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Abstract

While there has been a growing research interest in
developing out-of-distribution (OOD) detection methods,
there has been comparably little discussion around how
these methods should be evaluated. Given their relevance
for safe(r) AI, it is important to examine whether the ba-
sis for comparing OOD detection methods is consistent
with practical needs. In this work, we take a closer look
at the go-to metrics for evaluating OOD detection, and
question the approach of exclusively reducing OOD de-
tection to a binary classification task with little consider-
ation for the detection threshold. We illustrate the lim-
itations of current metrics (AUROC & its friends) and
propose a new metric - Area Under the Threshold Curve
(AUTC), which explicitly penalizes poor separation be-
tween ID and OOD samples. Scripts and data are available
at https://github.com/glhr/beyond-auroc

1. Introduction

When deployed out in the wild, computer vision systems
may be faced with image content which they simply are not
equipped to handle. For instance, a model trained to recog-
nize certain types of skin lesions, once deployed in clinical
practice, may encounter images with a different kind of skin
condition, or images with no lesions at all [5,20]. Thus, it is
not enough for models to make accurate predictions on the
kind of content that they were trained on - they should also
be able to express whether a new input is familiar enough to
make a reliable prediction.

The task of flagging images outside of a model’s train-
ing domain is known as out-of-distribution (OOD) detec-
tion and is a growing line of research in computer vi-
sion [25, 30] with important implications for safe AI [1].
A broad range of methods have been proposed for equip-
ping neural networks with OOD detection capabilities,
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Figure 1. OOD evaluation setup illustrated with the CIFAR10 [10]
vs. SVHN [23] pair. We visualize the OOD scores produced by
2 imaginary models as normalized histograms. Which model is
better as an OOD detector? Popular metrics say model 2. We argue
that more fine-grained metrics which take score distribution into
account are needed for practical use, as they affect the choice of
threshold for downstream decisions. We propose the AUTC metric
which encourages separability between ID and OOD samples.

ranging from uncertainty quantification [11, 17], gener-
ative modelling [24], outlier exposure [4], to gradient-
based [8], softmax-based [15], distance-based [26], or
energy-based [19] approaches (among others). In this work,
we abstract away from any specific OOD detection method,
and rather focus on how OOD detection performance is
quantitatively evaluated.

Fig. 1 illustrates our problem setup. We consider generic
models which were trained on an image recognition dataset
and, given an input image, output an OOD score alongside
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their prediction - with a higher OOD score indicating that
the image is more likely to be OOD. At evaluation time,
the models are presented unseen in-distribution (ID) images
(images within the training data distribution), along with
OOD images from an unknown dataset. The scores are then
aggregated and evaluated in terms of how well they can be
used as a basis to distinguish between ID and OOD samples.
This is the typical procedure in OOD benchmarks [30, 35].
We then question the exclusive use of binary classification
metrics (AUROC, AUPR, FPR & co.) for quantitative com-
parison of different models, as they binarize OOD scores
without considering their distribution or separability. Con-
sider the example of Fig. 1, where model 2 outperforms
model 1 across all standard metrics. Yet, looking at the dis-
tribution of scores, model 1 may be preferable in practice, as
it achieves a much clearer separation between ID vs. OOD
samples, and allows more flexibility in the choice of thresh-
old without drastic changes in detection performance. To
expand on this intuition, we

• briefly review the status quo in terms of metrics
for evaluating OOD detection and identify confusing
discrepancies in their definition across the literature
(Sec. 2)

• elaborate on some limitations of these metrics with the
help of several illustrative examples (Sec. 3), and em-
phasize the need for a global detection threshold

• present an alternative view and new performance met-
ric for evaluating OOD detectors with a focus on their
downstream use, where separability between ID and
OOD samples in terms of their OOD score is particu-
larly important for the choice of a threshold (Sec. 4)

Related work Within computer vision, recent surveys
have outlined the most commonly used performance met-
rics in OOD detection and related tasks [25,31] - this aligns
with our brief review. However, to the best of our knowl-
edge, there is little to no existing work discussing their lim-
itations or considering possible extensions.

