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Abstract

Applying traditional post-hoc attribution methods to seg-
mentation or object detection predictors offers only lim-
ited insights, as the obtained feature attribution maps at
input level typically resemble the models’ predicted seg-
mentation mask or bounding box. In this work, we ad-
dress the need for more informative explanations for these
predictors by proposing the post-hoc eXplainable Artifi-
cial Intelligence method L-CRP to generate explanations
that automatically identify and visualize relevant concepts
learned, recognized and used by the model during infer-
ence as well as precisely locate them in input space. Our
method therefore goes beyond singular input-level attri-
bution maps and, as an approach based on the Concept
Relevance Propagation technique, is efficiently applicable
to state-of-the-art black-box architectures in segmentation
and object detection, such as DeepLabV3+ and YOLOv6,
among others. We verify the faithfulness of our proposed
technique by quantitatively comparing different concept at-
tribution methods, and discuss the effect on explanation
complexity on popular datasets such as CityScapes, Pas-
cal VOC and MS COCO 2017. The ability to precisely
locate and communicate concepts is used to reveal and
verify the use of background features, thereby highlight-
ing possible biases of the model. Code is available on
https://github.com/maxdreyer/L-CRP.

1. Introduction

Deep Neural Networks (DNNs) have proven to be suc-
cessful in providing accurate predictions in several criti-
cal object localization tasks, including autonomous driv-
ing [4] or medical screening [34]. However, the reasoning
of these highly complex and non-linear models is generally
not transparent [41,43], and as such, their decisions may be
biased towards unintended or undesired features [3, 29, 49].

In particular, object localization models sometimes base
their decisions on features that lie outside of the segmen-
tation mask or bounding box [22,39], as shown in Figure 1,
where the context of a hurdle is used for the segmentation
of a horse. Understanding such contextual usage by DNNs
is crucial to meet the requirements set in governmental reg-
ulatory frameworks and guidelines [12, 19].

In order to increase our understanding of DNN predic-
tions, the field of eXplainable Artificial Intelligence (XAI)
has proposed several techniques that can be characterized
as local, global or a combination of both.

In literature predominantly addressed are local XAI
methods for explaining single predictions. These methods
compute attribution scores of input features, which can be
visualized in form of heatmaps highlighting important in-
put regions. However, in object localization or segmenta-
tion tasks, such attribution maps often resemble the predic-
tion, e.g. the segmentation mask itself, and hence add little
value for gaining new insights into the decision process of a
model, e.g. when no context is used (see Figure 2 (right)).

Alternatively, global XAI aims to visualize which fea-
tures or concepts have been learned by a model or play an
important role in a model’s reasoning in general. Nonethe-
less, it is not clear which features were actually used for a
particular prediction or how they interact. For individual
samples, latent activation maps of features can be visual-
ized, that however are of low resolution and give no indica-
tion whether the feature was actually used or merely present
in the input, as illustrated in Figure 1 (right).

Glocal concept-based explanations, on the other hand,
offer a new dimension of model understanding compared to
traditional heatmap-based approaches by not only indicat-
ing where the model pays attention to, but also informing
about what it sees in the relevant input regions [1, 37, 58].

Our glocal methodology is hereby based on Concept
Relevance Propagation (CRP) [1], an extension to local
attribution methods based on the (modified) model gradi-
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Figure 1. Our concept-based eXplainable Artificial Intelligence (XAI) approach (center) goes beyond traditional local heatmaps (left) or
latent activation analysis (right), by communicating which latent concepts contributed to a particular detection, to what degree in terms of
relevance (R) and where concepts are precisely located in input space. Whereas the shown heatmap from Layer-wise Relevance Propagation
(LRP) only indicates the relevance of pixels overall, our method disentangles the latent space and makes it possible to understand individual
concepts forming the prediction outcome. Especially in the multi-object context, it is crucial to attain object-class-specific explanations,
which is not possible by the analysis of latent activations: Concepts with the highest activation values can refer to any class that is present
in the image, such as the horse’s rider, or none at all, since activations do not indicate whether a feature is actually used for inference.

ent, such as Layer-wise Relevance Propagation (LRP) [5].
Specifically, CRP allows to disentangle local attributions by
computing relevance scores and heatmaps for individual la-
tent features, and thus to localize concepts precisely in input
space. Concept localization allows us in Section 4.2 to iden-
tify context biases and the use of background features, such
as the “vertical bar” concept targeting the hurdle in Figure 1.

