations which are processed through a RoI processing
followed by a refinement in the decoder. During inference
(Fig. 2b) we use a set operation instead of the RoI generator
which appends the object localization’s input (y, ỹ, or ŷ) to
the set of region proposals R. Similar to the training phase,
we feed the NO (noisy) object localizations through a RoI
processing followed by a refinement in the decoder. Next,
we elaborate on the single-pass and multi-pass LLRN.

Single-pass and multi-pass refinement: Fig. 2 gives an
overview of both single-pass and multi-pass refinement. We
start with the single-pass setting (k = 1). First, we distin-
guish between training (Fig. 2a) and inference (Fig. 2b). In
both training and inference, the feature extractor takes x as
input and outputs a latent feature representation z which
is then fed to the RoI processing. During training, we use
the ground-truth localization label y and a RoI generator to
produce a set of M randomly sampled RoI proposals Rk=1

for each localization label in y. The RoI proposals are then
forwarded to the RoI processing to output the RoI-cropped
latent feature representation z′

k=1 which yields a refined lo-
calization label ŷk=1 after decoding. During inference, we
do not generate RoI proposals anymore, but instead feed the
noisy localization label ỹ to the RoI processing.

In the multi-pass setting (k > 1), we additionally feed
the refined localization label ŷk back to the RoI processing
and decoder until we reach the total number of iterations
k = K. The idea is that ŷk is iteratively improved.

Cascaded-pass refinement: Fig. 3 depicts the cascaded
localization label refinement network. It is inspired by the
decoder structure of Cascaded R-CNN [3] and follows a
similar procedure as the multi-pass localization label refine-
ment network in Fig. 2b. The main difference to the multi-
pass LLRN is that instead of using the same decoder in each
iteration, we have K distinct decoders. This way, each de-
coder is able to handle a different quality of RoI proposals.
In our experiments, we found that this is important as the
multi-pass LLRN with a single decoder surprisingly did not
improve the quality of localization labels but rather worsens
it. This aligns with observations made in [3].

Loss functions during training: We train the single-
pass, multi-pass, and cascaded-pass LLRN using a combi-

Localization Label Refinement Network
(RoI Processing + Decoders)

RoI
Processing

DecoderRoI
Generator

RoI
Processing

Decoder

RoI
Processing

Decoder

training

inference

Set

weights are
not shared

weights are
not shared

Set

Set

Figure 3. Proposed cascaded-pass localization label refine-
ment. Training: Latent feature representation z and sampled re-
gion proposals R1 based on ground-truth localization label y are
fed into a region-of-interest (RoI) processing yielding cropped fea-
ture representations z′

1. A subsequent decoder (subscript 1) out-
puts a refined localization label ŷ1. Next, ŷ1 is fed into a second
RoI processing yielding R2 and z′

2, respectively. A second dis-
tinct decoder (subscript 2) outputs a refined localization label ŷ2.
This process is repeated exactly K times to obtain the final re-
fined localization label ŷK . Inference: Noisy localization label ỹ
instead of ground-truth localization label y is used. Note that the
RoI generator is disabled during inference. Instead, a set operation
yields Rk=1 = {ỹ} and Rk = {ŷk} for k > 1. Best viewed in
color.

nation of smooth L1 loss [13], J smooth, and the general-
ized intersection-over-union (gIoU) loss [41], JgIoU. Dur-
ing training, we combine the losses to

J reg = J smooth + JgIoU. (10)

Please refer to Supplement Sec. 1 for a detailed description
of J smooth and JgIoU. For the multi-pass and cascaded-pass
LLRN, we extend (10) with weight factors. In particular, we
have

J reg =

K∑
k=1

2k−1J reg
k , (11)

with the J reg
k loss (10) being computed for iteration k (cf.

Fig. 2a) or the k-th decoder (cf. Fig. 3). Note that for train-
ing the Cascade R-CNN we also use loss (10) in (5).

