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Abstract

Using Machine Learning (ML) models for safety-critical
perception tasks in Autonomous Driving (AD) or other do-
mains requires a thorough evaluation of the model per-
formance and the data coverage w.r.t. the intended Op-
erational Design Domain (ODD). However, obtaining the
needed per-image semantic meta-data along the relevant di-
mensions of the ODD for real-world image datasets is non-
trivial. Recent advances in self-supervised foundation mod-
els, specifically CLIP, suggest that such meta-data could
be obtained for real-world images in an automated fash-
ion using zero-shot classification. While CLIP was already
reported to achieve promising performance on tasks such
as the recognition of gender or age on facial images, we
investigate to which extent less prominent and more fine-
grained observables, e.g., presence of accessories such as
spectacles or the shirt- or hair-color, can be determined.
We provide an analysis of CLIP for generating fine-grained
meta-data on three datasets from the AD domain, one of
synthetic origin including ground truth, the others being
Cityscapes and Railsem19. We also compare with a stan-
dard facial dataset where more elaborate attribute anno-
tations are present. To improve the quality of generated
meta-data, we additionally extend the ensemble approach
of CLIP by a simple noise-suppressing technique.

1. Introduction
Rigorous evaluation of safety-critical autonomous sys-

tems is an important step towards building trust in their ca-
pabilities and limitations. Therefore, there is currently a
strong focus on research into the identification of different
failure modes of these safety-critical systems and methods
to mitigate them [1, 7, 24, 29]. Identification of systematic
weaknesses learnt by deep neural networks (DNNs) from
training data is one such failure mode. Issues related to
Fairness [58], where model bias w.r.t. age, gender, and eth-
nicity are extensively studied, can be considered as an ex-
pression of such systematic weaknesses. A typical example

is the under-performance of models on dark-skinned people
when used for person detection [9, 12]. However, models
should also be evaluated for systematic weaknesses w.r.t.
other human-understandable semantic attributes (i.e., avail-
able meta-data).

Extending the Fairness example, person detection mod-
els might also display weaknesses w.r.t. accessories on the
person like hats or sunglasses, angle or distance of the per-
son to the camera, etc, which influence their visual appear-
ance and likely their effective features. To identify such
weaknesses, one would, however, require image-level se-
mantic meta-data that contains the required granular infor-
mation. To account for the lack of readily available seman-
tic meta-data, several recent works have proposed different
testing methods such as (i) identifying semantic clusters in
the penultimate layers of DNNs being tested [14], (ii) iden-
tifying semantic clusters using embeddings from a cross-
modal model representations [17], (iii) generating meta-
data of objects using computer simulators and identifying
systematic weaknesses along single semantic dimensions
like distance, occlusion, etc using that meta-data [20,42,55].
While (i) and (ii) bypass the need for granular meta-data,
they do have certain limitations, which we discuss in Sec. 2.
Approaches based on synthetic data are useful for devel-
oping proofs-of-concept, but the safety augmentations built
from these approaches might not be transferable to DNNs
trained on real-world data due to domain gap to the used
synthetic data. These issues highlight the importance of
having granular meta-data for real-world image datasets to
identify systematic weaknesses.

Also, from the AI Trustworthiness and certification per-
spective, recent specification standards [39] and expert
groups [27] discuss the importance of considering data
completeness or coverage. Research projects like KI-
Absicherung1 and several works [22, 33, 43] focusing on
safety argumentations for DNNs used in Autonomous Driv-
ing (AD) have proposed defining operational design do-
mains (ODDs). All these works additionally highlight the
importance of having granular meta-data about objects in

1https://www.ki-absicherung-projekt.de/en/
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images as extension of the currently available ground truth
from a safety perspective. However, for most real-world
datasets in AD, such fine grained meta-data is not available.