Contributions In this work, we address the limited ex-
plainability insight of heatmap-based local XAI meth-
ods for object localization tasks. We therefore present
a novel method called CRP for Localization Models (L-
CRP) for glocal concept-based explanations based on CRP
for state-of-the-art architectures for semantic segmenta-
tion and object detection tasks, including UNet [17],
DeepLabV3+ [11], YOLOv5 [14] and YOLOv6 [30]
trained on the public datasets of CityScapes [13], Pascal
VOC 2012 [16] and MS COCO 2017 [31]. Concretely,

1. We demonstrate how to explain state-of-the-art archi-
tectures for segmentation as well as object detection
with LRP locally and by adapting CRP glocally on a
concept level.

2. We evaluate our method in terms of faithfulness and
explanation complexity using different concept attri-

bution methods, including activation [56], gradient,
GradCAM [48] and several LRP [5] parameterizations.

3. By localizing concepts in input space via concept-
specific heatmaps and having object masks or bound-
ing boxes available, we compute context scores for
concepts indicating to which degree a concept is used
for encoding background or object features and how
the model makes use of the respective information dur-
ing inference. We show how these insights can be used
to detect biases in the model and verify our findings by
interacting with the model.

2. Related Work
In the following, the current landscape of XAI methods

for segmentation and object detection models is presented,
followed by a description of concept-based XAI techniques.

2.1. Explainable AI for Segmentation

The literature of XAI for segmentation predominantly
focuses on local techniques. While some works apply
backpropagation-based methods such as Grad-CAM [15,
33,48,52] or LRP [2] to compute attribution heatmaps, oth-
ers propose to apply perturbation-based methods [22, 53].
Contrary to classification tasks, local attributions are not
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computed w.r.t. a single output class neuron, but w.r.t. the
whole output feature map that forms the segmentation mask
representing the class. Several such local XAI techniques
have been compiled into the Neuroscope toolbox [45].

Alternatively, Losch et al. inspect latent features of seg-
mentation models and introduce Semantic BottleNecks [32]
modules to increase the latent space’s human interpretabil-
ity. They visualize and investigate intermediate filter activa-
tion maps, which, however, are of limited insight for under-
standing particular predictions due to not being class- and
outcome-specific. Further, the fidelity of activation maps
is limited to a convolutional channel’s spatial resolution, as
shown in Figure 1, where the attributions from L-CRP offer
high resolution, as well as object- and outcome-specificity.

Alternatively, another group of works investigates in-
herently interpretable architectures, such as U-Noise [28],
SegNBDT [53], MSGA-Net [24], and ProtoSeg [42] offer-
ing prototypical explanations. However, a large number of
models applied in industry and research are not designed
to be human-interpretable in the first place and thus require
post-hoc methods for interpretation, such as ours.

2.2. Explainable AI for Object Detection

Similar to image segmentation, several local XAI meth-
ods have been presented for object detection. These tech-
niques can be grouped into methods based on the (modi-
fied) gradient such as Gradient-SHAP [25], LRP [23, 50],
Spatial Sensitive Grad-CAM (SS-GradCAM) [54] and EX2
[20], or input-perturbation techniques such as LIME [20]
and masking [39, 44, 55]. Methods based on the gradient
hereby explain the output class logit of a chosen bounding
box analogously to the classification case. It is to note, that
perturbation-based attribution methods require a high num-
ber of prediction re-evaluations by the model, resulting in
run times in the order of minutes per data point, as e.g.
for [39]. Our method is based on the (modified) gradient
and, therefore, can be computed in the order of seconds [1].

2.3. Concept-based Explanations

In recent years, a multitude of methods emerged to vi-
sualize in a human-interpretable way concepts in the latent
space learned by a model. A line of work [8,9] assumes that
individual neurons encode distinct concepts, others view
concepts as directions described by a superposition of neu-
rons [26, 51]. Similar to contemporary literature [1, 8, 9],
we treat each neuron as an independent concept to achieve
the highest granularity in explanations, while the method
presented in this paper can be, in principle, also extended
trivially to concept directions in the latent space.

In the image domain, contemporary work relies on ac-
tivation maximization for visualizing concepts [18, 36, 40,
57], where in its simplest form, input images are sought that
give rise to the highest activation value of a specific concept

unit. However, high activation does not necessitate that cor-
responding input features are representative of a neuron’s
function, as adversarial examples illustrate. In this work,
we make use of Relevance Maximization (RelMax) [1] that
mitigates the aforementioned issues by choosing reference
images from the original training distribution based on max-
imal relevance instead of activation.