Complementary to this paper, [29] discusses the design
of OOD benchmarks for computer vision in terms of dataset
splits, with the goal of minimizing semantic overlap be-
tween ID and OOD sets. [34] lays out practical guidelines
and challenges for evaluating OOD detection when using
medical data. In [5], the downstream implications of differ-
ent kinds of mistakes are considered (e.g. flagging an OOD
sample as ID vs. ID sample as OOD) and modelled as a
cost matrix in terms of model trustworthiness. Within the
context of visual question answering, [27] points out ques-
tionable but common practices in OOD benchmarks (e.g.
tuning hyperparameters based on OOD performance), lead-
ing to misleadingly inflated performance.

Beyond the realm of OOD detection, [16] reviews some
of the pitfalls of benchmark-oriented machine learning, a
major one being the use of simplified metrics which do not
capture important differences between methods. In a sim-
ilar spirit to our work, [22] questions the accuracy metrics
reported in metric learning, as they fail to capture a notion
of class separation.

2. Performance metrics in OOD detection
Overall, the consensus is to treat OOD detection as a

binary classification task, where the predicted continuous
OOD score is binarized and compared to a true label (pos-
itive if the test sample is OOD, negative otherwise - or
vice-versa). The prediction is then either considered a True
Positive (TP), True Negative (TN), False Positive (FP) or
False Negative (FN) - as visualized in Fig. 2. Following
the seminal work in [7], the OOD detection literature has
adopted the AUROC and AUPR as metrics of choice, thus
bypassing the need to select a specific threshold. AUROC
is often considered the main metric, and we did not find
any works which did not report it. Alongside these, most
works also report performance at a fixed detection thresh-
old [4–6, 9, 13–15, 19, 21, 24, 30, 33, 36]. We briefly present
each metric below.

detection

threshold

TN

TP

FP

FN

OOD score

sa

Figure 2. OOD scores are binarized based on a detection threshold.

Fixed-threshold metrics These consider performance at
a specific operating point. The FPR@TPR metric measures
the false positive rate for a given true positive rate - typically
chosen to be 95% [9,19,30,33], or sometimes 80% [24]. In
a similar vein, some works instead report the TNR@95 (true
negative rate at 95% TPR) [13, 14]. For an ideal detector,
the TNR is 100% while the FPR is 0%.

Threshold-independent metrics These summarize OOD
detection performance with a sliding threshold. The AU-
ROC measures the area under the Receiver Operating Char-
acteristic curve, obtained by plotting the TPR as a function
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of the FPR. It can be interpreted as the probability that a
positive sample is assigned a higher score than a negative
sample - an AUROC of 100% indicates perfect separation,
while an AUROC of 50% indicates full overlap (uninforma-
tive/random detector). The AUPR measures the area under
the curve obtained by plotting recall (R) as a function of pre-
cision (P). Unlike AUROC, it is sensitive to sample size and
the choice of positive class, hence it is common to distin-
guish between AUPR-in (ID samples considered positive)
and AUPR-out (OOD samples considered positive) [15].

Detection error/accuracy Some works [13] report this as
the best detection accuracy/error across all possible thresh-
olds, while others report it for a fixed TP rate (e.g. 95% in
[15]). As discussed in [7], a drawback of using detection
accuracy as a metric is that it is skewed by class imbalance
(ie. it assumes an equal number of ID and OOD samples).

Positive or negative, that is the question We note a mis-
match in the literature in terms of which class (ID or OOD)
is considered positive or negative for the computation of
metrics. While one set of papers treat ID samples as the pos-
itive class [7, 13, 15, 30], another instead treats OOD sam-
ples as positive [9, 21, 28]. Some works fail to mention this
definition altogether [17]. While this may only seem like
a minor difference of terminology, it affects the AUPR and
FPR computation - both widely used metrics. For instance,
the FPR@95 metric reported in the recent benchmark [30]

vs. the one reported in [28] are in fact different metrics due
to this mismatch in class definition. Special care should
therefore be taken to avoid such inconsistencies. In the con-
text of this paper, we consider OOD samples to be positive
unless otherwise specified.