One way to potentially tackle this problem would be
to formulate it as an image caption generation problem
where the captions describe (in detail) the less prominent
and fine-grained observables of the dominant object in
an image, e.g., accessories such as spectacles or shirt- or
hair-color of a person. Instead of image captions of the
form "a photo of a person", we would like to
generate captions of the form "a photo of a young
black man standing in front of a shop
wearing a hat".2 Through these captions, the nec-
essary meta-data can be extracted to perform a systematic
weakness analysis of a DNN used for, e.g., pedestrian de-
tection. But, such granular caption generation is not trivial,
as seen in the performance of image captioning approaches
attempting dense captioning of images [31, 60].3 However,
with the latest advances in foundational models [6], where
large DNNs containing billions of parameters trained on
web-scale datasets containing millions of images show
SOTA zero-shot performance on new domains and tasks,
we have new tools to tackle this problem. In particular,
CLIP [46], an important component of text-to-image
models such as Stable Diffusion [50] and DALL-E [48] is
a good candidate due to its rich latent space and impressive
performance at zero-shot classification on benchmark
datasets like Imagenet [13]. While the authors of CLIP
have already reported its performance on classification of
gender and age on facial images, we extend the evaluations
to other datasets with focus on pedestrians and include
captioning less prominent and fine-grained observables.
Concretely, in this work, we evaluate if CLIP can indeed be
used for this task by evaluating against standard datasets,
some with existing metadata that we use as ground truth,
and some datasets where we manually annotate a subset of
the data.

2. Related work
The task of image captioning is the generation of a se-

quence of words that describe the content of an image
meaningfully and in syntactically correct sentences [53]. It
is an active field of research at the convergence of language
description and image understanding, and several survey
papers [28, 36, 53] have attempted to provide some struc-
ture to the large quantity of work. Broadly, methods prior
to deep learning are based on description retrieval [45, 54]

2This is only a representational text to highlight some of the interesting
attributes. In our experiments, the prompts are defined so that one single
attribute/meta-data is evaluated at one instance as discussed in Sec. 3.

3While not the same, dense captioning is closely related to our task.
The main difference is that dense captioning focuses on captioning multi-
ple objects and actions in an image while we focus on a single object and
its attributes.

or template filling [18, 34] where captions are written by
humans and then assigned to target images. These cap-
tions are, therefore, predefined and rigid. However, more
recent deep learning-based approaches can generate novel
captions. Typically, in these approaches, image content is
first analyzed by a DNN, and subsequently, captions are
generated by language models based on the image embed-
dings. With a focus on the more recent DNN-based ap-
proaches, Stefanini et al. [53] provides a taxonomy where
the visual encoding models are split into two categories: (i)
attention-based [35, 40, 56, 65, 67], and (ii) non attention-
based [19, 49, 63], and the text encoding models are split
into four categories: (i) LSTM-based [61, 62], (ii) CNN-
based [2], (iii) Transformed-based [41, 59], and (iv) BERT-
like [35, 67]. Based on the evaluation of different metrics
for image captioning by Stefanini et al. [53], the top per-
forming approaches on benchmark datasets are transformer-
based methods like Unified VLP [67] and VinVL [65]. As
mentioned, all these approaches generate one caption to de-
scribe an image, mostly related to the most prominent object
in the scene. Dense captioning approaches [31, 60] which
generate multiple captions per image are closer to our prob-
lem statement as they sometimes capture less prominent
and more fine-grained observables. However, all these ap-
proaches do not use web-scale datasets, and their zero-shot
capabilities are limited.

CLIP [46], on the other hand, has been trained on
web-scale data and has remarkable performance on un-
seen datasets. We go into further detail about CLIP it-
self in Sec. 3. Several new CLIP extensions [4, 44, 52]
have adapted CLIP to improve the generated captions
and showed SOTA performance on benchmark datasets
for image captioning [10] and Visual Question Answering
(VQA) [21]. While these extensions adapt the CLIP archi-
tecture for VQA and plug in alternative text encoders for
image captioning, we work with the established CLIP vi-
sion and text encoders that allows greater control over the
semantic dimensions.

Approaches for finding systematic weaknesses in DNNs
can be classified into two categories based on the type
of data they are applied on, either structured or unstruc-
tured. For the former, i.e., tabular data, approaches like
SliceFinder [11], Sliceline [51], and sub-group discov-
ery [3, 25] enumerate over various subset combinations and
identify the top-k weakest subsets. By identifying these
weaknesses, an actionable step is to collect more training
data from the identified weak subsets and retrain the DNN.
The main requirement for these approaches is the availabil-
ity of semantic meta-data, which is easy to obtain for struc-
tured data and non-trivial for unstructured data (e.g., real-
world images). In this work, we show that some dimensions
of semantic meta-data can be generated for the class person
(or pedestrian) so that the above-mentioned approaches can
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be applied.
For unstructured data like images, Domino [17] identi-