Glocal XAI methods try to bridge the gap between the
visualization of concepts on a global scale and attribution
of their role during per-sample model inference. Shrouff et
al. [47] combine TCAV [26] with Integrated Gradients to
enable local attributions of neuron vectors, however, with-
out offering localization of latent features in input space.
NetDissect [7] assigns concepts to individual channels by
computing the overlap between spatial activations with pre-
defined segmentation masks. However, the fidelity of local-
ization capabilities are limited to a convolutional channel’s
spatial resolution, as shown in Figure 1. Achtibat et al. [1]
propose the idea of CRP, an extension of latent feature at-
tribution methods based on the (modified) gradient, where
a concept-specific heatmap can be computed by restrict-
ing the backward propagation of attributions through the
network. This allows to attain precise concept-conditional
heatmaps in input space, which we will use in Section 4.2
to investigate the use of background features by the model.

3. Methods
Our glocal concept-based method L-CRP is based on

the principle of CRP, with LRP as the feature attribution
method of our choice. Therefore, we first introduce LRP
and CRP to attain concept-based explanations for individ-
ual predictions. Thereafter, we describe how concept-based
explanations with L-CRP for segmentation and object de-
tection can be obtained.

3.1. Layerwise-Relevance-Propagation

Layer-wise Relevance Propagation [5] is an attribution
method based on the conservation of flows and proportional
decomposition. For a model f(x) = fn ◦ · · · ◦ f1(x)
with n layers, LRP first calculates all activations during the
forward pass starting with f1 until the output layer fn is
reached. Thereafter, the prediction score f(x) of any cho-
sen model output class is redistributed as an initial quantity
of relevance Rn back towards the input layer after layer.

For a layer’s output neuron j, the distribution of its as-
signed relevance score Rj towards its lower layer input neu-
rons i is given by applying the basic decomposition rule

Ri←j =
zij
zj

Rj , (1)

with zij describing the contribution of neuron i to the ac-
tivation of neuron j. The aggregated pre-activations zij at
output neuron j are represented by zj with zj =

∑
i zij .
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The relevance of a neuron i is then simply an aggregation
of all incoming relevance quantities

Ri =
∑
j

Ri←j . (2)

In order to ensure robust decompositions and stable
heatmaps, several purposed LRP rules have been introduced
in literature [35, 43]. During the experiments in Section 4,
we compare the rules of LRP-ε, LRP-γ and LRP-z+, lead-
ing to different explanations in terms of faithfulness and
complexity as shown in Section 4.1. Please refer to Ap-
pendix A.1 for a detailed description of used LRP-rules.

3.2. Concept-Relevance-Propagation

With CRP, the authors of [1] combine global concept
visualization techniques with the local feature attribution
method of LRP. A first step to the unification of local and
global XAI is the realization that during the LRP backward
pass, intermediate relevance scores are readily available, as
computed in Equation (2). In order to also achieve concept-
conditional heatmaps in input space, CRP firstly proposes
to restrict the relevance propagation process via conditions.

Concretely, a condition cl can be specified for one or
multiple neurons j corresponding to concepts of interest in
a layer l. Multiple such conditions are combined to a condi-
tion set θ. To disentangle attributions for latent representa-
tions, the relevance decomposition formula in Equation (2)
is therefore extended with a “filtering” functionality:

R
(l−1,l)
i←j (x|θ ∪ θl) =

zij
zj

·
∑
cl∈θl

δjcl ·Rl
j(x|θ) (3)

where δjcl “selects” the relevance quantity Rl
j of layer l and

neuron j for further propagation, if j meets the (identity)
condition(s) cl tied to concepts we are interested in. For
layers without conditions, no filtering is applied. A concept-
conditional heatmap can thus be computed by conditioning
the modified backward pass of LRP via such a condition cl
for the concept’s corresponding neuron or filter.

For the visualization of concepts, we adhere to the propo-
sition of [1] and collect reference input images for which a
latent neuron is most relevant, i.e., useful during inference.
Thereafter, by computing a conditional heatmap for the neu-
ron of interest and reference sample, the relevant input part
is further cropped out and masked to increase the focus of
the given explanation on the core features encoded by the
investigated neurons, as detailed in [1].

3.3. Extending Attributions to Object Localization

In order to obtain L-CRP for the generation of local ex-
planations for segmentation and object detection models
with CRP, the task-specific output vectors and maps have
to be handled accordingly.