3.4. Proposed Evaluation Setup

We evaluate our proposed method by performing three
distinct trainings. Fig. 4 gives an overview. The standard
training is displayed in Fig. 4a, where we simply train a
model on the original dataset D yielding network F . Next,
in Fig. 4b, we incorporate our proposed localization label
noise injection (LLNI, Sec. 3.2) to obtain the noisy dataset
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Train
DNN

(a) Training with ground-truth localization labels

Train
DNN

LLNI
(8)

(b) Training with noisy localization labels

Train
DNN

LLRNLLNI
(8)

(c) Training with refined localization labels

Figure 4. Proposed training schemes for subsequent evalua-
tion. Each training uses the ground-truth class labels u of original
dataset D. Fig. 4a: Standard training with original dataset D and
u yielding model F . Dataset D consists of images x and ground-
truth localization labels y. Fig. 4b: Training with noisy dataset
D̃(ϵ) and u yielding model F̃ . Note that noisy localization labels
ỹ are used, where the noise of strength ϵ (7) is injected using our
proposed localization label noise injection (LLNI) (8). Fig. 4c:
Training with refined dataset D̂(ϵ) and u yielding model F̂ . Our
proposed localization label refinement network (LLRN) refines the
noisy localization labels ỹ to refined localization labels ŷ.

D(ϵ). We then train another model on noisy dataset D̃(ϵ)

yielding F̃ . Lastly, in Fig. 4c, we additionally introduce
our proposed localization label refinement network (LLRN)
to obtain the refined noisy dataset D̂(ϵ) and again train a
model yielding F̂ . Note that for the latter, we keep the
subscript ϵ on purpose to indicate that the localization label
refinement was performed on D̃(ϵ) having (original) noise
strength ϵ. That being said, we perform ablation studies on
various noise strengths ϵ (7). The evaluation is performed
using standard object detection metrics, which will be in-
troduced in the evaluation details.

4. Experimental Setup
In the following, we introduce our experimental setup.

Further details can be found in our code which will be pub-
lished upon acceptance.

Employed datasets: Tab. 1 lists all data splits in our
experiments. All our experiments are performed on Pascal
VOC 2012 [9]. We extend the original dataset by noisy ver-
sions using our proposed localization label noise injection
(Sec. 3.2) and refined noisy versions using our proposed
LLRN (Sec. 3.3).

We train an object detection network on either the origi-
nal training set Dtrain, our noisy version D̃(ϵ)

train having noise
strength ϵ, or the refined noisy version D̂(ϵ)

train (cf. Fig. 4).
After training, we evaluate the performance using the orig-
inal validation set Dval.

On the other hand, all variations of LLRN are solely

Table 1. Data splits used in our experiments, with noise strength
ϵ ∈ E={0, 0.1, 0.2, 0.3, 0.4, 0.5}. Note D̃(ϵ=0)

[.] =D[.].

Dataset Official subset #Images Symbol

train
5,717 Dtrain

5,717 D̃(ϵ)
train

5,717 D̂(ϵ)
trainPascal VOC 2012 [9]

val
5,823 Dval

5,823 D̃(ϵ)
val

5,823 D̂(ϵ)
val

trained on the original training set Dtrain. After training,
we perform evaluations on the original validation set Dval

and our noisy version D̃(ϵ)
val. Taking D̃(ϵ)

val as input, our LLRN
yields D̂(ϵ)

val, which we compare to the original validation set
Dval. Further, the refined noisy version D̂(ϵ)

train of the origi-
nal training set Dtrain is created by processing D̃(ϵ)

train using
our trained LLRN.

Network architecture: We deploy the Cascade
R-CNN [3] as our object detection network. We use an
ImageNet-pretrained [44] ConvNeXt-tiny [27] back-
bone, followed by a feature pyramid network (FPN) [24]
with four feature pyramid levels, RoI Align [16], and a sub-
sequent cascaded decoder [3]. We follow the standard pro-
cedure for feature pyramid level selection [24]. The output
of the selected feature pyramid is fed into the Cascade
R-CNN decoder. It uses three cascades, each based on
Faster R-CNN [40] having IoU thresholds 0.5, 0.75, or
0.9, respectively. The output of the last cascade is used as
the final output.

Our LLRN follows a similar structure. The single-pass
and multi-pass LLRN also use an ImageNet-pretrained [44]
ConvNeXt-tiny [27] backbone, followed by a feature
pyramid network (FPN) [24] with four levels and standard
feature pyramid level selection [24] with subsequent RoI
Align [16]. The decoder consists of three consecutive fully
connected layers with 4096, 4096, and four outputs, respec-
tively. Note that the four outputs correspond to refined lo-
calization labels ŷ (cf. Fig. 2). Our cacsaded-pass LLRN
builds on top of the architectures of the single-pass and
multi-pass LLRN and employs cascaded decoder heads as
in [3]. In our experiments, we found out that it is sufficient
to use K = 3 cascaded decoders.