fies subsets of data with weak performance by finding se-
mantic clusters in the embedding space of the images gener-
ated using CLIP [46] while taking into account the images’
classification performance. The identified clusters (or sub-
sets) are then labeled in human-understandable form using
a combination of a language model, e.g., BERT [15], and
CLIP. Spotlight [14], on the other hand, looks for semantic
clusters using the activations of the penultimate layer of the
DNN-under-test. The obtained clusters are manually eval-
uated and labeled by human experts. There are two prob-
lems with these approaches. One, both approaches perform
the clustering on the representation space, while the meth-
ods working on structured data perform clustering on the
high-level semantic space, making the latter approach more
interpretable. Second, the final clusters, which are labeled
manually or with a DNN, are assigned to a single dominant
semantic description. For example, if all the images be-
longing to one cluster contain red shirts, an expert looking
at the cluster might conclude that the systematic weakness
is the presence of the red shirt. However, unlike the meth-
ods applied to structured data, a combination or impact of
other factors is not considered as cause of weakness. There-
fore, unlike the approaches for structured data, the contri-
bution of methods like Domino and Spotlight to the safety
argumentations is less strong. Approaches [20, 42, 55] used
computer simulators like Carla [16] to generate meta-data
of pedestrians in addition to the raw images and the de-
fault ground-truth. The DNN performance is then evaluated
along individual semantic dimensions of the meta-data to
identify weak spots. While the use of synthetic data is use-
ful for developing proofs-of-concept, the safety argumenta-
tion for the DNNs used in safety-critical applications most
probably needs to be made on real-world data. The results
from these approaches might not be easily transferable due
to the domain gap.

3. Probing ODDs with CLIP
In this section, we discuss, in further detail, about the use

of ODDs in AD and their relation to our problem statement.
Then we present the CLIP approach and explain the exper-
iments already conducted in their paper and the difference
to our experiments.

As motivated earlier, there is a lot of interest in the AD
community to build safety augmentations by using opera-
tional design domains. Koopman and Fratrik [33] provide
a list of dimensions along which the operational design do-
main can be structured and in which the AD vehicle should
be validated. Zwicky boxes [5] was proposed as a way to
develop operational design domains in the KI-Absicherung
project [43], and Herrmann et al. [26] have used Zwicky
boxes to develop ontologies for the perception function of

AD. In Tab. 1, we provide a simplified ontology of the
pedestrian class for the perception function which we in-
tend to generate as meta-data with the help of CLIP. This
subset ranges from dominant properties, such as clothing
color, to highly fine-grained attributes, such as beard or eye-
glasses. As it is, a priori, not clear how detection capabili-
ties of a given DNN depend on such attributes,4 we evaluate
the captioning abilities of CLIP across this broad variety of
attributes to open the possibility for future research.

Radford et al. [46] present CLIP as a pre-trained vision
model capable of SOTA performance for zero-shot tasks
on benchmark vision datasets similar to the capabilities of
GPT-3 [8] in the NLP domain. It is trained on a web-scale
dataset containing 400 million (image, caption) pairs col-
lected from the internet. The training process consists of
jointly training an image encoder (e.g., Resnet-50 [23]) and
a text encoder (e.g., a standard transformer [57] with modi-
fications described in Radford et al. [47]) such that the co-
sine similarity is maximized for all the correct pairings and
minimized for all the incorrect pairings using a symmetric
cross-entropy loss as used in contrastive learning. A de-
tailed evaluation of 30 different datasets is provided, and
it is shown that CLIP outperforms baselines trained on the
benchmark datasets. In addition, the bias of CLIP models is
evaluated over the FairFace benchmark dataset [32] by an-
alyzing CLIP performance on dimensions of gender, race,
and age. Here, the zero-shot CLIP model has, for the most
part, a competitive performance to Fairface’s own model.
These encouraging results suggest that CLIP could be used
as a meta-data caption generator for less prominent and fine-
grained observables, which we evaluate in Sec. 5. For our
experiments, we make use of the publicly available pre-
trained CLIP ViT-B/32 model because of its inference time
and wide adoption. We feed our input images containing
persons to the image encoder to obtain the image embed-
dings and prompts of the form "a photo of a young
person", "a photo of an old person" as text
prompts to the text encoder. By calculating the cosine simi-
larity of the embeddings and applying the softmax function,
we can obtain the most likely caption that describes the im-
age. The captions are designed to reflect the values of the
semantic meta-data, compare Tab. 1.