Figure 2. Local explanations of object detection (left) and seman-
tic segmentation (right) with the LRP-z+ rule. In the object detec-
tion case, we can explain each predicted object. For segmentation,
an object’s segmentation map or a part of it can be explained. Ex-
planations with L-CRP can be found in the Appendix A.2

Semantic Segmentation Image segmentation models fol-
low an encoder-decoder architecture in which the output
mirrors (a scaled version of) the input dimensions in width
and height. In contrast to the 1-dimensional output in classi-
fication tasks, the segmentation output consists of a 2d-map
for each learned object category.

For simplicity, we assume a decision function f : Rn →
Rn for binary segmentation with a one dimensional input
x ∈ Rn and output f(x) ∈ Rn of length n in the following.
This is not necessarily a restriction to the input and output
size, as any input can be flattened to a single dimension.

Here, any input feature xi (e.g. pixel) might contribute
to all the output values fj(x). Therefore, we can assign
to feature xi a relevance score for each output j. In fact,
explaining a segmentation prediction can also be viewed as
performing an explanation for each output pixel separately,
and eventually adding the resulting attribution scores via,
e.g., a weighted sum. Here, a specific Region of Interest
(ROI) can be selected to be explained by setting weights
to zero for pixels outside the ROI. An example of a local
explanation using two kinds of ROIs is shown in Figure 2
(right), where both the whole segmentation output of a bus
or the bus wheels are explained via binary masking.

For modified backpropagation-based attribution methods
such as LRP, the output tensor used as the starting point
for relevance propagation can be adapted directly in order
to control the meaning of an explanation. Please refer to
Appendix A.3 for a comparison of different initialization
schemes, including uniform, softmax or logit initialization.

For the initialization of relevance propagation at the out-
put, we adhere to the in-literature often practiced approach
by focusing on output scores corresponding to the highest
class prediction. The relevance propagation for explaining
class y is initialized in the last output layer L as

RL
(p,q,c)(x|θ) = δcyf(p,q,c)(x)1(p,q)(x|y) (4)

with an indicator function

1(p,q)(x|y) =
{
1, if y = argmaxkf(p,q,k)(x)
0, otherwise .

(5)
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The tensor indices p and q refer here to the spatial dimen-
sion w×h and channel (class) dimension c. Thus, not whole
channel output maps are explained, but only the output val-
ues, which correspond to the selected class.

Object Detection Object detection networks often consist
of a decoder part and a prediction module. The output per
bounding box then includes class scores and information
about the position of the bounding box. Local attributions
are then similarly computed to the classification task w.r.t.
the class score of a chosen bounding box.

For a bounding box predictor f : Rn → RN×(nc+4)

with an output of N bounding boxes for nc object classes
with four coordinates, the relevance RL

(b,c)(x|θ) of feature
xi for bounding box k of class y is then given by initializing
the relevance propagation at the output as

RL
(b,c)(x|θ) = δbkδcyf(b,c)(x) (6)

with b representing the bounding box axis. Thus, an indi-
vidual explanation can be computed for each bounding box,
as shown in Figure 2 (left).

4. Experiments

The experimental section is divided into two parts, be-
ginning with the evaluation of our concept-based XAI
method using different feature attribution methods, thereby
showing the superiority of computing latent relevance
scores instead of activations – especially in the multi-
object case. In the second part, we leverage the fact that
we can localize the object through ground truth masks or
bounding boxes and thus are able to measure how much
the background instead of the actual object is used. We
show how this can be used to detect possible biases in the
model corresponding to specific feature encodings. We ap-
ply our method to a UNet on the CityScapes dataset, a
DeepLabV3+ on the Pascal VOC 2012 dataset, a YOLOv5
and YOLOv6 model on the MS COCO 2017 dataset. Please
refer to Appendix A.1 for further details on the models.

4.1. Evaluation of Concept-based Explanations

In recent years, several methods have been proposed
to evaluate local explanations. Following the authors of
[10, 21], we evaluate our presented method w.r.t. faithful-
ness and complexity. Faithfulness measures whether an at-
tribution truly represents features utilized by the model dur-
ing inference, while complexity measures how concise ex-
planations are, which is of interest in context of e.g. hu-
man interpretation. Since the literature for evaluating local
concept-based explanations is limited, we propose two ex-
periments to test for faithfulness and complexity.
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Figure 3. Measuring the faithfulness (left) and complexity (right)
of concept attributions for the UNet architecture. (Left): Acti-
vations of the most relevant (or activating) concepts are set to
zero successively, and the output difference measured. The Stan-
dard Error of Mean (SEM) over 100 samples is shown in semi-
transparent color. (Right): The variation of attributions is lowest
using activations and highest using gradient, GradCAM or LRP-ε.