Training details: We train the Cascade R-CNN with
a frozen backbone following [3]. In particular, we train for
36 epochs using the AdamW [28] optimizer with learning
rate 10−4, weight decay 0.05, loss weight λ = 1 (5), and
a batch size of 4. Regarding data augmentations, we resize
the images to 512 × 512 and do a random horizontal flip-
ping.

For training our LLRN, we follow mostly [22]. In par-
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Figure 5. Localization label quality for noisy and refined data.
Mean intersection-over-union (mIoU ) (13) between ground truth
data Dval and noisy data D̃(ϵ)

val, and between ground truth data Dval

and refined data D̂(ϵ)
val for different noise strengths ϵ (7) are re-

ported. The refined dataset D̂(ϵ)
val is created by using our single-

pass, multi-pass, or cascaded-pass localization label refinement
network (LLRN).

ticular, we train for 100 epochs using the AdamW [28] op-
timizer with learning rate 10−4, weight decay 0.05, and a
batch size of 32. Further, we resize the images to 512 × 512.
The training is performed with a frozen backbone. Note that
during training, the RoI generator (cf. Figs. 2 and 3) sam-
ples M = 50 RoI proposals following the sampling pol-
icy in [22] with sampling hyperparameters α = 0.15 and
β = 0.25.

Evaluation details: To evaluate our approach, we make
use of the mean intersection-over-union (mIoU ) and the
mean average precision (mAP ). We define class-specific
IoU s as

IoU s =
1

|Os|

∑
o∈Os

|Yo,s ∩ Yo,s|
|Yo,s ∪ Yo,s|

, (12)

where Yo,s is the set of pixels (h,w) ∈ I enclosed by yo

having class s, and Yo,s is the set of pixels (h,w) ∈ I
enclosed by ground truth yo with class s. Further, set Os

refers to all objects of class s. Similarly, we also compute
the IoU s between the set of pixels Ỹo,s of noisy localization
label ỹo and the ground-truth set of pixels Yo,s on the one
hand, and between Ŷo,s of the refined localization label ŷo

and the ground-truth set of pixels Yo,s on the other hand.
Finally, the mean intersection-over-union is defined as

mIoU =
1

S

∑
s∈S

IoU s. (13)

We report the object detection performance of the
Cascade R-CNN using mAPκ [25] defined as

mAPκ =
1

S

∑
s∈S

APκ,s, (14)

where mAPκ is the mean average precision for IoU thresh-
old κ, and APκ,s is the average precision for IoU threshold
κ and class s.
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Figure 6. Object detection performance on noisy and re-
fined data. Mean average precision (mAPκ) (14), κ ∈
{0.5, 0.6, 0.7, 0.8, 0.9}, on Dval is reported. We trained the
Cascade R-CNN on noisy datasets D̃(ϵ)

train and refined datasets
D̂(ϵ)

train with different (initial) noise strengths ϵ (7). Dataset D̂(ϵ)
train

is created using our single-pass LLRN.

5. Experimental Evaluation and Discussion
In the following, we discuss our experimental results.

5.1. Baseline Performance

First, we report mIoU (13) between ground-truth local-
ization labels y and noisy localization labels ỹ with various
noise strengths ϵ ∈ E using our validation datasets Dval

and D̃(ϵ)
val. The results are shown in Fig. 5 (dashed-dotted

line). We observe an almost linear decline in mIoU be-
tween ground-truth localization labels y and noisy localiza-
tion labels ỹ when increasing the noise strength ϵ of our
LLNI.

Next, we use Dtrain and D̃(ϵ)
train, ϵ ∈ E , to train dis-

tinct Cascade R-CNN (cf. Figs. 4a and 4b). We eval-
uate the performance using mAPκ with IoU thresholds
κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The results are shown in Fig. 6
(dashed-dotted lines). We observe that increasing the noise
strength ϵ of our LLNI not only leads to a drop in mIoU
between ground-truth localization labels y and noisy local-
ization labels ỹ (cf. Fig. 5, dashed-dotted line) but also to
a drop in mAP of Cascade R-CNN over all κ. This is
indeed a problem as we cannot expect to have perfect local-
ization labels at all times. We further observe that especially
for mAPκ with high IoU thresholds (κ ≥ 0.7) the perfor-
mance drop is severe.