3. What’s the problem?

3.1. Let histograms (s)peak for themselves

Assessing the performance of OOD detection methods
purely in terms of binary classification metrics reduces the
evaluation to a comparison of ratios between the number of
TP, TN, FP and FN predictions, without considering how
OOD scores are distributed. That is, two models with the
same performance may differ widely in terms of how clearly
they separate ID from OOD samples. In a similar spirit to
Fig. 1, we illustrate this effect in Fig. 3, where we simulate
OOD scores produced by 9 imaginary models (which were
trained and evaluated on the same imaginary data), such that
models on a given row exhibit near-identical performance
in terms of AUROC. Other standard metrics for each model
are reported in Fig. 4.

Is high performance all we need? The first row in Fig. 3
shows examples of “perfect” OOD detection models in
terms of standard metrics, with no overlap between the two
classes (such high detection performance is not unheard of -
for instance, the method in [2] achieves 100% AUROC and
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Figure 3. Histograms (normalized) of OOD scores for ID vs. OOD samples produced by 9 imaginary models. The models on a given row
achieve the same (rounded to 4 decimal places) OOD performance in terms of AUROC. On the right are ROC curves.
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Figure 4. Performance of the 9 imaginary models in terms of standard metrics. Models are numbered according to Fig. 3.

AUPR on the CIFAR10/100 vs. SVHN pair). Despite their
identical performance, if tasked with picking a model to de-
ploy in a practical application, one would most likely prefer
model 1 over model 2 due to the clear separation between
ID and OOD samples. Model 2 inspires less confidence out-
side of a benchmark scenario (where we only consider im-
ages present in the test set), as its performance is extremely
sensitive to the choice of threshold. Yet, none of the stan-
dard metrics capture this distinction.

In the second row, model 4 is a prime example of a model
achieving what is considered an “excellent” OOD detec-
tion performance by common standards [7], but very poor
separation between scores assigned to ID vs. OOD sam-
ples. Trying to select a suitable operating point for this
model would be less straightforward than for model 6 - if set
slightly too low, many inputs would be wrongly flagged as
OOD, but if slightly higher, a large portion of OOD samples
would be missed. Across the performance metrics in Fig. 4,
FNR@95 is the only metric penalizing model 4.

Lastly, the models in the third row would be consid-
ered “good” OOD detectors based on their AUROC of al-
most 85% [7]. Model 7 exhibits quite undesirable be-
haviour, with OOD scores for ID samples uniformly dis-
tributed across the whole range, yet it achieves the best per-
formance in terms of AUPR-out and FNR@95. Models 8
and 9 have a clearer separation between ID vs. OOD sam-
ples, with a sensible threshold lying around 0.4. The large
differences between AUPR-in vs. AUPR-out and FPR@95
vs. FNR@95 results for model 8 in Fig. 4 also highlights
that reporting only one “side” of these metrics can give a
misleading picture of performance.

In a nutshell As we have shown with the examples of
Fig. 3, standard metrics are sensitive to the amount of over-
lap between scores assigned to ID vs. OOD samples, but
are blind to the level of separation between them. Indeed,
a model achieving perfect performance in terms of AUROC
or AUPR only means that there exists at least one threshold
for which the FPR and FNR are 0. We argue that having a
wide range of sensible thresholds to choose from is a desir-

TP

OOD score

CI

CI

OOD benchmarks

detection

threshold?

Real-world use

Figure 5. In a benchmark setting, once the model has been trained
(on CIFAR10 in this example), the threshold for metrics is often
set based on performance on each individual OOD dataset (e.g.
CIFAR100 or SVHN). However, deployment of the model in a
practical setting requires the choice of a single sensible threshold
which is not tailored to a specific OOD dataset.

able property for an OOD detector.

3.2. About that threshold

Besides the fact that the metrics themselves only tell
part of the story, another practical concern is that current
evaluation of OOD detectors essentially considers each ID
vs. OOD dataset pair as its own classification task. For
example, a model trained on CIFAR10, will then indepen-
dently be evaluated on CIFAR10 vs. SVHN and CIFAR10
vs. CIFAR100 (and often several other OOD datasets [21]),
with the above-mentioned metrics reported for each pair.
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Thus, even when employing a fixed-threshold metric, the
threshold may vary across the different OOD datasets in the
evaluation - as illustrated in Fig. 5. We argue that this ap-
proach is fundamentally misaligned with a real-use setting,
for which a single detection threshold has to be chosen.