3.1. Prompt ensembling as noise suppression

The reason for using prompt templates of the form ”A
photo of a {label}” instead of using the class names is the
structure of the training data where a collection of (image,
caption) pairs is used. Using only class names would lead
to distributional shift [46]. In the CLIP paper, prompt en-
gineering and prompt ensembling were shown to have a
positive effect on the performance. Prompt engineering
has been discussed [8] as a way to improve performance

4For a dependence on the dominant properties, see e.g. [20]
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Semantic dimension Attributes
Gender Male Female

Skin color White Dark
Age Young Old

Hair color Black Blond Gray Brown
Clothing color Yellow Brown Gray Blue Green Red White

Misc. Beard Eyeglasses Goatee Bald Hat

Table 1. A sample ontology inspired from the ontologies provided by Herrmann et al. [26]. The first lines represent dimensions and their
possible attributes, while the last line, for brevity, provides a collection of binary attributes.

in GPT-3 type models and CLIP also shows improvement
when prompts of the form “A photo of a {label}, a type
of pet.” are used, where more context about the object is
provided. For our problem formulation, the main class is
always a human and a caption would be some variation of
"a photo of a {} person". Replacing person with
other words like “man”, “woman”, “girl”, “boy” could add
more context. However, to aggregate these results, one
would require prompt ensembling. An example of prompt
ensembling given by Radford et al. [46] is using multiple
prompts of the form “A photo of a big {label}” and “A photo
of a small {label}” where the adjectives “big” and “small”
do not modify the main class but only provide more context.
In their implementation, the ensembling is done by taking
multiple text prompts, obtaining their text embeddings, and
averaging them per-class. The cosine similarity with im-
age embeddings is calculated with the ensemble average,i.e.
with a single representation, and a softmax function is ap-
plied as the final step. Due to this reduction to single rep-
resentations, the ensemble effectively functions as a linear
classifier. In our experiments, we apply the softmax func-
tion prior to the class-wise averaging. This way, representa-
tions in the ensemble, which fit the image more closely, are
emphasized. This serves as a noise-suppression technique,
and we also obtain, effectively, a non-linear classifier.

4. Datasets

In this section, we discuss the four datasets that we use
in our experiments.

CelebA dataset [37]: The CelebA dataset is a collection
of 202599 images containing celebrity faces with 40 binary
facial attributes (see Tab. 2 for all used dimensions). We
make use of the aligned PNG images of resolution 178×218
provided by the authors.

AD datasets: In addition to the frontal face images,
we use three AD datasets for our evaluations. First, we
make use of synthetic data generated from the Carla simula-
tor [16]. Inspired by Gannamaneni et al. [20], we generate
a dataset of 10k images of resolution 1920× 1280 and cor-
responding pedestrian meta-data using the provided modifi-
cations to the source code. Similar to their work, as pedes-

trian meta-data, we extract Gender, Age, Skin-color, Shirt-
color, Pant-color. Second, we use the Cityscapes dataset,
which is a collection of 5k images of urban street scenes
obtained from 50 German cities. The images are of resolu-
tion 2048 × 1024 and taken from the ego-perspective of a
vehicle. It is primarily used for semantic segmentation tasks
and contains 30 different classes. Zhang et al. [66] created
a subset of the Cityscapes dataset, which contains bounding
boxes for the pedestrian class. Third, we use the RailSem19
dataset [64], which is a collection of 8500 images taken
from the perspective of trains and trams with a focus on
railway crossings in 1000 images. The primary labels are
semantic segmentation maps with 19 classes, which we use
to extract bounding boxes via connected components. The
images are of resolution 1920× 1080.

In all three datasets, as the primary focus is on pedestrian
attributes, we crop the pedestrian images with the help of
existing ground-truth bounding boxes. To maintain a con-
stant aspect ratio, we do not use the bounding boxes di-
rectly but, based on their longer side, determine a square
area around the pedestrian.5 From the Carla dataset, we ob-
tained 19090 individual cropped images of pedestrians by
filtering out pedestrians with bounding boxes smaller than
1000 pixels to reduce noisiness in the data. Similarly, we
use a filter size of 25k pixels in Cityscapes and RailSem19
and ensure that only single pedestrians are in the bounding
boxes. We correspondingly obtained 60 and 63 individual
cropped images. We deliberately chose a reduced selection
of images for those datasets as manual evaluation by two
human observers had to be performed.

5. Results
In the following section, we present the results of eval-

uating the performance of CLIP in generating meta-data
captions of less prominent and more fine-grained observ-
ables of people by using images of celebrity faces in the
CelebA dataset and cropped images of pedestrians in three
AD datasets, see Sec. 4. The fine-grained observables we
are interested in for our experiments are the semantic meta-
data presented in Tab. 1.