4.1.1 Faithfulness of Concept Relevances

In order to assess the faithfulness of our concept-based ex-
planations, we measure the impact on the decision outcome
if a set of concepts is perturbed. This idea is analogous
to the pixel flipping experiment in [5], only to use latent
concepts instead of input features. We compare different
LRP-rules, GradCAM, gradient (used by e.g. TCAV [26])
and activation (used by e.g. NetDissect [56]).

Concretely, we begin by computing the relevance scores
of all concepts in a layer for a given object prediction.
Please note, that since we conceptualize each convolu-
tional channel to correspond to a distinct concept, the con-
cept relevance of a channel is acquired via spatially sum-
aggregation of intermediate relevance scores. Then, we
successively deactivate the most relevant channels first in
descending order by setting their activations to zero, re-
evaluate the model output and measure output differences.
Whereas the change in the class logit of a predicted bound-
ing box is computed for object detection, for segmentation
the mean change of the output mask’s logits is calculated.

Alternatively, we also perform concept flipping back-
wards, by initializing all filters with zero activation and
successively “unflipping” the most relevant concepts in de-
scending order, i.e., restoring their original activation val-
ues. This technique is designated as “concept insertion”.

A faithful explanation is hereby characterized by a strong
decline (incline) in performance if concepts are flipped (in-
serted). A typical experimental outcome is shown in Fig-
ure 3 (left) for layer features.10 of the UNet model.
As shown, perturbation of the most activating concepts is
significantly less faithful than using relevance-based scores.
This is expected, since relevance is object-specific and
thereby filters out other activating concepts irrelevant for
the current detection. Regarding concept relevances, the
scores of LRP-ε, gradient and GradCAM are often char-
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Table 1. Experimental results for evaluating various concept attribution approaches in terms of faithfulness (higher is better (↑)) and com-
plexity (lower is better (↓)). For each approach, the evaluated scores for all models are displayed (UNet|DeepLabV3+|YOLOv5|YOLOv6).

faithfulness (↑) complexity (↓)

concept flipping concept insertion explanation variation concepts for 80 % of attr. (%)

LRP-z+ 4.24 | 2.52 | 1.89 | 1.23 4.64 | 2.62 | 2.49 | 1.66 0.48 | 0.19 | 0.27 | 0.40 26.9 | 42.8 | 52.4 | 22.4
LRP-γ 4.51 | 2.78 | 2.07 | 1.34 5.16 | 2.75 | 2.63 |1.72 0.72 | 0.28 | 0.48 | 0.57 22.2| 34.0 | 41.0 | 18.1
LRP-ε 4.54| 3.25 |2.43|1.42 5.38| 3.29 |2.79| 1.42 0.84 | 0.65 | 0.73 | 0.94 26.5 | 37.8 | 34.9 | 23.1
GradCAM 4.41 |3.79| 1.81 | 1.11 5.27 |3.91| 2.37 | 1.25 0.81 | 0.60 | 0.89 | 0.96 27.1 |28.3|25.0|13.8
gradient 4.45 | 3.66 | 1.81 | 1.10 5.25 | 3.77 | 2.36 | 1.23 0.72 | 0.56 | 0.87 | 0.97 33.2 | 42.7 | 36.7 | 28.4
activation 2.83 | 2.10 | 1.49 | 0.82 3.49 | 2.36 | 2.17 | 1.14 0.28|0.09|0.15|0.23 61.4 | 63.2 | 68.3 | 45.9

acterized by the strongest decline/incline, as the gradient
of the model faithfully measures the local sensitivity of the
model to changes. However, as more features are perturbed,
LRP-γ and LRP-z+ often perform better, as they better rep-
resent the important features in a more global manner by fil-
tering out noisy attributions [5]. In order to receive a score
for a whole model, the faithfulness tests are performed in
various layers throughout the models on 100 randomly cho-
sen predictions, and the area under or over the curve mea-
sured per layer and mean-aggregated to form a final faithful-
ness score. As can be seen in Table 1, the results depicted in
Figure 3 are reflected throughout all tested models, mostly
showing the best scores for LRP-ε. Layer-wise faithfulness
scores for all models can be found in the Appendix A.4.

4.1.2 Explanation Complexity and Interpretation
Workload

While high faithfulness suggests that the concept attribu-
tions represent the model behavior correctly, they can still
be noisy and not human-interpretable [27]. This effect is
due to highly non-linear decision boundaries in DNNs [6].
In order to measure the complexity of explanations and the
workload a stakeholder has to put in for understanding the
explanations, two different measures are computed.