4. What next?
We suggest a shift of perspective: consider the OOD

scores not just as the output of a classifier, but as an input to
a decision function which has to determine whether to dis-
card the model’s prediction on the original task. The selec-
tion of a threshold for this decision function will determine
the actual OOD detection performance for new images, and
is therefore a safety-critical design choice.

With the threshold in mind, we present a new perfor-
mance metric along with some recommendations for the
evaluation of OOD detectors.

4.1. Enter a new metric

If model performance at evaluation time (that is, for a
single ID vs. OOD dataset pair) is extremely sensitive to
the choice of threshold, then it is difficult to imagine ro-
bust performance at run-time, where the diversity of OOD
samples is expected to increase. Yet, standard area-based
performance metrics do not capture the relation between a
change of threshold and a change in performance.

To address this gap and quantify important differences
between models which are not caught by existing metrics,
we therefore propose a new metric, the Area Under the
Threshold Curve (AUTC), which explicitly penalizes poor
separation between ID and OOD samples. Increased sep-

arability is sometimes mentioned as a desired property for
OOD detectors in the state of the art [15], but has not been
previously quantified.

In contrast with the ROC curve or PR curve, our met-
ric is based on a visualization which explicitly shows the
effect of the threshold on OOD detection performance by
plotting the FPR and FNR of the detector as a function of
the detection threshold. As shown in Fig. 6, not only are
these plots convenient for visually choosing a threshold,
they also reveal stark differences between models - even
those with perfect AUROC - in terms of how quickly the
performance degrades when moving away from the curves’
crossing point. They also implicitly combine both a mea-
sure of performance and separability: the lower the cross-
ing point, the higher the OOD detection performance with a
good choice of threshold, and the closer the curves are glued
to the Y axis on each side, the more ID and OOD scores are
concentrated at opposite sides of the score ranges.

Notably, as the area under the FPR curve (AUFPR) and
under the FNR curve (AUFNR) shrink, we approach an
ideal detector which assigns a score of 0 to all ID samples,
and 1 to all OOD samples.

AUTC metric We summarize these curves as a single
metric by combining the AUFPR and AUFNR, and aver-
aging them to obtain a single value within [0, 1]:

AUTC =
AUFPR + AUFNR

2

In practice, the areas can be computed via the trapezoidal
rule, as is commonly done for the AUROC or AUPR.
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Figure 6. Visualization of the FPR and FNR vs. threshold curves used to compute our proposed metric. The corresponding histogram of
each model is shown above them for reference.
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Figure 7. Our proposed OOD performance metrics for the same 9 models. Lower performance is better.

Some properties of the AUTC:
• a lower value is better: it is equal to 1 for the worst

detector with complete separation, 0.5 for a random
detector (no separation), and 0 for a perfect detector
with complete separation.

• it is not sensitive to sample size or to the definition of
positive vs. negative class.

• it assumes OOD scores between 0 and 1.
In Fig. 7, we show the AUTC computed for the 9 mod-

els, as well as the corresponding AUFPR and AUFNR. This
comparison reveals significant differences compared to the
standard metrics from Fig. 4. This time, in terms of AUTC,
Models 1 and 6 clearly stand out compared to the other
models, as the metric encourages strong separability, while
model 4 obtains the worst score despite its AUROC of over
95%. Looking at the AUFPR and AUFNR allows us to sep-
arately quantify the spread and distance from 0/1 for ID
vs. OOD samples. For instance, Models 4-6 have a sig-
nificantly lower AUFPR than Models 7-8, as the scores as-
signed to ID samples are more concentrated around 0.

4.2. Other considerations for evaluation

We note several limitations of the AUTC metric:
1. The AUTC encourages strong separability - that is, it

encourages OOD scores to be concentrated around 0
for all ID samples, and 1 for all OOD samples. This
behaviour may not be desirable if one instead wishes
the OOD scores to be well-calibrated (that is, for the
OOD score to be a good indicator of the probability of
a sample being OOD).

2. Since it simply averages the AUFPR and AUFNR, the
AUTC gives equal weight to false negatives and false
positives. In practice, the cost of these two types
of mistakes may not be symmetrical (as discussed
in [5]). We therefore recommend separately reporting
the AUFPR and AUFNR, and/or giving them different
weights in the AUTC computation based on severity.