5CLIP, by default, resizes images to a square format.
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5.1. Datasets with fine-grained meta-data

In the first two datasets, CelebA and Carla, we have
ground truth meta-data available for calculating perfor-
mance metrics. Here, we perform two evaluations, one with
a naive classifier and the other with an ensemble-based clas-
sifier. In the naive experiment setup, we use single prompts
per-class for the binary cases, such that one prompt is for
the presence of an attribute and a second for its absence.
For example, "a photo of a person wearing
eyeglasses" and "a photo of a person not
wearing eyeglasses". While antonyms exist for
some attributes, e.g., young and old, we use such a pat-
tern for all attributes to maintain comparability, e.g., by
using prompts such as "a photo of a not young
person". For multi-class classifications, e.g., when eval-
uating shirt-color, we use single prompts for each of the
possible class values.

In the ensemble case, we, inspired by the original
work [46], use multiple prompts per-class. In contrast
to them, we, however, do not generate these prompts
automatically based on high-frequency word lists. Instead,
we build a smaller hand-crafted collection. For example,
for the age dimension in CelebA, we make use of tem-
plates of the form [’a photo of a {} person’,
’a photo of a {} man’, ’a photo of a {}
woman’, ’a photo of a {} guy’, ’a photo
of a {} lady’], where the {} are replaced by either
elements from [’young’, ’younger’] or [’old’,
’older’] to indicate low or high age respectively. To
maintain balance among the classes, we only use ensembles
with equal numbers and semantically comparable prompts
for every class. We aggregate these prompts as discussed
in Sec. 3.1. We provide a comparison of our ensembling
approach to CLIP’s in the supplementary material. A
detailed list of the prompts for the experiments along with
the meta-data for the Cityscapes- and RailSem19-subsets
are provided.6

In Tab. 2 showing the results for the CelebA dataset, we
can see that our ensembling approach, right column, clearly
outperforms the naive approach, left column. Furthermore,
for dimensions gender and age, the results are comparable
or better to the ones reported by CLIP [46] for the Fair-
Face dataset.7 For other less prominent dimensions like
hair-color, wearing hat, . . . , we see the ensemble approach
leads to improvement in performance in almost all cases. It
must be noted that some of the dimensions are extremely
unbalanced w.r.t. class distribution (e.g., eyeglasses), and
performance metrics like accuracy in such cases are not
good enough for evaluation. We, therefore, look at per-class
precision, recall, and F1 score to show the improvement for

6https://github.com/sujan-sai-g/clip evaluations for metadata
7Reported accuracy of class gender is 0.95 and age is 0.57 for category

’White’, see [46]

these dimensions. Performance on certain dimensions, see
smiling, which, while not directly relevant for AD safety,
shows the rich representation power of the CLIP model. By
comparison to the results from existing works [30, 38], we
can conclude that CLIP again achieves comparable perfor-
mance for almost all of the attributes we evaluate. Note that
CLIP is evaluated in a zero-shot fashion, while the other
methods were explicitly trained on the CelebA dataset. One
anomaly in performance is the dimension skin-color, where
there is a drop in performance from naive to the ensemble-
based approach. In the CelebA dataset, this maps to the
binary attribute pale. As shown by the examples in Fig. 1,
differentiating between these classes is non-trivial and la-
beling preference varies even among humans. We evaluate
this dimension in further detail to understand the CLIP rep-
resentation space. Looking at the performance metrics, we
see a drop in recall for the not-pale class and a gain in re-
call for pale. For the ensemble-based approach, we expand
the definition of what is considered as pale by using adjec-
tives such as “sickly” or “bleached skin-color”. Although
this approach is balanced by comparable adjectives for the
other class, such as “tanned” or “blushed”, this expanded
definition could be the reason for the improvement in recall
values for the pale class. As not-pale is the dominant class,
its decreased recall also leads to a reduction in overall ac-
curacy. In Fig. 2, we can further highlight the challenge of
separating this dimension by embedding the representations
of the images in a 2D space using the cosine similarity dis-
tance between image and the mean representations of the re-
spective classes (as derived from the ground truth). On the
left, we see the visualization for skin-color where there is
no clear separation, while in the middle the gender classes
are easily separable. To investigate the separability of the
representation further, we train a logistic regression on the
full ground truth data, which, irrespective of any prompts,
provides the “ideal” linear classifier for the given data.8

Figure 1. Example of challenging semantic dimensions in the
CelebA dataset: Top row contains images of celebrities labeled
as having pale skin. Bottom row contains images of celebrities la-
belled as having not-pale skin.