First, the standard deviation of latent concept attributions
per class is measured, indicating the amount of noise. A
low variation suggests, that explanations of the same class
are similar, resulting in a lower amount of complexity [21].
As a second measure, the amount of concepts necessary
to study in order to comprehend 80 % of all attributions is
computed. The more relevance is focused on a small num-
ber of concepts, the fewer concepts need to be analyzed.

An example for measuring explanation complexity is
shown in Figure 3 (right), where the explanation variation
in the first ten convolutional layers of the UNet architecture
is shown. Activations exhibit the smallest variation because
filters activate on average more often if the feature is present
in the image even though not used for inference. Regarding
relevance-based concept attributions, gradient, GradCAM

and LRP-ε show a high deviation especially in lower-level
layers, indicating noisy attributions.

Whereas activation-based approaches lead to a low ex-
planation variation, the distribution of concept attributions
is rather uniform, leading to unconcise explanations and a
large interpretation workload. Here, relevance-based ap-
proaches, which generate object-specific attributions result
in smaller relevant concept sets. Plots for all architectures
are illustrated in Appendix A.5.

The results of measuring explanation complexity for ev-
ery model using all predictions in the test datasets are given
in Table 1, confirming the previous observations in Figure 3.

Taking into account the results of the faithfulness tests, it
is apparent, that relevance-based concept attributions show
higher faithfulness than activation, but are not necessarily
easier to interpret in terms of explanation complexity alone.
Here, LRP-γ attributions show a good compromise between
faithfulness and complexity in most experiments.

4.2. Concept Context Scores for Bias Detection

Ideally, a DNN trained with enough variety in training
data learns abstract and generalized features. However, sev-
eral works have shown that DNNs can develop biases or
Clever Hans features, caused by spurious correlations in the
data [3, 38, 46, 49]. Also in our experimental datasets, ob-
jects are displayed together with objects of other classes.
A person is often pictured together with a kite, sitting on a
horse, walking on the beach, or standing on a surfing board
in splashing water. In fact, we can identify concepts for ex-
actly the above-mentioned use cases, as shown in Figure 4.

4.2.1 Measuring the Context of Concepts

In order to automatically identify latent encodings used
by a model to perceive an object’s background (possibly
corresponding to a bias), we propose to compute context
scores. We compare latent activation maps, latent relevance
maps (LRP, GradCAM and its spatial sensitive variant SS-
GradCAM), and input attributions (Guided GradCAM [48]
and L-CRP). We define the context score C of concept i as
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Figure 4. Examples of background concepts for class “person” of
the YOLOv6 model in layer ERBlock 5.0.rbr dense with
512 concepts. For each concept, the mean relevance (R), context
score (C) and context interpretation (white box) is given.

Figure 5. Measuring the context score of a concept encoding for
the spotted texture of the giraffe skin (shown are most relevant
concept samples) using the latent activation and LRP relevance
map as well as L-CRP heatmap. L-CRP results in the most precise
localization and is object-specific at the same time.

the fraction of positive attribution a+ outside of the object
bounding box compared to the overall sum, as

Ci =

n∑
j

1

n

∑
p,q a

+
(p,q,i)(xj)m̄(p,q)(xj)∑
p,q a

+
(p,q,i)(xj)

∈ [0, 1] (7)

for n samples xj and mask m̄ ∈ {0, 1} marking all back-
ground values with a value of one and zero else. Indices p
and q refer to the spatial dimension of the attribution maps.
In case of segmentation, an object is localized via pixel-
accurate ground-truth masks, whereas for object detection
bounding boxes are available. Masks or boxes are resized
correspondingly to measure context scores in latent space.

Note, that latent feature maps can only be assessed for
convolutional layers, but not for dense layers contained in
most classification networks. L-CRP heatmaps, however,
can be computed meaningfully for both layer types.

An example of computing context scores is shown in
Figure 5 for the YOLOv6 model and concept 28 of layer
ERBlock 5.0.rbr dense, which corresponds to the
spotted skin pattern of giraffes. As can be seen, latent ac-
tivation maps are not object- and outcome-specific, leading

Figure 6. Context scores (C) of concepts vary between classes, as
shown for concepts 2 (left) and 106 (right) of the YOLOv6 model.

to a broad activation on all giraffes in the image, and thus,
to over-estimated context scores. For high-level layers, the
high resolution of L-CRP maps leads to a more accurate
context estimation than low-resolution latent maps.