3. As is the case for other curves parametrized by a
threshold [3], the AUTC is sensitive to transformations
of the OOD scores.

Furthermore, much like AUROC and AUPR, our pro-
posed metric is a summary metric covering all possible
thresholds. When comparing OOD detection methods, it
should be accompanied by a fixed-threshold metric (e.g. by
reporting FPR and FNR at a specific operating point). How-
ever, contrary to common practice, we emphasize that this
fixed threshold should not be tailored to the OOD datasets
used in the final evaluation. It should instead be tuned either
on the ID dataset, or on a separate validation OOD set which
is not used during final evaluation - as we cannot assume
to know the distribution of unseen OOD samples. During
evaluation, to reflect real-world conditions, the same thresh-
old should be used across all OOD datasets when reporting
fixed-threshold metrics.

5. A concrete example
Moving away from imaginary models and synthetically-

generated data, we demonstrate our approach on real OOD
models and ID vs. OOD dataset pairs. We select 2 mod-
els from the state of the art trained on the good old CI-
FAR10 [10] dataset, and compare their OOD detection per-
formance on multiple unseen datasets (CIFAR100, tinyIm-
ageNet [12], SVHN [23], and LSUN [32]). We briefly
present the models below, and refer to the original papers
for details:

1. Out-of-DIstribution detector for Neural networks
(ODIN) from [15] applies temperature scaling and in-
put perturbations to a pre-trained neural network. The
OOD score is based on the maximum softmax proba-
bility. We use the DenseNet model weights from the
official code repository1.

2. Spectral-normalized Neural Gaussian Process (SNGP)
from [18] combines a distance-preserving feature ex-
tractor with an approximate Gaussian process as out-
put layer. The OOD score is taken as the Dempster-
Shafer metric. We train a model following a third-party
PyTorch implementation2.

1https://github.com/facebookresearch/odin
2https://github.com/y0ast/DUE
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OOD datasets
tiny

Imagenet LSUN SVHN

AUROC ↑ 99.11 97.89 89.90

AUFPR ↓ ———— 45.17 ————
AUFNR ↓ 21.97 25.24 35.11

AUTC ↓ 33.57 35.21 40.41

@test
FPR ↓ 4.71 4.40 18.51FNR ↓

@95TNR
FPR ↓ ———— 5.00 ————
FNR ↓ 4.30 11.40 50.92

@val
FPR ↓ ———— 19.56 ————
FNR ↓ 0.46 1.88 17.00

(a) ODIN

OOD datasets
tiny

Imagenet LSUN SVHN

AUROC ↑ 97.38 99.09 99.06

AUFPR ↓ ———— 2.85 ————
AUFNR ↓ 49.98 29.41 33.79

AUTC ↓ 26.42 16.13 18.32

@test
FPR ↓ 8.36 5.01 4.97FNR ↓

@95TNR
FPR ↓ ———— 5.00 ————
FNR ↓ 14.11 5.02 4.95

@val
FPR ↓ ———— 16.22 ————
FNR ↓ 3.19 0.89 0.77

(b) SNGP

Table 1. Quantitative comparison of the 2 models’ OOD detection performance. Scores are in percentages, and the proposed AUTC metric
is highlighted in bold. Note that when fixing a global threshold, the FPR is the same across all OOD datasets as it only depends on the
distribution of OOD scores for the ID data (CIFAR10).

Note that the purpose of this experiment is not to pit one
method against another, but rather to show our proposed
metric and evaluation procedure in action.

More plots We use CIFAR100 as a validation dataset for
the detection threshold (as it is “closer” to the training set
in terms of appearance than the others), and the rest of
the OOD datasets for the final evaluation. As visualized
in Fig. 8, altough they exhibit comparable detection per-
formance (similar amount of overlap between the FPR and
FNR curves), the models differ widely in terms of how
their OOD scores are distributed for ID vs. OOD samples.
For ODIN, a reasonable threshold lies around 0.55, while
SNGP concentrates its scores for ID samples around 0. As
the threshold increases from the crossing point, the FNR
increases more rapidly for ODIN than SNGP.