8To achieve comparability to the prompt-based approach, we omit any
intercept or regularization in the classifier. As can be seen from the
precision-recall curve, the data is not separable but shows a strong gradient
in space with pale images favoring one side.
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Semantics Attribute Counts Naive Non-linear Ensemble
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Age Young 156734 0.78 0.80 0.95 0.87 0.86 0.91 0.91 0.91
Not-young 45865 0.53 0.21 0.30 0.70 0.70 0.70

Gender Male 84434 0.95 0.95 0.91 0.93 0.99 0.99 0.98 0.99
Not-male 118165 0.94 0.97 0.95 0.99 0.99 0.99

Skin-color Pale 8701 0.84 0.11 0.41 0.18 0.56 0.07 0.81 0.13
Not-Pale 193898 0.97 0.86 0.91 0.98 0.54 0.70

Hair-color

Black 47323

0.77

0.93 0.64 0.76

0.78

0.94 0.65 0.77
Blond 28252 0.81 0.93 0.87 0.83 0.93 0.87
Gray 7928 0.76 0.69 0.72 0.81 0.65 0.72

Brown 39167 0.65 0.83 0.73 0.64 0.86 0.73

Misc.

Eyeglasses 13193 0.97 0.86 0.55 0.67 0.97 0.74 0.86 0.80
No eyeglasses 189406 0.97 0.99 0.98 0.99 0.98 0.98

Hat 9818 0.92 0.35 0.73 0.47 0.96 0.56 0.74 0.64
No Hat 192781 0.99 0.93 0.96 0.99 0.97 0.98

Bald 4547 0.87 0.07 0.39 0.11 0.93 0.19 0.60 0.29
Not Bald 198052 0.98 0.88 0.93 0.99 0.94 0.96
Goatee 12716 0.53 0.05 0.37 0.09 0.90 0.26 0.30 0.28

No Goatee 189883 0.93 0.54 0.68 0.95 0.94 0.95
Beard 33441 0.81 0.23 0.06 0.10 0.84 0.69 0.10 0.18

No Beard 169158 0.84 0.96 0.89 0.85 0.99 0.91
Smiling 97669 0.81 0.74 0.94 0.83 0.87 0.88 0.86 0.87

Not-smiling 104930 0.92 0.69 0.79 0.87 0.89 0.88

Table 2. The performance of CLIP in predicting different attributes on the celebrity images in the CelebA dataset.

Extending this to the AD domain, we first look at the
performance of CLIP on the Carla dataset shown in Tab. 3.
Similar to the earlier experiment, we see an improvement
in performance from the naive to the ensemble prompts
case. However, the overall performance is lower for dimen-
sions like age, gender, and skin-color in comparison to Fair-
Face, CelebA, and later experiments with Cityscapes and
RailSem19. There could be two underlying reasons for this:
First, there is a domain gap from real-world to computer-
simulated data leading to generalization problems. Second,
FairFace and CelebA have high-quality frontal images of
peoples’ faces. However, in AD datasets, we (mostly) use
smaller images showing the person as a whole in more di-
verse contexts, for instance, w.r.t. occlusion, pose, bright-
ness, etc. Such different contexts might play a role when
interpreting the low performance on shirt- and pant-color,
as color perception and also its rendering are strongly af-
fected by the illumination and other factors, such as occlu-
sion, which would reduce the effective number of visible
colored pixels. Lastly, CLIP has significantly lower per-
formance on pant-color than other dimensions. Through
visual inspection and from calculating Pearson correlation
of shirt- with pant-color predictions, we believe that CLIP
focuses mostly on the dominant color in the image, and this
dominates over concepts of shirt and pant. The correlation

value for both (i.e. for overlapping colors in both dimen-
sions) is 0.90.

5.2. Datasets without fine-grained meta-data

In Tab. 4, we have results of both the Cityscapes-
subset and RailSem19-subset datasets. As mentioned, these
datasets do not contain any ground truth regarding the fine-
grained observables we are interested in, and the perfor-
mance here is evaluated manually by looking at the images
by two independent human observers. This experiment is
conducted as a proof-of-concept to show that it is actually
possible to transfer our learning from previous datasets to
real-world data and annotate less prominent and more fine-
grained observables. As these datasets do not have a signif-
icant variation in skin-color, we skip this dimension. The
experiments here are conducted with ensemble-based ap-
proach only as it outperforms the naive approach in other
experiments. Unlike in the Carla experiment, these are real-
world datasets implying no domain gap due to synthetic im-
ages. However, these datasets also contain pedestrians in
different poses, occlusions, and brightness. Therefore, gen-
der and age still remain challenging dimensions in certain
instances. The performance on shirt- and pant-colors is,
however, slightly improved over the Carla dataset. Simi-
lar to the earlier experiment, the predictions of pant-color
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Figure 2. Left and middle: Cosine similarity of two dimensions skin-color and gender in the CelebA dataset calculated w.r.t. ground
truth by taking a mean of image representations belonging to each group. Right: Precision-recall curve of a linear classifier along with
performance values of the naive and ensemble approach for skin-color dimension.