Computing context scores, we found that concepts are
used differently throughout classes (shown in Figure 6).
The texture of waves, e.g., can be found in bed blankets,
feathers of birds, or in water surrounding boats, illustrating
the significance of measuring context scores for each class.

4.2.2 Evaluating Context Scores

For evaluating estimated context scores, we propose to mea-
sure the model’s sensitivity of concepts on the background
of objects. We therefore inspect the influence on the con-
cepts’ relevances when the background is perturbed. Con-
cretely, we define background sensitivity S of concept i as

Si =

n∑
j

wj
|Ri(xj)−Ri(x̃j)|

max{|Ri(xj)|, |Ri(x̃j)|}
∈ [0, 1] , (8)

with concept relevances Ri(xj), weights wj =
|Ri(xj)|∑
k |Ri(xk)| ,

and object samples x̃j and xj with and without perturbed
backgrounds, respectively. Specifically, we apply gray-
scale random noise, random noise, gray, and random color
perturbation. Each perturbation is further performed with
100 % and 50 % alpha-blending, totaling 8 perturbations on
60 random detections. All context scores are computed for
the 50 most relevant concepts of a class and the correspond-
ing 15 most relevant detections, according to L-CRP attri-
butions with the LRP-z+-rule on the test data.

Ideally, concepts with a high context score C also have
high background sensitivity S. As summarized in Table 2,
L-CRP results in both the highest correlation and lowest
Root Mean Square Deviation (RMSD) values between con-
text and sensitivity scores. Here, we evaluate three lay-
ers of each model. Using activations (as e.g. NetDissect)
leads to relatively high correlations, but large RMSDs as
context scores are over-estimated. GradCAM effectively
rescales latent activations, therefore also suffering from
over-estimation. Specifically introduced for localization
models, SS-GradCAM improves on GradCAM by using the
spatial gradient information [54]. However, being reliant
on the unmodified gradient, all GradCAM variants’ local-
ization capabilities are limited by noisy attributions caused
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Table 2. Comparing computed context scores with measured back-
ground sensitivity. Ideal is a high correlation and low Root Mean
Square Deviation (RMSD). RMSD values are given for all models
(UNet |DeepLabV3+ |YOLOv5 |YOLOv6).

RMSD (%) correlation (%)

L-CRP (ours) 19.8|18.0|15.7|16.7 69.4
LRP 21.2 | 19.4 | 21.9 | 16.9 66.8
Guided GradCAM 27.2 | 19.3 | 25.5 | 25.7 43.0
SS-GradCAM 25.9 | 19.9 | 28.9 | 23.9 40.1
GradCAM 27.8 | 24.1 | 25.9 | 23.1 24.7
activation 47.6 | 35.5 | 37.7 | 41.4 65.1

through gradient shattering [6]. Further implementation de-
tails and discussions are given in Appendix A.6.

4.2.3 Context-based Interaction with the Model

The availability of context scores in combination with our
method allows to detect the use of single background fea-
tures, and thus to precisely interact with the model.

To probe the reaction of a model, an object’s background
can be manipulated. As an example, we noticed that frisbee
detections rely on background concepts corresponding to
dog features as shown in Figure 7. Removing the dog from
the image via in-painting leads then to a missed detection.

Alternatively, as we are able to pinpoint background con-
cepts in latent space, we can flip the corresponding concepts
and measure the effect on predictions. With a dog present,
concept flipping decreases the predicted output logit by
about 6 %, as shown in Figure 7, whereas predictions with-
out any dog present are not significantly influenced.

We further perform latent background concept flipping
for frisbee or surfing board detections with “person” context
features as well as person detections with “surfing board”
concepts, visualized in Figure 7 (bottom). Here, the removal
of person concepts affects the surfing board prediction more
strongly than the other way around. In some examples
shown in Appendix A.6, flipping three background concepts
even leads to missed surfing board predictions. This is ex-
pected, as surfing boards are more likely to be depicted with
a person (97 % co-occurrence) than a person with a surfing
board (5 % co-occurrence) in the training data, favoring the
likeliness of the model to use context features. The variety
of “person” contexts is much higher, allowing the model to
become more generalized in concept utility [29]. All flipped
background concepts are visualized in Appendix A.6.