Finally a table We summarize the quantitative results
in Tab. 1. For each model and ID vs. OOD pair, we report
the AUROC (main standard metric), AUTC (our proposed
metric) as threshold-independent performance metrics. We
also measure the FNR (probably of misclassifying an OOD
sample as ID) for several fixed thresholds:

• @test - the point at which the FPR and FNR on the
OOD set are equal (this threshold is specific to each
OOD dataset). We include this as reference, to show
ideal performance.

• @95TNR - the point at which the TNR is at least 95%.
This threshold only depends on the distribution of ID
scores (thus stays the same across OOD datasets).
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Figure 8. FPR (green) & FNR (yellow) curves and normalized
histograms of OOD scores predicted by the 2 models on CIFAR10
(ID dataset) vs. CIFAR100 (val OOD dataset).

• @val - the point at which the FPR and FNR on the
validation dataset CIFAR100 are equal (also stays the
same across OOD datasets).

Looking at the threshold-independent metrics (AUROC
to AUTC in Tab. 1), both models achieve similar and
high (potential for) OOD detection performance, except for
SVHN where there is a difference of 10 percentage points in
AUROC between ODIN and SNGP. Our AUTC metric cor-
relates with AUROC performance for a given model, while
also indicating that SNGP produces better separability be-
tween ID vs. OOD samples. Note that the AUFPR is con-
stant across OOD datasets as it only depends on the distri-
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bution of ID samples - SNGP has a much lower AUFPR
due to a strong concentration of OOD scores around 0 for
ID samples.

The threshold-specific results (FPR and FNR in Tab. 1)
show how significantly the choice of threshold can impact
performance. The performance at @test is unrealistic in
practice, as it assumes that the threshold can be adjusted
for each OOD dataset - as shown in Fig. 9. Fixing a global
threshold based on the ID dataset scores (@95TNR) or the
validation OOD set (@val) widens the performance gap
across different ID vs. OOD pairs. When shifting the global
threshold from one to the other, we see larger fluctuations in
performance on OOD datasets with a higher AUTC (SVHN
for ODIN, and tinyImagenet for SNGP).
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Figure 9. Normalized histograms of OOD scores for the test OOD
pairs. The global (black) and @test (dashed, colored by dataset)
thresholds are shown as vertical lines.

6. Zooming out
Beyond CIFAR Throughout the illustrative examples of
this paper, we have considered the context of image classi-
fication, as this is the most common setting in OOD bench-
marks for computer vision [30]. However, our analysis of
OOD metrics extends well beyond this setting, as it ab-
stracts away from any particular input modality (images,
audio, point clouds...) or main task (classification, regres-
sion..), as well as how or at what level of granularity (e.g.
image-level, pixel-level...) the OOD scores are produced.

Future work We have emphasized the need for evaluat-
ing OOD detection with the choice of a global threshold
in mind, as this choice would have to made for any prac-
tical application: samples with an OOD score above this
threshold are flagged as OOD, allowing the system to fall-
back to a safe strategy (e.g. requesting human input) rather
than allowing the model to make a prediction. Investigating
how a “good” global threshold should be chosen (without
assuming the distributions of OOD datasets are known) and
whether ID vs. OOD separability indeed translates to more
robust OOD detection performance are important directions
for future research, as well as developing methods which in-
corporate the choice of threshold in the model design itself.

7. Conclusion
In this work, we have focused on the quantitative eval-

uation of OOD detectors, highlighting that current perfor-
mance metrics can lead to misleading comparisons between
methods due to a terminology mismatch in the OOD de-
tection literature, and can obfuscate some important dif-
ferences between models such as their ability to produce
clearly separated scores for ID vs. OOD samples. With
concrete examples, we have shown that achieving a high
performance in terms of AUROC is only the first step to-
wards utilizing OOD detection in practical settings, and that
the choice of a detection threshold should be treated as an
important hyperparameter rather than an afterthought. We
have presented a new metric which can serve as a com-
plementary basis for comparing OOD detection models in
terms of how well they separate ID from OOD samples by
OOD score. We hope that this paper serves as a starting
point to encourage further discussion around how OOD de-
tection methods should be evaluated to align with the goals
of practical and safe AI.
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Tim Adler, Jens Petersen, Gregor Köhler, Tobias Ross, An-
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