Semantics Attribute Counts Naive Non-linear Ensemble
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Age Adult 14652 0.27 0.90 0.06 0.11 0.59 0.89 0.53 0.67
Child 4438 0.24 0.98 0.39 0.34 0.79 0.47

Gender Male 10009 0.67 0.63 0.77 0.69 0.71 0.63 0.93 0.75
Female 9081 0.74 0.58 0.65 0.89 0.51 0.65

Skin-color White 12119 0.70 0.64 0.81 0.72 0.73 0.68 0.83 0.74
Dark 6971 0.78 0.60 0.68 0.81 0.65 0.72

Shirt-color

Yellow 3915

0.42

0.65 0.80 0.72

0.45

0.63 0.88 0.74
Brown 5329 0.52 0.51 0.51 0.51 0.53 0.52
Blue 1843 0.24 0.14 0.18 0.24 0.15 0.18
Gray 4648 0.43 0.05 0.09 0.49 0.08 0.13
Green 1233 0.34 0.48 0.40 0.51 0.42 0.46
Red 1592 0.28 0.53 0.36 0.26 0.56 0.36

White 530 0.13 0.62 0.21 0.13 0.45 0.20

Pant-color

Yellow 704

0.17

0.13 0.59 0.22

0.17

0.14 0.60 0.22
Brown 3744 0.09 0.04 0.06 0.11 0.07 0.09
Blue 7109 0.91 0.05 0.10 0.91 0.06 0.11
Gray 1818 0.22 0.02 0.04 0.25 0.03 0.05
Green 801 0.07 0.83 0.13 0.07 0.79 0.13
Red 676 0.12 0.31 0.17 0.12 0.38 0.20

Black 2572 0.55 0.13 0.22 0.45 0.10 0.16
Orange 1071 0.78 0.80 0.79 0.74 0.82 0.78

Table 3. The performance of CLIP in predicting different attributes on the cropped images of pedestrians in Carla dataset.

are highly correlated with shirt-color with Pearson corre-
lation of 0.71 and 0.79 on Cityscapes and RailSem19, re-
spectively. While the reduced domain gap might explain
the improvement, another major contributing factor could
be the evaluation technique. As these datasets do not have
any meta-data ground truth, and therefore two human ob-
servers were asked to validate whether the output of the
CLIP model is plausible. For images with bad color re-
production, this might lead to a more lenient interpretation.
While it is implausible to evaluate CLIP predictions on en-
tire AD datasets, we believe the lenient approach to evalua-

tion is a more realistic evaluation than what is possible with
the fixed ground truth in Carla. This approach, however,
also acts as labeling bias when comparing these results to
those of the Carla experiment.

6. Conclusion

Coming from the direction of safety argumentation for
safety-critical autonomous systems, specifications of opera-
tional design domains form an indispensable tool to analyze
data coverage as well as to detect weaknesses of learned
models. The latter is done, e.g., by building data subsets
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Semantics Attribute Cityscapes-subset RailSem19-subset
Counts Accuracy Precision Recall F1 score Counts Accuracy Precision Recall F1 score

Age Young 48 0.65 1.00 0.56 0.72 40 0.68 0.86 0.60 0.71
Old 12 0.36 1.00 0.53 22 0.53 0.82 0.64

Gender Male 42 0.92 0.95 0.93 0.94 46 0.89 0.91 0.93 0.92
Female 18 0.84 0.89 0.86 16 0.80 0.75 0.77

Shirt-color

Yellow 2

0.78

0.50 1.00 0.67 1

0.66

0.17 1.00 0.29
Brown 5 0.67 0.80 0.73 10 0.73 0.80 0.76
Grey 10 0.64 0.90 0.75 9 1.00 0.56 0.71
Blue 8 0.80 0.50 0.62 8 1.00 0.62 0.77