5. Conclusion
We propose L-CRP as an extension of the CRP method,

enabling local concept-based understanding of segmenta-
tion and object detection models. By visualizing and lo-

Figure 7. Dog concepts are relevant for a frisbee detection (top),
leading to a missed prediction by the YOLOv6 model when the
dog is removed from the image. We alternatively flip the dog con-
cepts and measure a significant decrease in the output of the frisbee
class for samples with both frisbee and dog present. We performed
latent concept flipping also for other cases (bottom). The SEM is
visualized in semi-transparent color.

calizing a model’s internal representations utilizing L-CRP,
the insight that a stakeholder gains can be significantly im-
proved compared to traditional local XAI methods, which
tend to merely resemble the object localization output. We
evaluate several concept attribution methods, showing a
trade-off between explanation faithfulness and complexity,
with relevance-based attributions providing the best com-
promise. Finally, we apply our method to measure to what
degree concepts refer to an object’s context (background).
Compared to other XAI methods, context scores derived
from L-CRP most faithfully represent a model’s use of
concepts, as concept localizations are precise and object-
specific. In experiments, we reveal potentially harmful con-
text bias through context scores, enabling us to verify the
model behavior by probing the corresponding encodings.
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[35] Grégoire Montavon, Alexander Binder, Sebastian La-
puschkin, Wojciech Samek, and Klaus-Robert Müller.
Layer-Wise Relevance Propagation: An overview. In Ex-
plainable AI: Interpreting, Explaining and Visualizing Deep
Learning, volume 11700 of Lecture Notes in Computer Sci-
ence, pages 193–209. Springer, Cham, 2019. 4

[36] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature visualization. Distill, 2(11):e7, 2017. 3

[37] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter,
Ludwig Schubert, Katherine Ye, and Alexander Mordvint-
sev. The building blocks of interpretability. Distill, 3(3):e10,
2018. 1

[38] Frederik Pahde, Maximilian Dreyer, Wojciech Samek, and
Sebastian Lapuschkin. Reveal to revise: An explainable ai
life cycle for iterative bias correction of deep models. arXiv
preprint arXiv:2303.12641, 2023. 6

[39] Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I
Morariu, Ashutosh Mehra, Vicente Ordonez, and Kate
Saenko. Black-box explanation of object detectors via
saliency maps. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11443–
11452, 2021. 1, 3

[40] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learn-
ing to generate reviews and discovering sentiment. arXiv
preprint arXiv:1704.01444, 2017. 3

[41] Cynthia Rudin. Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1(5):206–215,
2019. 1

[42] Mikołaj Sacha, Dawid Rymarczyk, Łukasz Struski, Jacek
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[43] Wojciech Samek, Grégoire Montavon, Sebastian La-
puschkin, Christopher J Anders, and Klaus-Robert Müller.
Explaining deep neural networks and beyond: A review
of methods and applications. Proceedings of the IEEE,
109(3):247–278, 2021. 1, 4

[44] David Schinagl, Georg Krispel, Horst Possegger, Peter M
Roth, and Horst Bischof. Occam’s laser: Occlusion-based
attribution maps for 3d object detectors on lidar data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1141–1150, 2022. 3

[45] Christian Schorr, Payman Goodarzi, Fei Chen, and Tim Dah-
men. Neuroscope: An explainable ai toolbox for semantic
segmentation and image classification of convolutional neu-
ral nets. Applied Sciences, 11(5):2199, 2021. 3

[46] Patrick Schramowski, Wolfgang Stammer, Stefano Teso,
Anna Brugger, Franziska Herbert, Xiaoting Shao, Hans-
Georg Luigs, Anne-Katrin Mahlein, and Kristian Kersting.
Making deep neural networks right for the right scientific
reasons by interacting with their explanations. Nature Ma-
chine Intelligence, 2(8):476–486, 2020. 6

[47] Jessica Schrouff, Sebastien Baur, Shaobo Hou, Diana Mincu,
Eric Loreaux, Ralph Blanes, James Wexler, Alan Karthike-
salingam, and Been Kim. Best of both worlds: local and
global explanations with human-understandable concepts.
arXiv preprint arXiv:2106.08641, 2021. 3

[48] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 2, 6

[49] Pierre Stock and Moustapha Cisse. Convnets and imagenet
beyond accuracy: Understanding mistakes and uncovering
biases. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 498–512, 2018. 1, 6

3838



[50] Hideomi Tsunakawa, Yoshitaka Kameya, Hanju Lee, Yosuke
Shinya, and Naoki Mitsumoto. Contrastive relevance prop-
agation for interpreting predictions by a single-shot object
detector. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–9. IEEE, 2019. 3

[51] Johanna Vielhaben, Stefan Blücher, and Nils Strodthoff.
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