5.2. Label Refinement

Next, we investigate to what extent our proposed LLRN
is capable of mitigating the effect of localization label noise.
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To this end, we first take a look at the mIoU after local-
ization label refinement using either the single-pass, multi-
pass, or cascaded-pass LLRN. In Fig. 5 (solid lines), we
report the mIoU between ground-truth localization labels
y and refined localization labels ŷ with various (original)
noise strengths ϵ ∈ E using our validation datasets Dval and
D̂(ϵ)

val. We observe that for noise strengths ϵ < 0.2 all vari-
ations of our LLRN are not able to improve nor retain the
mIoU . However, for ϵ > 0.2 all LLRN setups are able
to improve the mIoU , with the single-pass LLRN yield-
ing the best results with an mIoU improvement of up to
13.9% absolute over the baseline (for ϵ = 0.5). This is actu-
ally quite surprising as we expected both multi-pass LLRN
and cascaded-pass LLRN to have better performance than
single-pass LLRN. Examples for refinement are depicted in
Fig. 1. Further examples can be found in the Supplement.

5.3. Performance on Refined Localization Labels

Finally, we use D̂(ϵ)
train, ϵ ∈ E , generated by our best

method, i.e., single-pass LLRN, to train distinct Cascade
R-CNN (cf. Fig. 4c). We evaluate the performance using
mAPκ, with κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The results are
shown in Fig. 6 (solid lines), where the shaded area indi-
cates the standard deviation over three runs. We observe
that our single-pass LLRN improves mAPκ over almost all
ϵ by a large margin, for ϵ = 0.5 and κ = 0.8 even up to
34.2% absolute mAP . However, we also observe that train-
ing with refined ground-truth data (ϵ = 0) slightly degrades
the performance. We provide the exact value of each data
point in the Supplement, Table 2.

Although Fig. 5 indicates that single-pass LLRN is su-
perior to multi-pass and cascaded-pass LLRN, we were still
interested to what extent this superiority is reflected in the
mAPκ. To this end, we train the Cascade R-CNN us-
ing refined localization labels from multi-pass LLRN and
the cascaded-pass LLRN. Fig. 7 depicts the mAPκ for
both LLRN setups and our single-pass LLRN, with κ ∈
{0.5, 0.6, 0.7, 0.8, 0.9}. Similar to Fig. 6, the shaded area
indicates the standard deviation over three runs. We observe
that single-pass LLRN (solid lines) is in most cases superior
to or on par with both multi-pass LLRN (dotted lines) and
cascaded-pass LLRN (dashed lines). The highest deviation
is measured for ϵ = 0.5 and κ = 0.8 with about 10% ab-
solute higher mAP on average. For cases κ = 0.5...0.6
and ϵ = 0...0.3, we find that the cascaded-pass LLRN is
slightly better on average than the single-pass LLRN (up to
1.1% absolute mAP ). However, we also observe that we
have a higher variance over three runs (shaded area) which
is why we consider these deviations to be not significant.
We conclude that the single-pass LLRN is better than both
multi-pass LLRN and cascaded-pass LLRN.
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Figure 7. Object detection performance on refined data by
our three investigated LLRN methods. Mean average precision
(mAPκ) (14), κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, on Dval is reported.
We trained the Cascade R-CNN on noisy datasets D̃(ϵ)

train and
refined datasets D̂(ϵ)

train with different (original) noise strengths ϵ

(7). Dataset D̂(ϵ)
train is created using our single-pass LLRN, multi-

pass LLRN, or cascaded-pass LLRN.

6. Conclusions

In this paper, we address localization label errors stem-
ming from autolabeling. In particular, we first propose
a method to generate localization label errors by induc-
ing label noise to ground-truth localization labels of Pascal
VOC 2012. Different to conventional autolabeling meth-
ods, this gives us the freedom to adjust the amount of noise
in the labels offering a more insightful evaluation. Using
the Cascade R-CNN, we were able to show that training
with localization label errors indeed leads to a worse final
performance. Further, we propose a method to refine noisy
localization labels dubbed localization label refinement net-
work (LLRN) to address the performance gap. We show that
our proposed method indeed refines the noisy localization
coming from our localization label error generator. In num-
bers, we were able to restore up to 13.9% absolute mIoU
towards the ground-truth localization labels. A subsequent
training of Cascade R-CNN with refined localization la-
bels shows improved performance by a large margin, im-
proving mAP0.8 up to 34.2% absolute. Our study intro-
duces a practically relevant and challenging task which we
dub “refinement of noisy localization labels” and also sets a
first benchmark on Pascal VOC 2012.
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