Green 6 0.75 1.00 0.86 7 0.42 0.71 0.53
Red 2 1.00 1.00 1.00 7 0.57 0.57 0.57

White 9 1.00 0.67 0.80 8 0.71 0.62 0.67
Black 18 0.93 0.78 0.85 12 0.89 0.67 0.76

Pant-color

Yellow 0

0.48

- - - 0

0.50

- - -
Brown 3 0.21 1.00 0.35 13 0.67 0.77 0.71
Grey 15 0.71 0.67 0.69 10 0.86 0.60 0.71
Blue 13 1.00 0.23 0.38 14 0.75 0.21 0.33

Green 3 0.25 0.67 0.36 2 0.07 0.50 0.12
Red 0 - - - 0 - - -

White 2 0.17 0.50 0.25 2 0.50 1.00 0.67
Black 24 1.00 0.42 0.59 20 0.90 0.45 0.60

Table 4. The performance of CLIP in predicting different attributes on the cropped images of pedestrians in Cityscapes-subset and
RailSem19-subset datasets. Only our non-linear ensemble approach is used for this experiment.

based on the meta-data attributing each input to a part of
the domain specification. However, such fine-grained meta-
data is often not available in real-world datasets. Therefore,
we investigated the zero-shot capabilities of CLIP to pro-
vide such information on a granular level of detail beyond
previous tests of this model. For this, we introduce a sim-
ple softmax-based noise-suppressing technique to the CLIP
prompt ensemble, which has proven robust in practice. The
results, for many investigated aspects, are on-par with ded-
icatedly trained classifiers implying that CLIP may indeed
be used to derive such annotations as well as for “weak”
supervision of specialized tasks. This holds not only for
commonly tested dimensions, such as age, gender or hair-
color, but also for more fine-grained attributes, e.g., wearing
eyeglasses or hats. However, we also find dimensions, such
as pant- or shirt-color, where this approach is challenged.
This highlights the importance of human validation for its
practical use. Specifically for the named dimensions, we
observed that the performance of CLIP is better when eval-
uated on human-generated labels than on ground truth la-
bels stemming from synthetic data. This raises the question
of the granularity of the learned representations, e.g., broad
categories might work better than narrow ones. As a rule
of thumb, the evaluation suggests that attributes more likely
to appear in captions are currently resolved better. We in-
vestigated this granularity more closely on the highly chal-

lenging dimension pale skin of the CelebA dataset, which
the current version of CLIP does not separate sufficiently
even on the level of embeddings. The quality of such repre-
sentations strongly impacts the performance of downstream
tasks, as seen in our experiment. But, this likely transfers to
other approaches, e.g., Domino [17], that use (CLIP) repre-
sentations, e.g., for weakness detection, and likely will have
short-comings w.r.t. such dimensions.

For future work, this leaves us with two directions: At
first, given that generated fine-grained meta-data, or rather
the underlying representations, are not always fully accu-
rate, one needs to more closely investigate which degree of
accuracy is needed for downstream tasks, e.g. to reliably
detect weaknesses of DNNs. Second, given the broad im-
plications on the performance of foundation models, it is
necessary to better understand to which degree dimensions
are separable, i.e., resolvable. Ideally, one would like to
substantiate the above rule of thumb and find ways to bet-
ter detect or measure the quality of the representations w.r.t.
their semantic content.

7. Acknowledgments

This work has been funded by the German Federal Min-
istry for Economic Affairs and Climate Action as part of the
safe.trAIn project.

3847



References
[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial at-

tacks on deep learning in computer vision: A survey. IEEE
Access, 6:14410–14430, 2018. 1

[2] Jyoti Aneja, Aditya Deshpande, and Alexander G Schwing.
Convolutional image captioning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5561–5570, 2018. 2

[3] Martin Atzmueller. Subgroup discovery. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery,
5(1):35–49, 2015. 2

[4] Manuele Barraco, Marcella Cornia, Silvia Cascianelli,
Lorenzo Baraldi, and Rita Cucchiara. The unreasonable ef-
fectiveness of clip features for image captioning: an experi-
mental analysis. In proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4662–
4670, 2022. 2

[5] Matthias Bitzer, Martin Herrmann, and Eckart Mayer-John.
System co-design (scode): Methodology for the analysis of
hybrid systems. at-Automatisierungstechnik, 68(6):488–499,
2020. 3

[6] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 2

[7] Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris
Duran, Christoffer Levandowski, Shenjian Gao, Yanwen
Tan, Henrik Kaijser, Henrik Lönn, and Jonas Törnqvist.
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